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One Sentence Summary: Serum proteome profiling identifies subsets of long COVID patients 
with evidence of persistent inflammation including key immune signaling pathways that may be 
amenable to therapeutic intervention. 
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ABSTRACT 
 
Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring 
diverse symptoms that can persist for months after acute SARS-CoV-2 infection. The etiologies 
are unknown but may include persistent inflammation, unresolved tissue damage, or delayed 
clearance of viral protein or RNA. Attempts to classify subsets of PASC by symptoms alone 
have been unsuccessful. To molecularly define PASC, we evaluated the serum proteome in 
longitudinal samples from 55 PASC individuals with symptoms lasting ≥60 days after onset of 
acute infection and compared this to symptomatically recovered SARS-CoV-2 infected and 
uninfected individuals. We identified subsets of PASC with distinct signatures of persistent 
inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly 
associated with TNF), were the most differentially enriched pathways. These findings help to 
resolve the heterogeneity of PASC, identify patients with molecular evidence of persistent 
inflammation, and highlight dominant pathways that may have diagnostic or therapeutic 
relevance. 
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MAIN TEXT 
 
New, recurrent or prolonged symptoms after acute SARS-CoV-2 infection are termed post-acute 
sequelae of SARS-CoV-2 (PASC) or long COVID. A recent systematic review of 38 papers 
reported that one-third or more of surviving COVID-19 patients experienced at least one PASC 
symptom during the 2-5 months after the onset of acute infection 1. PASC symptoms are 
numerous and varied, impacting virtually every major organ system 
(https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html) 2,3 and can last for 
weeks or months.  Despite the large number of individuals affected, the lack of consensus 
diagnostic criteria or standardized outcome measures impede efforts to effectively group persons 
to establish clinical etiologies or to evaluate outcomes for therapeutic trials 4. There are also no 
clearly defined molecular markers of disease or definitive diagnostic tests. To make matters more 
complicated, it is recognized that similar clinical symptoms could arise after acute infection 
regardless of whether they were caused by persistent inflammatory disease initiated by the viral 
immune response, unresolved organ or tissue damage, or delayed viral clearance. Identification 
of molecular features capable of mechanistically defining the heterogeneity of PASC could be 
transformative, allowing clinicians and researchers to better subset patients and highlighting 
potential targets for therapeutic intervention.  
 
We hypothesized that the serum proteome may provide insights into potential drivers of PASC 
symptomatology and may offer a clinically accessible tool to help define subgroups of PASC. 
We therefore analyzed the serum proteome using the Olink Explore 1536 panel in 55 adults (21 
men, 34 women; age 22-82 years) with persistent symptoms lasting ≥60 days after an acute, 
PCR-confirmed SARS-CoV-2 infection (termed “PASC”), in 24 (9 men, 15 women; age 20-
79 years) who symptomatically recovered after a PCR-confirmed SARS-CoV-2 infection 
(termed “Recovered”), and in 22 (12 men, 10 women; age 29-77) who had a negative 
nasopharyngeal PCR test (termed “Uninfected”) (Fig S1A). The uninfected individuals had 
blood drawn once at study entry while the PASC and recovered persons had one or more blood 
draws at timepoints ≥60 days and up to 379 days post-symptom onset (PSO) of acute COVID 
(Fig S1B). Most patients had mild symptoms during acute infection (World Health Organization 
(WHO) ordinal scale 2 or 3) but 3 subjects with moderate scores were hospitalized and required 
oxygen (WHO ordinal scale 5) 5. None required mechanical ventilation. All were unvaccinated. 
Symptoms of each PASC patient are provided in Table S1. 
 
Previous studies have divided PASC patients into subsets based on either type, number, or 
severity of clinical features 6,7. For our cohort, hierarchical clustering on PASC symptomatology 
alone at ≥60 days PSO did not clearly drive significant patient clustering (Fig S1A, S2A). We 
next attempted to use symptoms to drive clustering of significantly associated serum protein 
signatures, but no single symptom or combination of symptoms was able to clearly distinguish 
patient groups (Fig S2B, C, D) suggesting that symptoms alone are unable to differentiate 
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subsets of PASC. 
 
We therefore took an alternative approach, using unbiased clustering of the serum proteome 
across the entire cohort (PASC + recovered + uninfected) to find clusters of individuals that had 
similar serum proteome signatures regardless of their COVID status or symptomatology. 
Canonical pathway enrichment was performed on the first post-60 day sample available for each 
PASC subject, the last available post-60 day sample for each recovered subject (to maximize the 
chance that proteome alterations had returned to baseline) and on the solitary sample from the 
uninfected individuals (see Methods for details). We used the curated canonical pathways from 
the Molecular Signatures Database (MSigDB) and applied a rule-in approach 8, which resulted in 
85 pathways that distinguished PASC from recovered and uninfected individuals with a 
significant rule-in performance (p < 0.01). These pathways were merged into 54 modules to 
avoid gene set redundancy using the enrichment map approach with a minimum Jaccard index 
threshold of 25% (Table S3) (see Methods). Hierarchical clustering using the 54 proteomic 
modules identified 5 discrete clusters that showed distinct expression patterns of the modules 
(Fig 1A). Two of the clusters (4 & 5) showed a marked enrichment for inflammatory modules 
while clusters 1, 2, and 3 lacked a distinct inflammatory protein signature. Inflammatory clusters 
4 and 5 included predominantly PASC individuals (91% and 80% respectively) whereas cluster 1 
consisted of only uninfected or recovered individuals. Clusters 2 and 3 consisted of a mixture of 
PASC (48% and 28% respectively), recovered, and uninfected subjects (Fig S3A). The 
distribution of PASC subjects across inflammatory (4 & 5; 65% of PASC) and non-inflammatory 
(2 & 3; 35% of PASC) proteomic clusters underscores the heterogeneity of PASC. To determine 
whether the differential serum proteomic signatures discovered by comparing the first post-60 
day PSO sample for PASC to the last post-60 day PSO sample for recovered are stable over time, 
we extended our analysis to include all longitudinal samples available for each subject. We 
found that PASC subjects exhibiting an inflammatory protein signature continue to have that 
signature over time and that most subjects remained in the same cluster throughout the study 
period (Fig S3B). Whether the two clusters of inflammatory PASC described here represent two 
distinct subtypes with different molecular drivers or a continuum of disease requires testing in 
future studies. 
 
We hypothesized that an inflammatory plasma protein signature may also correlate with being 
more symptomatic during acute infection. However, because this study cohort primarily 
experienced mild acute COVID-19 symptoms (WHO ordinal scale 2 or 3), commonly used 
COVID severity indices did not capture a range of heterogeneity in symptomatology. We 
therefore developed a clinical activity score for the acute phase of mild COVID that accounted 
for both duration of symptoms and their impact on activities of daily (see Methods). 
Inflammatory PASC subjects in clusters 4 & 5 had a significantly higher pre-PASC clinical 
activity score (Wilcoxon rank sum p=0.002) compared to non-inflammatory PASC subjects in 
clusters 2 & 3 (Fig 1B). We wondered whether subjects with an inflammatory protein signature 
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may have mounted less robust immune responses to SARS-CoV-2, thus potentially delaying 
viral clearance or increasing risk for viral persistence. However, comparison of SARS-CoV-2 
receptor binding domain (RBD)-specific IgG titers in infected subjects (PASC + Recovered) 60 
days PSO identified no significant difference between the inflammatory (4 and 5) and non-
inflammatory (1, 2 and 3) clusters (Fig 1C). Comparison of SARS-CoV-2-specific CD4+ and 
CD8+ T cell frequencies 9,10 between the inflammatory and non-inflammatory PASC also did not 
show any significant difference (Fig S3C, Fig S3D).  

Among the 54 modules that defined the 5 clusters (Fig 1A), we identified those that significantly 
distinguished each cluster by calculating the single-sample Gene Set Enrichment Analysis 
(ssGSEA) score per module across samples (Table S4). Ranking modules by adjusted p-value 
identified those most significantly associated with clusters 4 and 5 (Table S5, Fig S4, Fig S5). 
Within cluster 4, multiple pathways associated with type II interferon (IFN-γ) signaling (Type II 
IFN signaling, IL-27, TID, etc.) were among those most highly enriched (Fig 1D). Canonical 
NF-κB signaling and NF-κB activating cytokine pathways (IL-18, TNF, IL-1 were enriched in 
both clusters 4 and 5 (Fig 1E). In addition, cluster 5 was also enriched for proteins associated 
with regulation of IFN-α signaling (Fig 1F).  The expression scores of these modules across all 
samples were significantly correlated with each other, indicating, patients with higher IFN-γ 
signaling have higher IL27, IL18, and NF-κB signaling, and patients with higher TNF signaling 
have higher IL1, NF-κB, and IFN-α signaling, suggesting a global activation of immune 
cascades that drive inflammation (Fig 1G). 
 
We next investigated the individual proteins differentially expressed in the serum of subjects 
within each cluster. Clusters 1-5 were individually compared to all other clusters. Cluster 4 had 
234 differentially expressed proteins (DEPs) whereas cluster 5 had 296 DEPs (Table S6; adj. p-
value <0.05 ). Since cytokines, chemokines, and cytokine/chemokine receptors are major drivers 
of inflammation and potential targets for therapeutic intervention, we focused on these and 
ranked individual DEPs by adjusted p-value (Fig 2A). IFN-γ was found to be the cytokine that 
most significantly defines cluster 4. Moreover, IFN-γ was the top DEP enriched in cluster 4 
among all 1463 analytes in the Olink protein panel (Fig S6, S7, Table S6). Increased expression 
of chemokines and cytokines known to be regulated by IFN-γ including CXCL9, CXCL10, 
CXCL11, and IL-27 in cluster 4 suggests that it is functionally active (Fig 2A, 2B). We also 
observed increased expression of IL-12 p40 (IL12B) and the IL-12 p40/p70 heterodimer 
(IL12A_IL12B) in cluster 4, which may drive expression of IFN-γ and an overall Th1 signature.  
 
To determine whether IFN-γ and IFN-γ driven cytokines, chemokines, and pathways remained 
persistently elevated over time in inflammatory PASC, we evaluated these signatures 
longitudinally in available samples beginning from early acute infection to 275 days PSO. IFN-γ, 
IL-12 p40, and IFN-γ-driven chemokines were consistently elevated within inflammatory PASC 
from clusters 4 & 5 compared to non-inflammatory PASC from clusters 1, 2, and 3, extending to 
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at least 275 days after initial SARS-CoV-2 infection (Fig 2C, Fig S8). IFN-γ related signaling 
modules also showed persistent enrichment over the same time (Fig 2D, Fig S9).  
In addition to IFN-γ, TNF, TNF-driven cytokines and chemokines (including IL-6 and CCL7 
(MCP3)), and several TNF receptor superfamily members were also increased in clusters 4 and 5 
(Fig 2A, 2E, Fig S8). TNF, IL-6, and CCL7 remained persistently elevated in inflammatory 
PASC over time compared to non-inflammatory PASC (Fig 2F, Fig S8). In addition, TNF 
signaling and canonical NF-κB signaling pathways previously found to be enriched at early time 
points in inflammatory PASC remained elevated over time (Fig 2G, Fig S9).  
Finally, the pathway related to expression of IFNA signaling was found to be enriched at the first 
post-60 day PSO timepoint in cluster 5 (Fig 1F). The Olink assay only quantifies IFN-γ and 
IFNλ1 but we observed increased expression of proteins associated with type I IFN activation 
including SAMD9L, MNDA, DDX58, LAMP3, and others (Fig S6, Fig S7). These proteins 
were found to be highly increased early after acute infection but in inflammatory PASC, 
remained elevated over time compared to non-inflammatory PASC. Longitudinal assessment 
showed that SAMD9L, MNDA, DDX58, and LAMP3 trended toward the levels seen in non-
inflammatory PASC and recovered subjects by approximately 180 days post infection (Fig 2H), 
similar to the kinetics observed for the expression of IFNA signaling pathway over time (Fig 2I). 
This is notable in light of recent studies reporting detection of SARS-CoV-2 RNA and protein in 
gastrointestinal and hepatic tissue of convalescent patients up to 180 days after acute infection 
and in diverse extrapulmonary tissues including brain up to 230 days after acute symptom onset 

11,12. Whether residual viral RNA and/or protein may serve as a driver of the phenotype in 
inflammatory PASC remains to be investigated more thoroughly. 
 
To determine whether our observations could be extended to an independent cohort of PASC 
patients collected across a broader range of acute COVID severities, we applied a similar 
analysis approach to the recently published INCOV cohort that included Olink plasma proteomic 
data from 204 SARS-CoV-2-infected patients and 289 healthy controls 13,14. Of the 204 INCOV 
patients, 75 met the criteria used for our cohort (Olink data available from sample obtained ≥60 
days after acute infection + clinical data available). Forty-three (57%) of these had 1 or more 
PASC symptoms like the PASC subjects in our cohort and the remainder had no recorded PASC 
symptoms, similar to the “recovered” group in our cohort. The Olink panel employed in the 
INCOV study measured only 443 of the 1472 proteins measured in our study but 163 proteins 
overlapped with the inflammatory signatures that significantly defined clusters 4 & 5 in our 
cohort. To be consistent with our cohort, k-means unsupervised clustering of the Olink 
proteomic data from the INCOV cohort was performed with k=5 using the 163 overlapping 
proteins on the sample available at the first timepoint ≥60 days PSO per INCOV patient (n=75).    
 
Of the 5 INCOV clusters, cluster E is similar to our inflammatory PASC clusters 4 and 5 with 
significant enrichment of 129 of the 163 proteins (79%) that defined our inflammatory PASC. 
Similar to our clusters 4 and 5 that consisted primarily of PASC persons, 64.2% of the persons in 
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INCOV cluster E were patients with persistent PASC symptoms (Fig 2J, Fig S10, Table S7). No 
healthy controls clustered with cluster E. INCOV cluster D was made up of a mixture of PASC, 
recovered, and healthy controls, like our cluster 2. The remaining clusters (A, B, C) were made 
up predominantly of healthy individuals. Among the cytokines and chemokines observed in our 
inflammatory PASC, proteins that were also significantly higher in INCOV cluster E included 
IFN-γ, IL12, CXCL10, CXCL11, TNF, and CCL7 (Fig 2K) that were increased in our cluster 4 
along with others increased in our cluster 5 (DDX58, LAMP3, etc,) (Fig S10, Table S7). Lastly, 
the broader diversity of disease severity in the INCOV cohort compared to our mild to moderate 
cohort, allowed us to make an association between the clinical measure of acute disease severity 
(WHO ordinal scale score) and proteomic inflammatory signatures. Interestingly, INCOV 
patients from cluster E predominantly exhibited an acute WHO ordinal score of ≥3 reflecting the 
association between more severe acute disease and persistent inflammation 15 (Fig 2L). 
 
These findings substantially extend previous observations that have variably reported increased 
expression of IFN-γ, IFN-β, IFN-λ1/2/3, TNF, IL-6, IL-1β, and PTX3 in plasma from PASC 
patients using targeted cytokine panels 16–18. While previous studies grouped all PASC 
participants, we provide the first evidence that more than half of all PASC have an inflammatory 
protein signature while others do not have this signature. We show that in inflammatory PASC, 
the IL-12/IFN-γ axis is highly active and is combined with a NF-κB driven protein signature, 
possibly driven by TNF and leading to excess IL-6 expression. Furthermore, we show evidence 
of a persistent type I IFN driven protein signature present in inflammatory PASC group that 
trends toward normal approximately 6 months post-infection, paralleling recent reports of 
persistent SARS-CoV-2 RNA and protein being detected in non-pulmonary tissues up to 6-8 
months after infection 11,12. We show that these findings can be applied to another PASC 
proteomic dataset to identify PASC subjects with persistent inflammatory disease. These data 
suggest a serum protein signature that could be used diagnostically to address the challenge of 
clinical heterogeneity in PASC. It also provides insights to potential molecular mechanisms of 
disease and possible therapeutic targets within individuals with an inflammatory protein 
signature (TNF, IL-6, IFN-γ, etc.). 
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Figure 1: Serum proteomic clustering of PASC. (A) Heatmap of the rule-in method based 
unsupervised clustering of Olink serum proteome data across all patients in the cohort (PASC + 
recovered + uninfected). Rows represent modules, columns represent samples and the scaled 
ssGSEA module score across samples is depicted from low (purple) to high (yellow). The 
method identifies 2 clusters of subjects with higher inflammatory module signatures (4 & 5) 
relative to the other three clusters of subjects (1, 2, 3) that lack inflammatory signatures. 
Metadata including age, sex, symptoms, days post-symptom onset (PSO) are shown at the top of 
the heatmap. (B) Clinical activity score of mild acute COVID symptoms in PASC subjects from 
inflammatory (4 & 5) vs. non-inflammatory (2 & 3) clusters. The p-value determined by 
Wilcoxon rank sum test was calculated comparing, as a group, inflammatory PASC vs non-
inflammatory PASC. (C) Receptor binding domain (RBD)-specific IgG titers in PASC and 
recovered patients within each cluster at 60 days PSO. The p-value determined by Wilcoxon 
rank sum test was calculated comparing, as a group, inflammatory clusters vs non-inflammatory 
clusters. (D-F)  Box and jitter plots of the ssGSEA scores (y-axis) across all clusters (x-axis) for 
the top ranked modules that were enriched in inflammatory clusters 4 and 5. P-values determined 
by Wilcoxon rank sum test were calculated comparing inflammatory cluster 4 and inflammatory 
cluster 5 independently to clusters 1,2,3. (G) Pair-wise Spearman’s correlation coefficient 
heatmap between top enriched modules that define inflammatory clusters 4 and 5 demonstrating 
co-enrichment of modules.  
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Figure 2: Key protein signals driving inflammatory PASC signatures.  (A) Top ranked 
differentially expressed cytokines, chemokines, and cytokine/chemokine receptors by adjusted p-
value of <0.05 that are associated with inflammatory protein clusters 4 & 5. The color gradient of 
each node represents the -log10 adjusted p-value. (B)  Box and jitter plots of olink Normalized 
Protein Expression (NPX) (y-axis) of IFN-γ and its related cytokines and chemokines across 
clusters (x-axis) that were significantly upregulated exclusively in cluster 4. P-values determined 
by Wilcoxon rank sum test were calculated comparing inflammatory cluster 4 and inflammatory 
cluster 5 independently to clusters 1,2,3. (C) Longitudinal loess fit plots of Olink NPX of IFN-γ 
and its related cytokines and chemokines on samples available from early acute infection through 
>60 days PSO (x-axis). PASC patients from the inflammatory clusters 4 and 5 are represented 
here as inflammatory PASC (red), PASC patients from clusters 2 and 3 are represented here as 
non-inflammatory PASC (blue) while the recovered patients are represented in black. (D) 
Longitudinal loess fit plots of the ssGSEA scores (y-axis) of IFN-γ related modules over time (x-
axis). (E) Box and jitter plots of Olink NPX (y-axis) expression levels of TNF, IL6 and CCL7 
across clusters (x-axis) that were significantly differentially upregulated clusters 4 and 5. P-
values determined by Wilcoxon rank sum test were calculated comparing inflammatory cluster 4 
and inflammatory cluster 5 independently to clusters 1,2,3. (F) Longitudinal loess fit plots of 
Olink NPX (y-axis) of TNF, IL6 and CCL7 over time (x-axis). (G) Longitudinal loess fit plots of 
the ssGSEA scores (y-axis) of TNF and NF-κB related signaling modules over time (x-axis).  (H, 
I) Longitudinal loess fit plots of Olink NPX and ssGSEA scores (y-axes) of type-I IFN-driven 
proteins and the IFN-α module overtime (x-axis) respectively.  (J) K-means unsupervised 
clustering of Olink proteomic data from Su Y et al (2022) showing 5 clusters of INCOV patients 
and healthy controls. Pie charts show the percentage of each cluster consisting of INCOV 
patients and healthy subjects. (K) Cytokines/chemokines significantly upregulated in the INCOV 
cluster E vs.  INCOV from clusters B,C, and D. P-values were determined by a Wilcoxon rank 
sum test. (L) Distribution of different disease severities (as judged by WHO ordinal scale) across 
INCOV patients in cluster E vs INCOV patients in clusters B,C,D. Y-axis and the numbers in bar 
graphs represent proportion and number of patients per INCOV group in each WHO scale bin 
respectively. 
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MATERIALS AND METHODS 
 
Regulatory approvals:  
COVID19 Fred Hutch samples and healthy controls: FH RG: 1007696 IR File: 10440 Main 
Consent 04/05/2020 and 6/04/2020 Seattle COVID-19 Cohort Study to Evaluate Immune 
Responses in Persons at Risk and with SARSCoV-2 Infection.  
 
Study Conduct:   
Serum was collected from participants enrolled in the longitudinal study, “Seattle COVID-19 
Cohort Study to Evaluate Immune Responses in Persons at Risk and with SARS-CoV-2 
Infection”. Eligibility criteria included adults in the greater Seattle area at risk for SARS-CoV2 
infection or those diagnosed with SARS-CoV-2 by a commercially available SARS CoV-2 PCR 
assay. Study data were collected and managed using REDCap electronic data capture tools 
hosted at Fred Hutchinson Cancer Research Center, including detailed information on symptoms 
during acute infection and longitudinal follow-up ranging from 33-379 days post symptom onset. 
All but 2 persons in the “uninfected” group had at least 1 symptom of SARS-CoV-2 infection 
within the 14 days prior to study screening but had a negative SARS-CoV-2 nasopharyngeal 
PCR test. Informed consent was obtained from all participants at the Seattle Vaccine Trials Unit 
and the Fred Hutchinson Cancer Research Center Institutional Review Board approved the 
studies and procedures.  
 
Symptoms category clustering: 
We collected symptom information from each donor over multiple visits. The symptom data 
were merged into six major categories including fatigue/malaise, pulmonary, cardiovascular, 
gastrointestinal, musculoskeletal, and neurologic. Other mild symptoms were combined into a 
single category as “any mild symptoms” (Table S1). Symptom information was converted to 
binary format where yes=1 and no=0. Missing symptom information is denoted by NA. The 
binary information was used to perform principal component analysis (PCA) and visualize 
sample clustering using factoextra (v1.0.7). The contribution of variation for each symptom 
category was retrieved and shown in bar plot. For each symptom category we identified 
symptom-specific differential plasma proteins using linear mixed model 19. We used lme4 
package (v1.1) to carry out linear mixed model analysis where age, sex were fixed variables and 
donor information was a random variable. 

NPX ~ Symptom status + Age + Sex + (1|Donor) (1) 
The p-value is obtained from chi-square statistics. The specific symptom category associated 
with differential plasma proteins selected using p < 0.05. The identified differential proteins from 
six symptom specific categories were merged together and their expression visualized in a 
heatmap using package ComplexHeatmap (v2.4). 
 
Symptom activity metrics and scoring for mild to moderate acute COVID symptoms:   
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Symptom activity in mild to moderate acute COVID was classified by participant report of 
impact on Activities of Daily Living (ADLs) for each day of illness (Health et al. 2017). Days 
hospitalized were recorded as were any treatment or therapies received. Participants were scored 
according to their maximum symptom activity for each day: 0, no symptoms; 1, mild impact on 
ADLs reported; 2, moderate impact on ADLs reported; 3, severe illness without hospitalization; 
4, severe illness with hospitalization; 5, hospitalized with ICU care, or 6, life threatening illness. 
Duration was assigned for days spent at each level of symptom activity. A clinical activity score 
was calculated for each subject by multiplying the symptom activity score by the number of days 
spent at each level, then summing all values. 
 
Sample processing: 
Blood was drawn into a serum separator tube and serum samples were processed, aliquoted and 
frozen within 4 hours of blood draw. 
 
Olink serum protein measurement:  
Serum samples were inactivated with 1% Triton X-100 for 2h at room temperature according to 
the Olink COVID-19 inactivation protocol. Inactivated samples were then run on the Olink 
Explore 1536 platform, which uses paired antibody proximity extension assays (PEA) and a next 
generation sequencing (NGS) readout to measure the relative expression of 1472 protein analytes 
per sample. Analytes from the inflammation, oncology, cardiometabolic, and neurology panels 
were measured.  
 
For plate setup, samples were randomized across plates to achieve a balanced distribution of age 
and gender. Longitudinal samples from the same participant were run on the same plate. To 
facilitate comparisons with future batches, sera from 15 donors was commercially purchased 
(BioIVT) and randomly interspersed amongst the above study samples. Commercial samples 
included serum from COVID-19 serology-negative, serology-positive, PCR-positive, and 
recovered (no longer symptomatic) participants.  
 
Data were first normalized to an extension control that was included in each sample well. Plates 
were then standardized by normalizing to inter-plate controls run in triplicate on each plate. Data 
were then intensity normalized across all samples. Final normalized relative protein quantities 
were reported as log2 normalized protein expression (NPX) values.  
 
Olink data preprocessing: 
Olink results and QC flags were reviewed for overall quality. Results for TNF, IL6 and CXCL8, 
which were measured on all 4 Olink panels, were reviewed prior to averaging to a single NPX 
value for analysis. Two samples had discrepant cross-panel measurements on these proteins. The 
results that trended most consistently with the participant’s longitudinal measurements were kept 
and averaged. Serum samples were analyzed in two batches. Following the method 
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recommended by Olink, results of the later batch were bridged to those of the earlier batch using 
a set of 42 cohort samples that were tested in both batches. A batch offset for each analyte was 
calculated as the median difference on the 42 samples as measured between the two batches, 
excluding samples with QC warning flags. The analyte-specific offsets were then added to the 
raw NPX values of the later batch.  
 
Antibody ELISAs for RBD: 
Half-well area plates (Greiner) were coated with purified RBD protein at 16.25ng/well in PBS 
(Gibco) for 14- 24h at room temperature. After 4 150ul washes with 1X PBS, 0.02% Tween-2 
(Sigma) using the BioTek ELx405 plate washer, the IgA and IgG plates were blocked at 37°C 
for 1-2 hours with 1X PBS, 10% non-fat milk (Lab Scientific), 0.02% Tween-20 (Sigma); IgM 
plates were blocked with 1X PBS, 10% non-fat milk, 0.05% Tween-20. Serum samples were 
heat inactivated by incubating at 56°C for 30 minutes, then centrifuged at 10,000 x g / 5 minutes, 
and stored at 4°C previous to use in the assay. For IgG ELISAs, serum was diluted into blocking 
buffer in 7-12 1:4 serial dilutions starting at 1:50. For IgM and IgA ELISAs, serum was diluted 
into 7 1:4 serial dilutions starting at 1:12.5 to account for their lower concentration. A qualified 
pre-pandemic sample (negative control) and a standardized mix of seropositive serums (positive 
control) was run in each plate and using to define passing criteria for each plate. All controls and 
test serums at multiple dilutions were plated in duplicate and incubated at 37°C for 1 hour, 
followed by 4 washes in the automated washer. 8 wells in each plate did not receive any serum 
and served as blocking controls. Plates then were plated with secondary antibodies (all from 
Jackson ImmunoResearch) diluted in blocking buffer for 1h at 37C. IgG plates used donkey anti-
human IgG HRP diluted at 1:7500; IgM plates used goat anti-human IgM HRP diluted at 
1:10,000; IgA plates used goat anti-human IgA HRP at 1:5000. After 4 washes, plates were 
developed with 25ul of SureBlock Reserve TMB Microwell Peroxide Substrate (Seracare) for 4 
min, and the reaction stopped by the addition of 50ml 1N sulfuric acid (Fisher) to all wells. 
Plates were read at OD450nm on SpectraMax i3X ELISA plate reader within 20 min of adding the 
stop solution.  
 
OD450nm measurements for each dilution of each sample were used to extrapolate RBD endpoint 
titers when CVs were less than 20%. Using Excel, endpoint titers were determined by calculating 
the point in the curve at which the dilution of the sample surpassed that of 5 times the average 
OD450nm of blocking controls + 1 standard deviation of blocking controls. 
 
RBD titers at day 60 PSO were estimated by a linear mixed effects model of titers over time 
from day 30 PSO with random effects for the intercept and slope, using lme from the nlme R 
package.  
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Intracellular Cytokine Staining (ICS) Assay:  
Flow cytometry was used to examine SARS-CoV-2-specific CD4+ and CD8+ T-cell responses 
using a validated ICS assay. The assay was similar to a published report 20,21. Peptide pools 
covering the structural proteins of SARS-CoV-2 were used for the six-hour stimulation. Peptides 
matching the SARS-CoV-2 spike sequence (316 peptides, plus 4 peptides covering the G614 
variant) were synthesized as 15 amino acids long with 11 amino acids overlap and pooled in 2 
pools (S1 and S2) for testing (BioSynthesis). All other peptides were 13 amino acids overlapping 
by 11 amino acids and were synthesized by GenScript. The peptides covering the envelope (E), 
membrane (M) and nucleocapsid (N) were initially combined into one peptide pool, but the 
majority of the assays were performed using a separate pool for N and one that combined only E 
and M. Several of the open reading frame (ORF) peptides were combined into two pools, ORF 
3a and 6, and ORF 7a, 7b and 8. All peptide pools were used at a final concentration of 1 
microgram/ml for each peptide. As a negative control, cells were not stimulated, only the peptide 
diluent (DMSO) was included. As a positive control, cells were stimulated with a polyclonal 
stimulant, staphylococcal enterotoxin B (SEB). Cells expressing IFNγ and/or IL-2 and/or CD154 
were the primary immunogenicity endpoint for CD4+ T cells and cells expressing IFNγ were the 
primary immunogenicity endpoint for CD8+ T cells. The overall response to SARS-CoV-2 was 
defined as the sum of the background-subtracted responses to each of the individual pools. A 
sample was considered positive for CD4+ or CD8+ T cell responses to SARS-CoV-2 if any of 
the CD4+ or CD8+ T cell responses to the individual peptide pool stimulations was positive. 
Positive responses to a given peptide pool stimulation were determined using the MIMOSA 
(Mixture Models for Single-Cell Assays) method (Finak et al., 2014a). The MIMOSA method 
uses Bayesian hierarchical mixture models that incorporate information on cell count and cell 
proportion to define a positive response by comparing peptide-stimulated cells and unstimulated 
negative controls. MIMOSA estimates the probabilities that peptide-stimulated responses are 
responders and applies a false-discovery rate multiplicity adjustment procedure (Newton et al 
2004). Responses with false-discovery rate q-values < 0.05 were considered positive. The total 
number of CD4+ T cells must have exceeded 10,000 and the total number of CD8+ T cells must 
have exceeded 5,000 for the assay data to be included in the analysis.  
 
Identification of pathways with high rule-in performance: 
Partial area under the receiver operating characteristic curve (pAUC) 22,23. was used to evaluate 
the rule-in performance 8 of individual pathways in identifying PASC subjects with respect to 
recovered and uninfected subjects. The pAUC bounded by a specificity between 90-100% and 
the corresponding 99% confidence interval (two-sided) of each pathway were calculated using 
the “ci.auc” function in the R package pROC with the following parameters: partial.auc=c(0.9, 
1), conf.level=0.99, boot.n=1000. A pathway was identified as significant with p < 0.01 if its 
pAUC lower confidence bound was above the corresponding pAUC of a random, non-
performing classifier, i.e. 0.005.  
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.09.491196doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491196


We collected the canonical pathway “c2.cp.v7.2.symbols” geneset and associated gene 
information from MsigDB (v7.2). The canonical pathway consists of 2871 pathways used to 
perform single sample GSEA (ssGSEA) using GSVA (v1.40) R package (Hänzelmann et al., 
2013 PMID:23323831). Among 2871 pathways, 1960 pathways with overlapping plasma 
proteins were used as input for GSVA with min.size 2 and max.size 2000 genes as parameters. 
The ssGSEA resulted in a normalized enrichment score (NES) for each pathway. One sample for 
each PASC donor was selected as the last time point of infected recovered with >60 days PSO 
(n=24) and first time point with >60 days PSO for infected PASC donors (n=55). Total 101 
donors with one sample including uninfected (n=22) were considered for biomarker analysis. 
Rule-in approach implemented to identify pathways significantly associated with PASC donors. 
Parameters such as confidence interval (CI), pAUC and bootstrap (boot.n) of 200 were used. 
Bootsrtrap analysis was performed using random seed over multiple processors using function 
mcapply. Range of CI 0.8-0.99 and pAUC 0.8-0.95 was used to identify pathways associated 
with the PASC group. These pathways were used to differentiate the uninfected and PASC 
donors into separate clusters incorporating >50% of cluster size. The clustering was performed 
by the k-means approach implemented in ComplexHeatmap (v2.4) and visualized. The bootstrap 
analysis resulted in CI of 0.99 and pAUC of 0.95 which can differentiate uninfected and PASC 
donors in clusters. These parameters were used to identify pathways associated with PASC with 
a bootstrap of 1000 as mentioned before. The analysis resulted in 85 pathways. These 85 
pathways then collapsed into 54 modules.  
A module is defined if pairwise genests had an overlap of at least 25% (jaccard index 0.25) genes 
between them (Bader et al., 2010). The 54 modules then used to perform module enrichment at 
single sample level using GSVA. The normalized enrichment score for each module was scaled 
and clustered using K-means clustering implemented in ComplexHeatmap (v2.4) with parameter 
row_km and column_km. The identified clusters are then visualized in heatmap. 
 
Pathway enrichment analysis:  
Gene Set Enrichment Analysis (GSEA) 24 was performed among genes that defined early acute 
infection status and genes that defined longitudinal changes. A custom collection of genesets that 
included the Hallmark v7.2 genesets, KEGG v7.2 and Reactomev7.2 from the Molecular 
Signatures Database (MSigDB, v4.0) was used as the pathway database. The "Type III interferon 
signaling" gene set was manually curated from the Interferome database 25. Genes were pre-
ranked by the decreasing order of their log fold changes or coefficients. The running sum 
statistics and Normalized Enrichment Scores (NES) were calculated for each comparison. The 
pathway enrichment p-values were adjusted using the Benjamini-Hochberg method and 
pathways with p-values < 0.05 were considered significantly enriched. 
 
Sample-level enrichment (SLEA):  
Sample-level enrichment analysis 26 was used to represent the GSEA pathway expression results 
on a per-sample basis. The SLEA score was calculated by first calculating the mean expression 
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value of proteins (averaged across single cells) enriched in a pathway, then comparing it to the 
mean expression of random sets of genes (averaged across single cells) of the same size for 
1,000 permutations per sample. The difference between the observed and expected mean 
expression values for each pathway was determined as the SLEA pathway score per sample. 
 
Statistical analysis: 
All statistical analyses were performed using the corresponding functions in RStudio (version 
4.1). Comparisons of single protein olink NPX or module ssGSEA scores between groups were 
tested using the Wilcoxon rank sum test and when appropriate, the Benjamini-Hochberg method 
was applied to adjust p-values in multiple-testing correction. Unless specified, an adjusted p-
value of 0.05 was considered significant.  
 
Analysis of Su Y et al (2022) INCOV Olink data: 
The Olink proteomic data consisted of 204 SARS-CoV-2 (INCOV) patients and 289 healthy 
controls. The INCOV patients were studied at clinical diagnosis (T1), acute disease (acute, T2), 
and 2–3 months post onset of initial symptoms (convalescent, T3). Olink plasma proteomic data 
was available for a total of 443 proteins. Among these, 163 proteins overlapped with the 
differentially expressed proteins found in inflammatory signatures that significantly defined 
clusters 4 & 5 in our cohort. K-means unsupervised clustering of the INCOV Olink proteomic 
data was performed on the 163 protein overlap. To remain consistent with our cohort, we used 
samples available at the first timepoint ≥60 days PSO per INCOV patient (which made a total 74 
INCOV patients). The kmeans function of the stats R package was used with k=5, allowing 100 
iterations. 
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SUPPLEMENTARY MATERIALS 
 
Figure S1. (A) Table of study participant demographics at the time of enrollment and the 
number and proportion of infected PASC patients with symptoms at >= 60 days PSO. (B) 
Longitudinal sampling timeline across infected patients. Serum was collected at 2-5 timepoints 
for each participant ranging from 6 to 379 days PSO. Patients are arranged by sex and increasing 
age for recovered and PASC. 
 
Figure S2. (A) Hierarchical clustering heatmap of symptomatology across infected PASC 
patients. (B,C) Heatmap of the Olink serum proteins significantly associated with 
Fatigue/Malaise and pulmonary symptoms respectively among infected PASC patients. The 
uninfected and infected recovered patients were included to perform hierarchical clustering on 
these proteins. (D) Heatmap of the union of Olink serum proteins significantly associated with 
each of the symptoms among infected PASC patients. The uninfected and infected recovered 
patients were included to perform hierarchical clustering on these proteins. 
 
Figure S3. (A) Stacked bar plot of the proportion of uninfected, recovered and PASC patients 
per cluster identified with the rule-in approach (B) 
(C,D) Box and jitter plots of SARS-CoV-2 specific CD4+ and CD8+ T-cells between the 
inflammatory PASC (PASC from clusters 4 and 5) and non-inflammatory PASC (PASC from 
clusters 2 and 3) respectively. 
 
Figure S4. Modules that are significantly higher expressed in clusters 4 and 5 relative to all other 
clusters. Modules unique to a cluster are arranged and ranked by increasing adjusted p-value of 
<0.05, while modules expressed in both clusters are arranged and ranked by the average of their 
adjusted p-values. The color gradient of each node represents the -log10 adjusted p-value. P-
values determined by Wilcoxon rank sum test are noted in supplementary table S5. 
 
Figure S5. Box and jitter plots of the ssGSEA scores (y-axis) across all clusters (x-axis) for the 
modules that were significantly associated with each cluster. P-values determined by Wilcoxon 
rank sum test are noted in supplementary table S5. 
 
Figure S6. Top 20 proteins ranked by adjusted p-value < 0.05 that are significantly higher 
expressed in cluster 4 (left) and cluster 5 (right) relative to all other clusters. The color gradient 
of each node represents the -log10 adjusted p-value. P-values determined by Wilcoxon rank sum 
test are noted in supplementary table S6. 
 
Figure S7. Box and jitter plots of NPX (y-axis) across all clusters (x-axis) for the proteins that 
were significantly associated with each cluster. P-values determined by Wilcoxon rank sum test 
are noted in supplementary table S6. 
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Figure S8. Longitudinal protein expression (NPX as y-axis) of IFN-γ, TNF, its related cytokines 
and chemokines and type I interferon associated proteins on samples available from 6 days PSO 
through >60 days PSO (x-axis). PASC patients from the inflammatory clusters 4 and 5 are 
represented here as inflammatory PASC (red), PASC patients from clusters 2 and 3 are 
represented here as non-inflammatory PASC (blue) while the recovered patients are represented 
in black. 
 
Figure S9. Longitudinal module expression (ssGSEA score as y-axis) of IFN-γ signaling, TNF 
signaling, its related modules and IFNa signaling on samples available from 6 days PSO through 
>60 days PSO (x-axis). PASC patients from the inflammatory clusters 4 and 5 are represented 
here as inflammatory PASC (red), PASC patients from clusters 2 and 3 are represented here as 
non-inflammatory PASC (blue) while the recovered patients are represented in black. 
 
Figure S10. Box and jitter plots of the proteins significantly upregulated in the INCOV E vs 
INCOV from clusters B,C,D. P-values were determined by a Wilcoxon rank sum test. P-values 
determined by Wilcoxon rank sum test are noted in supplementary table S7. 
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