




































































   
 

   
 

 798 

Figure 6 Functional AZ states differ in their morphologically defined vesicle pools  799 
Representative tomographic 3D reconstructions of (A) B6J Light, (B) ChR2 NoLight, (C) ChR2 800 
ShortStim and (D) ChR2 LongStim displayed in both front view (upper part of the panel) and top 801 
view (lower part of the panel). (a-d) Corresponding virtual sections of A-B. The AZ membrane is 802 
shown in blue, presynaptic density in pink, ribbons in red, MP-SVs (non-tethered in yellow, 803 
tethered in orange and docked in light pink), RA-SVs (green, light green). Magnification 12,000x; 804 
scale bars, 100 nm. (E) Total count of SVs per pool (RA- and MP-SV pools), per ribbon. (F) The 805 
fraction of non-tethered, tethered and docked MP-SVs per ribbon. Data are presented in mean ± 806 
SEM. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. Statistical test: one-way ANOVA 807 
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followed by Tukey’s test (parametric data) and KW test followed by Dunn’s test (non-parametric 808 
data). MP-SV pool: B6J Light: n = 15 ribbons, Nanimals = 2; ChR2 NoLight: n = 17 ribbons Nanimals = 809 
4; ChR2 ShortStim: n = 11 ribbons, Nanimals = 1; ChR2 LongStim: n = 26 ribbons, Nanimals = 4.  810 
RA-SV pool: B6J Light: n = 9 ribbons, Nanimals = 1; ChR2 NoLight: n = 17 ribbons Nanimals = 4; ChR2 811 
ShortStim: n = 11 ribbons, Nanimals = 1; ChR2 LongStim: n = 21 ribbons, Nanimals = 3. 812 
 813 

Enhanced SV docking in correlation to stimulus duration 814 

Next, we performed in-depth analysis of MP-SV sub-pools among the various conditions 815 

(Fig. 6F). As the full inclusion of the ribbon is relatively rare in 250-nm sections (Fig. 6A-816 

D), we compared the fractions of non-tethered, tethered and docked MP-SVs as done 817 

previously (Chakrabarti et al., 2018). The fraction of non-tethered SVs decreased after a 818 

short light pulse (B6J Light = 0.28 ± 0.03, ChR2 NoLight = 0.23 ± 0.03, ChR2 ShortStim 819 

= 0.13 ± 0.03), while the fraction of tethered SVs decreased upon a long stimulation (B6J 820 

Light = 0.71 ± 0.03, ChR2 NoLight = 0.75 ± 0.02, ChR2 ShortStim = 0.79 ± 0.05, ChR2 821 

LongStim = 0.57 ± 0.03). Values and information about statistics can be found in Table 3 822 

and a separate quantification of the used ChR2 mice can be found in Fig. 6-figure 823 

supplement 1. 824 

The fraction of morphologically docked SVs increased upon optogenetic stimulation (Fig. 825 

6F), being more prominent upon a long stimulation (B6J Light = 0.005 ± 0.005, ChR2 826 

NoLight = 0.01 ± 0.008, ChR2 ShortStim = 0.076 ± 0.03, ChR2 LongStim = 0.18 ± 0.02). 827 

We conclude that optogenetic stimulation changes the sub-pools of MP-SVs, with a 828 

prominent increase of docked SVs proportional to the stimulation duration and fewer 829 

tethered and non-tethered SVs. 830 
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 831 

Figure 6-figure supplement 1 Analysis of morphologically defined vesicle pools for each 832 
genotype 833 
(A) Schematic illustration of a ribbon synapse (not drawn to scale) showing the parameters taken 834 
into account for the analysis of the different vesicle pools. Membrane-proximal (MP)-SVs 835 
constitute the first-row of vesicles within 50 nm membrane-to-membrane distance from the AZ-836 
membrane (blue) and 100 nm from the presynaptic density (PD, pink). Non-tethered SVs are in 837 
yellow, tethered in orange and docked in light pink. For Ribbon-associated (RA)-SVs, vesicles 838 
(green) within 80 nm from the ribbon (R, in red) are included. (B) Total count of SVs per pool (RA- 839 
and MP-SV pools), per ribbon. (C) Fraction of non-tethered, tethered and docked MP-SVs per 840 
ribbon for the controls as well as for Ai32VC_ShortStim, Ai32VC_LongStim and Ai32KI_LongStim 841 
Data are presented in mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 842 
Statistical test: one-way ANOVA followed by Tukey’s test (parametric data) and KW test followed 843 
by Dunn’s test (non-parametric data).  844 
MP-SV pool: B6J_LongStim: n = 15 ribbons, Nanimals = 2; Ai32VC_NoLight: n = 9 ribbons Nanimals 845 
= 2; Ai32VC_ShortStim: n = 11 ribbons, Nanimals = 1. Ai32VC_LongStim: n = 15 ribbons, Nanimals = 846 
2. Ai32KI_LongStim: n = 11 ribbons Nanimals = 2; Ai32KI_NoLight: n = 8 ribbons Nanimals = 2.   847 
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RA-SV pool: B6J_LongStim: n = 9 ribbons, Nanimals = 1; Ai32VC_NoLight: n = 9 ribbons Nanimals = 848 
2; Ai32VC_ShortStim: n = 11 ribbons, Nanimals = 1; Ai32VC_LongStim: n = 10 ribbons, Nanimals = 1; 849 
Ai32KI_LongStim: n = 11 ribbons Nanimals = 2; Ai32KI_NoLight: n = 8 ribbons Nanimals = 2.  850 

 851 

SV distances to the PD and AZ membrane decrease upon long stimulation 852 

It was previously proposed that SVs are recruited to the AZ membrane via tethers, a 853 

process that takes place rather close to the presynaptic density (PD) (Chakrabarti et al., 854 

2018; Frank et al., 2010; Vogl et al., 2015). Therefore, we evaluated the distances of all 855 

MP-SVs to the AZ membrane and to the PD. We found that the distances of MP-SVs to 856 

the AZ membrane decreased upon stimulation (Fig. 7A), indicating recruitment of SVs to 857 

the AZ membrane. Moreover, SVs were found closer to the PD upon light stimulation (Fig. 858 

7B), likely bringing them close to the voltage-gated Ca2+ channels that are situated 859 

underneath to the PD (Neef et al., 2018; Pangrsic et al., 2018; Wong et al., 2014). This 860 

trend was only significant for ChR2 LongStim (all values can be found in Table 3). We 861 

conclude that upon stimulation, SVs are recruited more tightly to the AZ membrane and 862 

potentially closer to the Ca2+ channels. Similar results were obtained for the individual 863 

genotypes (Fig. 7-figure supplement 1). 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 
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B6J 

Light 
ChR2 

NoLight 
ChR2 

ShortStim 
ChR2 

LongStim 
Adjusted p-value Test 

Nanimals 2 4 1 4     

nribbons Total 15 17 11 26     

nribbons 
Ai32VC   9 11 15     

nribbons 
Ai32KI   8 0 11     

MP-SVs 
count 

9.73 14.88 12.00 11.96 B6J Light vs. ChR2 NoLight KW Test - 
Dunn's test ± 0.796 ± 0.935 ± 1.844 ± 0.833 0.0028 

Fraction of 
non-tethered 

SVs 

0.28 0.23 0.14 0.25 B6J Light vs. ChR2 ShortStim ANOVA - 
Tukey's test 

± 0.035 ± 0.026 ± 0.035 ± 0.028 0.0313 

Fraction of 
tethered SVs 

0.72 0.75 0.79 0.57 B6J Light vs. ChR2 LongStim 

ANOVA - 
Tukey's test 

± 0.033 ± 0.025 ± 0.049 ± 0.034 0.0173 

        ChR2 LongStim vs. ChR2 NoLight 

        0.0009 

        
ChR2 LongStim vs. ChR2 

ShortStim 

        0.0006 

Fraction of 
docked SVs 

0.01 0.01 0.08 0.18 B6J Light vs. ChR2 LongStim 

KW Test - 
Dunn's test 

± 0.006 ± 0.009 ± 0.029 ± 0.025 <0.0001 

        ChR2 LongStim vs. ChR2 NoLight 

        <0.0001 

Distance of 
SV to the 

membrane 

22.78 23.67 19.41 19.61 ChR2 LongStim vs. ChR2 NoLight 

KW Test - 
Dunn's test 

± 1.08 ± 0.776 ± 1.263 ± 0.876 0.0007 

        
ChR2 NoLight vs. ChR2 

ShortStim 

        0.0105 

Distance of 
SV to the PD 

31.88 37.61 32.96 30.13 ChR2 LongStim vs. ChR2 NoLight KW Test - 
Dunn's test ± 2.144 ± 1.622 ± 2.192 ± 1.509 0.0001 

Diameter of 
SVs 

49.00 48.67 49.17 48.05   KW Test - 
Dunn's test ± 0.442 ± 0.25 ± 0.352 ± 0.303   

              

Nanimals 1 4 1 3     

nribbons Total 9 17 11 21     

nribbons 
Ai32VC   9 11 10     

nribbons 
Ai32KI   8 0 11     

RA-SVs 
count 

26.44 37.35 29.45 33.33 
n.s 

ANOVA - 
Tukey's test ± 3.296 ± 3.683 ± 4.059 ± 2.372 

Table 3 List of SV parameters showing the mean ± SEM values, N, n, p-values and the 879 
statistical tests applied 880 
Data are presented as mean ± SEM. Data was tested for significant differences by one-way 881 
ANOVA followed by Tukey’s test (parametric data) or KW test followed by Dunn’s test (non-882 
parametric data). Significant results are indicated with * p< 0.05; ** p<0.05; and **** p< 0.0001. 883 
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SV diameters remain largely unchanged in the MP-SV pool 884 

In order to approach possible release mechanisms for IHC ribbon synapses, we 885 

determined the SV diameter for all MP-SVs. Previous studies using 15 min K+ stimulation 886 

already excluded a large increase of SV sizes upon prolonged stimulation close to the AZ 887 

membrane (Chakrabarti et al., 2018; Chapochnikov et al., 2014). However, early 888 

exocytosis phases could not be monitored at IHC ribbon synapses up to now. If homotypic 889 

or compound fusion takes place, one would expect an increase in diameter of SV close 890 

to the AZ membrane (He et al., 2009; Lenzi et al., 2002). We found no differences in the 891 

diameters of the MP-SVs between the stimulated and non-stimulated conditions (Fig. 7C; 892 

values and details for statistics in Table 3) We investigated the SV diameter distribution 893 

in more detail by sorting all MP-SVs into different bins. We examined small SVs > 40 nm 894 

in diameter as well as large SVs ≤ 60 nm, and the frequency distribution between 45 and 895 

60 in 5 nm steps. There were no obvious shifts in the frequency distributions of the SV 896 

diameters (Fig. 7Cii). In conclusion, homotypic SV fusion events do not seem to take 897 

place among MP-SVs of the IHC synapse under our stimulation paradigms. 898 

 899 
Figure 7 MP-SVs come closer to the AZ membrane and the presynaptic density upon light 900 
stimulation. 901 
(A) MP-SVs distance to the AZ membrane. (B) MP-SVs distance to the PD. (Ci) Diameter of MP-902 
SVs quantified from the outer rim to the outer rim. (Cii) Frequency distribution of SV diameter of 903 
all MP-SVs. Data are presented in mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 904 
0.0001. Statistical test: one-way ANOVA followed by Tukey’s test (parametric data) and KW test 905 
followed by Dunn’s test (non-parametric data). 906 
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B6J Light: n = 15 ribbons, Nanimals = 2; ChR2 NoLight: n = 17 ribbons Nanimals = 4; ChR2 ShortStim: 907 
n = 11 ribbons, Nanimals = 1; ChR2 LongStim: n = 26 ribbons, Nanimals = 4. 908 

 909 
Figure 7-figure supplement 1 Distances of MP-SVs to the AZ membrane and the 910 
presynaptic density as well as their diameters  911 
(A) MP-SVs distance to the AZ membrane. (D) MP-SVs distance to the PD. (E) Frequency 912 
distribution of SV diameter of all MP-SVs. Data are presented in mean ± SEM. *p < 0.05, **p < 913 
0.01, ***p < 0.001 and ****p < 0.0001. Statistical test: one-way ANOVA followed by Tukey’s test 914 
(parametric data) and KW test followed by Dunn’s test (non-parametric data). 915 
B6J_LongStim: n = 15 ribbons, Nanimals = 2; Ai32VC_NoLight: n = 9 ribbons Nanimals = 2; 916 
Ai32VC_ShortStim: n = 11 ribbons, Nanimals = 1; Ai32VC_LongStim: n = 15 ribbons, Nanimals = 2; 917 
Ai32KI_ NoLight: n = 8 ribbons, Nanimals = 2; Ai32KI_ LongStim: n = 11 ribbons, Nanimals = 2 918 

 919 

Discussion 920 

In the current study, we established Opto-HPF with a millisecond range physiological 921 

stimulation, followed by FS and ET for structure-function analysis of IHC ribbon synapses. 922 
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This enabled near-to-native state preservation of the ultrastructure of exocytic steps 923 

occurring within milliseconds and offered a closer correlation to cell-physiological 924 

stimulation paradigms widely used in the field. Patch-clamp recordings validated the 925 

photoresponses of ChR2-expressing IHCs and demonstrated optogenetically triggered 926 

glutamate release. Further, we provide a strategy for precise synchronization of HPF with 927 

optogenetic stimulation. In summary (Fig. 8), our analysis revealed a stimulation-928 

dependent accumulation of docked SVs at IHC AZs. Moreover, we found a slight 929 

reduction of the distance of non-docked SVs to the AZ membrane and the PD, even more 930 

prominent with longer stimulation duration. Finally, with this physiological stimulation, we 931 

did not observe large SVs or other morphological correlates of potential homotypic fusion 932 

events in the MP-SV pool.  933 

 934 

Figure 8 Summary 935 
Optogenetic stimulation of IHCs mobilize SVs more tightly to the AZ membrane and potentially 936 
closer to the Ca2+ channels. The proportion of docked and tethered SVs increased upon 937 
stimulation duration, while the total count of MP-SVs and RA-SVs stayed stable. The distance of 938 
MP-SVs to the AZ membrane decreased with stimulation duration.  939 

 940 
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Validation of Opto-HPF in IHCs 941 

Using immunofluorescence microscopy, immunogold electron microscopy and patch-942 

clamp recordings, we observed an efficient and functional expression of ChR2 (H134R) 943 

in IHCs of mouse lines that employed Vglut3-dependent Cre expression. Blue light pulses 944 

evoked photocurrents and -depolarizations similar to previous reports in other cell types 945 

(Boyden et al., 2005; Cardin et al., 2010; Hernandez et al., 2014; Kittelmann et al., 2013; 946 

Nikolic et al., 2009). Our patch-clamp recordings of ChR2-expressing IHCs or of the 947 

postsynaptic bouton revealed that a 10 ms light pulse of 6-16 mW/mm2 was sufficient to 948 

i) depolarize the IHC by 50 mV within 10 to 20 ms and ii) trigger EPSCs at individual 949 

synapses with latencies of 15-20 ms. Longer stimulations of similar irradiance decreased 950 

the time to peak of photodepolarization and EPSC latencies and resulted in a sustained 951 

release. Part of this sustained release is attributed to the slow repolarization of the IHCs 952 

(>40 ms) due to the presence of K+ channel blockers (TEA-CL and Cs+ in the present 953 

study). Based on the charge of the light-evoked EPSCs, the recorded EPSCs most likely 954 

reflect the fusion of several SVs at the individual AZ. Under the premise that an individual 955 

SV leads to a charge transfer ranging from 50 to 600 fC (Huang and Moser, 2018; 956 

Rutherford et al., 2012), our optogenetic stimulation of IHCs triggers the release of more 957 

than 10 SVs on the recorded AZs. This number of released SVs and the presence of an 958 

immediate plateau indicates depletion of the RRP even after short and mild light 959 

stimulations. 960 

In order to arrive at a reliable Opto-HPF operation when using the HPM100, we added 961 

further functionalities to the machine. The pneumatic pressure sensor, which was placed 962 

in close proximity to the freezing chamber, accurately enabled us to calculate the time 963 

point when pressurized LN2 entered the freezing chamber. This allowed a correlation to 964 

the data of internal pressure and temperature sensors, whereas the other sensors 965 

provided less reliable signals. To achieve short and long light stimulations in the HPM, 966 

we chose a single light pulse with different onset time points. According to the sensor 967 

curves, we obtained light stimulations between 17 and 76 ms. Our ShortStim (~20 ms) 968 

and LongStim (~50 ms) Opto-HPF paradigms aimed to capture ultrastructural correlates 969 

of such phasic and sustained exocytosis and matched stimulus durations widely used in 970 

electrophysiology of hair cell exocytosis (e.g. Cho et al., 2011; Goutman and Glowatzki, 971 
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2007; Johnson et al., 2017; Michalski et al., 2017; Moser and Beutner, 2000; Parsons et 972 

al., 1994; Schnee et al., 2005). IHC patch-clamp indicates that RRP is released within the 973 

first 20 ms of step depolarization (Goutman and Glowatzki, 2007; Moser and Beutner, 974 

2000) while longer depolarizations recruit additional SVs for sustained exocytosis 975 

(Goutman and Glowatzki, 2007; Moser and Beutner, 2000). Furthermore, instead of 976 

applying trains of short light pulses as typically used for neuronal cell types (Berndt et al., 977 

2011; Boyden et al., 2005; Imig et al., 2020; Ishizuka et al., 2006; Kleinlogel et al., 2011; 978 

Lin et al., 2009), we opted for a continuous light pulse to mimic a step-like receptor 979 

potential of IHCs in the high frequency cochlea of the mouse (Russell and Sellick, 1978). 980 

The ultrastructural findings upon light stimulation in the HPM undoubtedly reflect 981 

snapshots of exocytosis at the IHC synapse. 982 

Resolving IHCs synaptic vesicle pools with Opto-HPF 983 

Significant efforts have been made to address the mechanisms of SV release at different 984 

ribbon synapses by studying morphologically defined SV populations using ET. These 985 

studies proposed that the SVs situated close to the AZ membrane represent the ‘’ultrafast 986 

release pool’’ (Lenzi and von Gersdorff, 2001; Lenzi et al., 1999), and SVs further away 987 

around the ribbon are accessible for slower release (Lenzi et al., 1999). 988 

Capacitance measurements (Beutner and Moser, 2001; Johnson et al., 2005; Khimich et 989 

al., 2005; Moser and Beutner, 2000; Pangrsic et al., 2010), fluorescence imaging 990 

(Griesinger et al., 2005; Özçete and Moser, 2020) and recordings from single spiral 991 

ganglion neurons (Buran et al., 2010; Frank et al., 2010; Goutman and Glowatzki, 2007; 992 

Jean et al., 2018; Jung et al., 2015a; Peterson et al., 2014) propose an RRP with a size 993 

of between 4 to 45 vesicles per AZ which partially depletes with a time constant of 3 to 994 

54 ms. The broad range of size and release kinetics estimates results from differences in 995 

methods, stimulus paradigms and experimental conditions as well as in assumptions of 996 

model-based data analysis. Moreover, heterogeneity of AZs may also play a role. These 997 

physiological estimates of RRP size enclose the number of approximately 10 MP-SVs. 998 

Yet, docking of SVs, often considered to be the ultrastructural correlate of fusion 999 

competence, is virtually absent from IHC AZs in non-stimulated conditions (present study 1000 

and (Chakrabarti et al., 2018)). Moreover, in contrast to the physiological evidence for a 1001 

partial RRP depletion, IHC ribbon synapses did not display a significant reduction in MP-1002 
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SVs upon optogenetic stimulation on the ultrastructural level. Strikingly, instead and 1003 

contrary to conventional and retinal ribbon synapses (Borges-Merjane et al., 2020; Imig 1004 

et al., 2020; Watanabe et al., 2013b), there is a prominent increase in docked SVs 1005 

(present study and (Chakrabarti et al., 2018)). 1006 

Finding an accumulation of docked SVs upon strong depolarization seems puzzling given 1007 

estimated rates of SV replenishment and subsequent fusion of 180-2000 SV/s at IHC 1008 

ribbon synapses (Buran et al., 2010; Goutman and Glowatzki, 2007; Jean et al., 2018; 1009 

Pangrsic et al., 2010; Peterson et al., 2014; Schnee et al., 2011; Strenzke et al., 2016). 1010 

Indeed, such high speed and indefatigable SV release enable firing up to approximately 1011 

100 spikes/s in the quiet and steady state firing of up a few hundred spikes/s upon strong 1012 

sound stimulation (Buran et al., 2010; Evans, 1972; Huet et al., 2016; Jean et al., 2018; 1013 

Kiang et al., 1965; Liberman and Kiang, 1978; Schmiedt, 1989; Taberner and Liberman, 1014 

2005). Do these docked SVs represent release ready SVs that are more likely detected 1015 

upon massive turnover? Do they reflect “kiss and stay” release events or limited clearance 1016 

of vesicles following release? Does the lack of docked SVs at resting IHC synapses reflect 1017 

a rapid undocking process? 1018 

SV clearance of the AZ (Neher and Sakaba, 2008) has been suggested as a potentially 1019 

rate-limiting mechanism of sustained exocytosis in IHCs of mice with mutations in the 1020 

genes coding for otoferlin (Chakrabarti et al., 2018; Pangrsic et al., 2010; Strenzke et al., 1021 

2016) or endocytic proteins (Jung et al., 2015b; Kroll et al., 2019; Kroll et al., 2020). While 1022 

our EPSC recordings suggest the ongoing release of neurotransmitter beyond 20 and 50 1023 

ms after light onset, limited clearance of the release sites cannot be excluded. The 1024 

concept implies full collapse fusion followed by clearance of SV proteolipid from the 1025 

release site for it to engage a new coming SV. Indeed, full collapse fusion followed by 1026 

clathrin- and dynamin-dependent endocytosis has been indicated for IHCs (Grabner and 1027 

Moser, 2018; Neef et al., 2014; Tertrais et al., 2019). Yet, unlike for retinal ribbon 1028 

synapses (Zampighi et al., 2006; Zampighi et al., 2011) we did not observe omega-1029 

profiles or hemifusion states of SVs at IHCs AZ opposing the postsynaptic density. 1030 

While we have favored the hypothesis that, eventually, fusion pore initiated release 1031 

typically proceeds to full collapse fusion (Chapochnikov et al., 2014), there is support for 1032 

“kiss and run” exocytosis (Alabi and Tsien, 2013) to occur at IHCs from reports of ultrafast 1033 
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endocytosis (time constant ~300 ms) (Beutner et al., 2001; Neef et al., 2014; Tertrais et 1034 

al., 2019) and cell-attached capacitance measurements (Grabner and Moser, 2018). 1035 

Could the accumulation of docked SVs during stimulation then represent “kiss and run”  1036 

or “kiss and stay” (Shin et al., 2018) release events? Unfortunately, cell-attached 1037 

membrane capacitance recordings from IHCs did not resolve fusion pores (Grabner and 1038 

Moser, 2018), probably owing to the small SV capacitance (40 aF). Future work including 1039 

super-resolution imaging (Shin et al., 2018) and/or Opto-HPF on IHCs with genetic or 1040 

pharmacological interference might shed light on the existence of a prevalence of “kiss 1041 

and run” or “kiss and stay” at IHC synapses. Freezing times between 5 to 15 ms after the 1042 

light onset seem necessary to further address this hypothesis.  1043 

Finally, a recent study using electrical stimulation and HPF in hippocampal neurons 1044 

reported full replenishment of docked SVs within 14 ms, but this docking state was only 1045 

transient, and SVs could potentially undock during the next 100 ms (Kusick et al., 2020). 1046 

Indeed, physiological evidence for reversible priming and docking has been reported for 1047 

various neurosecretory preparations (e.g. Dinkelacker et al., 2000; He et al., 2017; Nagy 1048 

et al., 2004; Smith et al., 1998). The balance of Ca2+ and otoferlin-dependent 1049 

replenishment of docked and primed SVs with SV fusion and/or undocking/depriming 1050 

would then set the “standing RRP” (Pangrsic et al., 2010) and the abundance of docked 1051 

SVs. Besides increased docking, the decreased distance between SVs and the plasma 1052 

membrane and presynaptic density upon light stimulation supports the previously 1053 

proposed sequence of events at IHC ribbon synapses (Chakrabarti et al., 2018). The 1054 

sequence for SV release involves tethering and subsequent docking, similarly to originally 1055 

described in conventional synapses using cryo-ET (Fernández-Busnadiego et al., 2013). 1056 

Aside from RIMs, which support SV tethering to the AZ membrane at conventional 1057 

(Fernández-Busnadiego et al., 2013) and IHC ribbon synapses (Jung et al., 2015a), 1058 

otoferlin (Pangrsic et al., 2010; Vogl et al., 2015) rather than neuronal SNAREs (Nouvian 1059 

et al., 2011; but see Safieddine and Wenthold, 1999) and members of the Munc-13/CAPS 1060 

families of priming factors (Vogl et al., 2015) seem to contribute to preparing SVs for 1061 

fusion. It will be interesting for future studies to further decipher the underlying molecular 1062 

machinery at the hair cell synapses and to test whether and to what extent tethering and 1063 

docking are reversible processes. 1064 
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 1065 

Conclusion 1066 

Significant efforts have been made to address the release scenarios at ribbon synapses 1067 

by EM (Chakrabarti et al., 2018; Chapochnikov et al., 2014; Lenzi et al., 2002; Matthews 1068 

and Sterling, 2008; von Gersdorff et al., 1996; Zampighi et al., 2011). This study offers an 1069 

experimental approach for structure-function correlation at IHC ribbon synapses. We 1070 

conclude that activation of ChR-2 rapidly depolarizes IHCs and triggers release within few 1071 

milliseconds in response to brief light flashes. This constitutes a non-invasive approach 1072 

that overcomes the low temporal resolution of the conventional high K+ depolarization 1073 

used for electron microscopy of IHC synapses thus far. Combining optogenetic 1074 

stimulation with high-pressure freezing appears as a promising technique to achieve the 1075 

temporal and spatial resolution required to study the short-term cellular processes 1076 

occurring during exocytosis and endocytosis. Notably, we did not observe events that 1077 

resemble homotypic SV fusion or cumulative fusion close to the AZ membrane of the 1078 

synaptic ribbon. Further, the RA- as well as the MP-SV pools stayed stable or were rapidly 1079 

replenished, rather a decrease of the fraction of non-tethered SVs within the MP-SV pool 1080 

was observed. Finally, the absence of docked SV in non-stimulated IHCs might speak for 1081 

uniquantal release, possibly also due to fast undocking, to prevail for spontaneous 1082 

release events. 1083 
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