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Abstract 
Summary: Recently, Deep Learning models, initially developed in the field of Natural Language Pro-
cessing (NLP), were applied successfully to analyze protein sequences. A major drawback of these 
models is their size in terms of the number of parameters needed to be fitted and the amount of com-
putational resources they require. Recently, "distilled" models using the concept of student and 
teacher networks have been widely used in NLP. Here, we adapted this concept to the problem of 
protein sequence analysis, by developing DistilProtBert, a distilled version of the successful ProtBert 
model. Implementing this approach, we reduced the size of the network and the running time by 50%, 
and the computational resources needed for pretraining by 98% relative to ProtBert model. Using two 
published tasks, we showed that the performance of the distilled model approaches that of the full 
model. We next tested the ability of DistilProtBert to distinguish between real and random protein 
sequences. The task is highly challenging if the composition is maintained on the level of singlet, 
doublet and triplet amino acids. Indeed, traditional machine learning algorithms have difficulties with 
this task. Here, we show that DistilProtBert preforms very well on singlet, doublet, and even triplet-
shuffled versions of the human proteome, with AUC of 0.92, 0.91, and 0.87 respectively. Finally, we 
suggest that by examining the small number of false-positive classifications (i.e., shuffled sequences 
classified as proteins by DistilProtBert) we may be able to identify de-novo potential natural-like pro-
teins based on random shuffling of amino acid sequences. 
Availability: https://github.com/yarongef/DistilProtBert 
Contact: yaron.geffen@biu.ac.il 

 
 

1 Introduction  
In recent years, the field of Natural Language Processing (NLP) has 
rapidly advanced. Mechanisms and learning paradigms such as attention-
based transformers (Vaswani et al., 2017), masked language modeling 
(Devlin et al., 2018) and special refinements of these methods  (Lan et 
al., 2019; Liu et al., 2019)  have improved our understanding of text and 
our ability to mine it. Transfer learning and pretraining learning proce-
dures using increasingly larger and larger datasets have made it possible 

to create meaningful representations of words and sentences. Since these 
techniques often create huge networks, distillation methods have been 
suggested to create more compact models, while maintaining accuracy 
(Hinton et al., 2015; Jiao et al., 2019; Sanh et al., 2019). Recently, these 
NLP techniques have been applied to study protein sequences (Elnaggar 
et al., 2021; Ofer et al., 2021). Using Recurrent Neural Networks (Alley 
et al., 2019) and transformer architectures (Brandes et al., 2022; Rives et 
al., 2021) to create these representations provided approaches to improve 
the performance in various protein downstream tasks such as secondary 

structure prediction (Wang Q et al., 2021), flexibility prediction, and 
fluorescence prediction as shown in TAPE benchmark (Rao et al., 2019). 
Moreover, recent protein structure prediction algorithms such as 
AlphaFold (Jumper et al., 2021), RoseTTA fold (Baek et al., 2021) and 
trRosetta (J. Yang et al., 2020) also utilize deep learning for proteomics, 

further fueling the rapid development of this field. Here, we show the 
first application, to the best of our knowledge, of a distilled model for 
protein sequence analysis. We present DistilProtBert, a novel protein 
attention-based model based on ProtBert (Elnaggar et al., 2021). By 

taking advantage of a large pre-training protein dataset, a teacher net-
work, knowledge distillation mechanism and a standard GPU cluster, we 
demonstrate a simpler yet accurate way to represent proteins. We show 
that DistilProtBert performs on-par with the full version of ProtBert on 
two published benchmarks. 
    In addition, this model may be used to distinguish between real and 
random proteins. The number of different proteins in nature is huge, 
estimated to be about 10��. Nevertheless, this is only a miniscule frac-
tion of the number of possible sequences that can be created from an 

alphabet of 20 amino acids, which is 20N where N is the length of the 
protein, typically several hundred amino acids. The common wisdom is 
that most of the random sequences will neither fold nor have any useful 
function. This observation raises an obvious yet fundamental question: 
What are the characteristics of a sequence of amino acids that result in a 
protein? In more concrete terms, we asked whether using a machine 
learning approach, we could distinguish between real sequences of pro-
teins and their shuffled random counterparts. Proteins have characteristic 
amino acid compositions not only on the single amino acid level, but 

also at the level of doublets and triplets, and thus, amino acid composi-
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tion could serve as a key to identifying real proteins (Pe’er et al., 2004). 
Nevertheless, for a given amino acid composition, distinguishing be-
tween real and random sequences that maintain the same amino acid 
composition remains a major challenge. We show here that 
DistilProtBert does very well at this challenge and was able to distin-

guish between real proteins and their shuffled counterparts suggesting 
that real proteins have underlying characteristics that are not captured by 
their amino acid composition.   

2 Methods 

2.1 Data 

2.1.1 Pretraining dataset 

ProtBert was pretrained on ~216M proteins from the UniRef100 dataset 
(Suzek et al., 2007). DistilProtBert was pretrained on ~43M proteins 
from UniRef50 (Suzek et al., 2007) filtered by length from 20 to 512 
amino acids. 

2.1.2 Benchmarks datasets 

DistilProtBert was evaluated on several benchmark tasks. For secondary 
structure prediction (Q3), we used Netsurfp2 (Klausen et al., 2019), 
CASP12 (Moult et al., 2018), CB513 (Cuff & Barton, 1999) and TS115 
(Y. Yang et al., 2016) datasets, and for membrane-bound vs water solu-
ble prediction (Q2) we used the DeepLoc dataset (Almagro Armenteros 
et al., 2017). To distinguish real protein sequences from random k-let 
shuffled versions of them, we used singlet, doublet, and triplet non-
redundant versions of the human proteome. 

2.2 Pretraining 

DistilProtBert was pretrained on ~43M sequences from UniRef50 with 
length ranging from 20 to 512 amino acids. We pretrained the model on 
a masked language modeling task with masking probability of 15%. 
Pretraining was done on five v100 32GB Nvidia GPUs from a DGX 
cluster with a local batch size of 16 examples. We used AdamW opti-
mizer with an initial learning rate of 5e-5 and no weight decay. The mod-
el was trained for 3 epochs using mixed precision, and dynamic padding. 
Every epoch run took approximately 4 days, resulting in total pretraining 
time of 12 days. 

2.3 Knowledge distillation 

The weights of DistilProtBert were initialized using the weights learned 
from ProtBert. Knowledge from the teacher network (ProtBert), was 
distributed towards the student network (DistilProtBert), via the loss 
function. As described in (Sanh et al., 2019) the loss is comprised of 3 
equally weighted parts: Lmlm, Lce and Lcos. A softmax temperature of 2 
was set during pretraining (Hinton et al., 2015).  

2.4 Fine tuning for benchmark tasks 

To fine-tune DistilProtBert for secondary structure prediction (Q3) an 

all-tokens (amino acid) classification head (linear layer for each hidden-
state output) was added on top of our pretrained model. For membrane-
bound vs. water soluble prediction (Q2), a first token classification head 
was added on top of our pretrained model. In this strategy, we utilized 
the first token from DistilProtBert corresponding to [CLS] token, which 

attends all the other tokens in the sequence to capture the best representa-
tion for the whole sequence. Fine-tuning of the model for all benchmark 
tasks was performed without any layer freezing and was done with the 
same hyperparameters as reported by (Elnaggar et al., 2021). 

2.5 Real versus shuffled protein classification task 

The real versus shuffled proteins task was constructed in the following 
manner: singlet, doublet and triplet versions of the human proteome were 
used as our dataset. Out of 20,577 human proteins (from UniProt), se-
quences shorter than 20 amino acids or longer than 512 amino acids were 
removed, resulting in a set of 12,703 proteins. The uShuffle algorithm 
(Jiang et al.,2008) was then used to shuffle these protein sequences while 
maintaining their k-let distribution for k=1,2,3. The very few sequences 
for which uShuffle failed to create a shuffled version were eliminated. 
    A notorious problem in classification tasks of proteins is that many 

proteins are part of a family with several homologs and tend to be similar 
to each other, thereby rendering the distinction between training and test 
sets meaningless. To address this problem, we ran all the sequences (real 
and shuffled) through the h-CD-HIT algorithm, which is the most rigor-
ous version of CD-HIT. Three subsequent filter stages of CD-HIT were 
performed with pairwise identity cutoffs of 0.9, 0.5 and 0.1 respectively. 
Note that this filtering resulted in a much smaller number of sequences 
that maintained triplet frequency, as it was apparently difficult to shuffle 
sequences to deviate sufficiently from their source while maintaining the 

triplet composition. All the sets contained pairs of sequences, the real 
protein and its shuffled counterpart, and the algorithm was tasked with 
classifying the real versus the random sequence. We split the sequences 
to training and test sets, 80% were set as a training set, and the rest 20% 
were set aside for test. A 10-fold cross validation was performed for each 
one of the k-let training sets and the average results were reported. Then, 
the performance of our model was evaluated on the 20% test set that was 
set aside. The datasets sizes are shown in Table 1. 

Table 1. Datasets sizes after each filtering stage 

k-let h-CD-HIT Training set Validation set Test set 

Singlet 11,698 8,424 936 2,338 

Doublet 11,658 8,388 932 2,338 

Triplet 3,688 2,664 296  728 

 

DistilProtBert was used as a feature extractor, performing max pooling 
(filter size=16, stride=16) on each of the token (amino acid) representa-

tions. Afterwards, concatenation and zero padding was performed. We 
then used a feed-forward neural network to classify the sequences into 
the two classes. We trained the network with the following 
hyperparameters: batch size 32, RAdam optimizer, learning rate of 
0.000001, dropout 0.1 and 100 epochs with early stopping. 

3 Results 
The general concept of knowledge distillation is to teach a smaller net-
work, dubbed the student network, to mimic a larger network, dubbed 
the teacher network. By training a student network on a masked language 
modeling task (MLM) and narrowing the gap to the teacher network 
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parameter distribution, it is possible to create a distilled network that 
maintains a high level of performance. Bert-based models, such as 
ProtBert, are amenable to this procedure, since they are very large and 
resource consuming in terms of hardware and running time. Therefore, to 
efficiently utilize such models, distilled versions are commonly devel-

oped (Jiao et al., 2019; Sanh et al., 2019; Sun et al., 2020). 

3.1 Optimization of the model and memory consumption 

Inspired by DistilBert that was designed for natural language processing 
tasks (Sanh et al., 2019) and using ProtBert (Elnaggar et al., 2021) as a 
teacher network, we created a distilled ProtBert implementation which 
we termed “DistilProtBert”. While ProtBert contains 420M parameters, 
we were able to reduce the number of DistilProtBert parameters by al-
most half, to 230M. In addition, we were able to pretrain DistilProtBert 
on commodity hardware of five v100 Nvidia 32GB GPUs from a single 

DGX cluster. This is a 51-fold improvement from ProtBert pretraining, 
which required a TPU Pod of 64 nodes with 512 16GB TPUs in total. 
Consequently, fine-tuning and inference times on downstream tasks were 
twice as fast as those attained using ProtBert. Moreover, in 
DistilProtBert only short sequences of 512 amino acids in length were 
used during pretraining, as opposed sequences of up to 2048 amino acids 
in length that were used for ProtBert pretraining. 

3.2 Deep learning architecture 

The student network, DistilProtBert, and teacher network, ProtBert, 

share the same general architecture. They both have 1024 neurons in 
each hidden layer, 4096 neurons in each intermediate hidden layer, and 
16 attention heads in each one of their hidden layers. Yet, the number of 
total hidden layers in DistilProtBert was smaller; in contrast to 30 hidden 
layers in ProtBert, only 15 hidden layers were used, taking each layer 
alternately. 

3.3 Evaluation tasks 

We first evaluated DistilProtBert performance on two tasks that were 

previously studied using ProtBert (Elnaggar et al., 2021), secondary 

structure prediction (Q3), and prediction of membrane-bound vs water 

soluble proteins (Q2). The results are shown in Table 2.  

Table 2. Accuracy results for benchmark tasks 

Secondary structure prediction (Q3) Membrane bound vs. 
water soluble (Q2)

Model CASP12 TS115 CB513 DeepLoc 

ProtBert 0.75 0.83 0.81 0.89 

DistilProtBert 0.72 0.81 0.79 0.86 

CASP12 (Moult et al., 2018), TS115 (Y. Yang et al., 2016), CB513 (Cuff & Bar-
ton, 1999) and DeepLoc (Almagro Armenteros et al., 2017) 

For both tasks, DistilProtBert demonstrated results on-par with ProtBert-

UniRef100, with a maximal reduction of only 3 points. Yet, training and 

inference times were twice as fast when using the same hyperparameters 

as in ProtBert’s fine-tuning. Further fine-tuning may improve results. 

We then turned to the challenge of distinguishing real proteins from their 
shuffled counterparts. We first tried to address this challenge by using a 
bidirectional LSTM network. This model achieved poor results of 0.71, 
0.68 and 0.61 AUC for the singlet, doublet and triplet human proteome 
test sets respectively. We then investigated the performance of 

DistilProtBert on this task. Use of this model resulted in dramatic im-
provements (Tables 3 and 4), demonstrating that 1) deep learning models 
can perform remarkably well in this difficult task, and 2) the perfor-
mance of our distilled version approaches that of the full ProtBert ver-
sion. Note that the results are very good both on the cross validation and 
on the test sets. 

Table 3. Cross validation scores 

Dataset Model Accuracy F1 Precision Recall AUC 

 LSTM 0.71 0.65 0.82 0.54 0.71 

Singlet ProtBert 0.92 0.92 0.97 0.88 0.92 

 DPB 0.91 0.91 0.95 0.87 0.91 

 LSTM 0.69 0.63 0.77 0.54 0.69 

Doublet ProtBert 0.91 0.90 0.96 0.85 0.91 

 DPB 0.89 0.89 0.93 0.85 0.89 

 LSTM 0.59 0.57 0.61 0.56 0.59 

Triplet ProtBert 0.93 0.93 0.97 0.89 0.93 

 DPB 0.87 0.86 0.91 0.82 0.87 

DPB = DistilProtBert 

Table 4. Test scores 

Dataset Model Accuracy F1 Precision Recall AUC 

 LSTM 0.71 0.66 0.80 0.56 0.71 

Singlet ProtBert 0.93 0.93 0.96 0.89 0.93 

 DPB 0.92 0.92 0.94 0.90 0.92 

 LSTM 0.68 0.62 0.78 0.51 0.68 

Doublet ProtBert 0.92 0.92 0.97 0.87 0.92 

 DPB 0.91 0.90 0.94 0.87 0.91 

 LSTM 0.61 0.57 0.64 0.51 0.61 

Triplet ProtBert 0.92 0.92 0.98 0.87 0.92 

 DPB 0.87 0.86 0.89 0.84 0.87 

DPB = DistilProtBert 
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4 Discussion 
In recent years, it was shown that the use of pretrained transformers for 

protein language-based prediction models is very effective. In accord-

ance with this trend, we developed DistilProtBert, a novel protein lan-

guage model. This model provided us with a more efficient way to create 

concise protein representations, while maintaining good performance, 

and allowed us to pretrain and fine-tune a protein language model with-

out the need for expensive high-performance computing systems. Thus, 

it provides an accessible and more convenient means to create protein 

representations. 

    As we described above, DistilProtBert can be used on commodity 

hardware to perform several downstream tasks, including secondary 

structure prediction and the classification task distinguishing real versus 

shuffled amino acid protein sequences. It enables fine-tuning and feature 

extraction in a fast and efficient manner. As access to such models be-

comes easier (Wolf et al., 2019) other BERT-like architectures, for ex-

ample TinyBert (Jiao et al., 2019) and MobileBert (Sun et al., 2020), 

should be examined.  

    In addition, we performed a novel classification task between real 

proteins and their k-let shuffled versions. The success of the attention 

based models in this task suggests that there is a hidden structure in real 

proteins that is not reflected in their k-let amino acid composition. We 

showed that standard neural network architectures, such as LSTM, 

achieved much lower performance and thus it seems that attention-based 

models can capture properties of proteins that are not found by classical 

machine learning schemes. In addition to the technical success, this 

achievement can teach us that there are characteristics of real proteins 

that are not reflected in the k-let amino acid composition. This is a pro-

found statement since other properties that define proteins such as sec-

ondary structure preference are affected, to a large extent, by the local 

amino acid composition. Since our “words” are preserved on the triplet 

amino acid level, we may conclude that proteins have long range de-

pendencies between amino acids that DistilProtBert was able to detect. 

Elucidating and understanding these underlying dependencies from the 

model would not be a simple endeavor as deep learning schemes are 

notoriously difficult to interpret. However, there are efforts, for example 

(Vig et al., 2020), that may be able to facilitate gaining biological 

knowledge from deep learning schemes.  

    Even without fully understanding the defining characteristics of valid 

proteins, our model can be used to identify good starting points for de-

novo protein design. This can be done by examining the small number of 

false-positive classifications i.e., the shuffled amino acid sequences that 

were classified as natural proteins by DistilProtBert. It would be interest-

ing to determine, by synthesizing several of these proteins, if indeed they 

exhibit protein-like properties in terms of folding and stability. 
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