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Abstract

Metastatic castration-resistant prostate cancer (mCRPC) presents very low survival rates due to lack of
response or acquired resistance to the available therapies. To date no molecular mechanisms of resistance
have been identified, pointing out their complex dynamics. To identify key genes and processes associated
with phenotypically-driven regulatory differences, we developed TraRe, a computational method that
provides a three-tier analysis: i) at the network level, inferring differentially regulated modules; ii) at
the regulon level, identifying regulatory relationships linked to phenotypic differences; and iii) at the
single gene level, identifying TFs consistently linked to rewired modules. We applied TraRe (available in
Bioconductor with full documentation) to transcriptomic data from 46 mCRPC patients with Abiraterone-
response clinical data and uncovered abrogated immune response regulatory modules that showed strong
differential regulation in Abi-resistant patients. These modules were replicated in an independent mCRPC
study. Further, we experimentally validated key rewiring predictions and their associated transcription
factors. Among them, ELK3, MXD1, and MYB were found to have a differential role in cell survival for
Abi-response-specific settings. Moreover, we identified the role of ELK3 in cell migration capacity, which
could have direct impact on mCRPC. Collectively, these findings shed light on the underlying regulatory
mechanisms driving abiraterone response.
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INTRODUCTION

Prostate cancer is among the most frequently diagnosed male cancers in the world1. Primary treatments,

including surgery or radiation, can achieve a cure for many of the afflicted men2. However, a substantial

portion is diagnosed with advanced-stage disease or experience disease recurrence. While the mainstay of

treatment for these cases has been androgen depletion therapy (ADT), data from clinical trials in patients

newly diagnosed with metastatic prostate cancer (mPC)3, 4 has demonstrated a survival advantage of 37% for

those receiving ADT in combination with other drugs (e.g., enzalutamide, abiraterone acetate, apalutamide

and docetaxel) over ADT alone. Additionally, even though ADT is initially effective, > 95% of mPC patients

on this treatment relapse, indicative of Castration-Resistant Prostate Cancer (CRPC) development5, which

has a poor 5-year survival. Due to significantly improved survival rates, the first-line therapy for CRPC

patients then becomes either the CYP17A1 inhibitor abiraterone (Abi)6 combined with prednisone (AA/P),

or the androgen receptor (AR) inhibitor enzalutamide7. While results are encouraging, trials with abiraterone

or enzalutamide treatment have highlighted two major challenges: 1) pre-existing mechanisms of resistance

(primary resistance) preclude responses for nearly half of CRPC patients, and 2) resistance can develop

rapidly in initial responders (acquired resistance)8.

Together with many other cofactors, the AR transcription factor regulates a series of downstream genes

upon ligand binding, followed by translocation into the nucleus. Recently, it was also noted that there are

specific co-factors in CRPC tumors not present in normal tissue, which can guide AR to specific gene regions

to regulate gene transcription9, 10. Additionally, mutations or tumor-specific alterations in pathways could also

significantly affect transcription networks and downstream signaling. For example, the wnt pathway, which

is involved in the regulation of transcription networks, has recently been associated with Abi resistance11.

Therefore, it is critical to take a comprehensive approach to study the regulation of transcription networks in

CRPC and to understand how this regulation might contribute to Abi response.

The regulatory interactions between genes and their corresponding pathways drive various cellular

functions that are critical in tumor development and response to therapy12. These regulatory relationships,

termed Gene Regulatory Networks (GRNs), provide a concise representation of the transcriptional regulatory

landscape of the cell13, 14. It is well-established that functional GRNs and their products change in response

to different conditions, such as cellular DNA damage or environmental stress15–17. Hence, the construction

and exploration of the topology of GRNs and their constituents are compelling approaches for developing

and understanding biological mechanisms.

In the CRPC context, one of the main questions is how the cell changes its behavior in response to

drugs, as evidenced by signatures of differentially expressed genes that are a downstream effect of global

cell de-regulation in different response groups. Drug treatments can activate different functional pathways in

patients based on differences in their underlying GRN18, 19. Identifying significant changes among networks

from different response groups, also referred to as network rewirings, can help discover novel molecular

diagnostics and prognostic signatures. While differential gene expression analysis evaluates changes in

gene expression under different conditions, the incorporation of network structures and differential network
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analysis can provide insights that are mechanistically grounded20. As an example resulted from differential

network analysis, RNA levels of the prostate cancer biomarker AMACR were discovered to have a positive

correlation with the tumor suppressor gene PTEN in adjacent normal tissue that was no longer present in

prostate tumor samples21.

To mechanistically understand how the regulatory differences in transcription networks may contribute to

Abi response in metastatic castration-resistant prostate cancer (mCRPC) patients we built a computational

framework, termed TraRe, that: i) provides a robust and efficient methodology to uncover gene regulatory

modules from high throughput sequencing data; and ii) given those modules, develops an efficient differential

network analysis that highlights the transcriptional rewiring associated with a particular phenotype. Specifi-

cally, we applied TraRe to the gene expression profiles of 46 mCRPC samples collected before initiation of

AA/P treatment from the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE)

study that was conducted in a prospective fashion (NCT: 01953640)11. First, we showed that TraRe was able

to uncover regulatory modules that captured key cellular processes and whose mechanistic rewiring related to

Abi response. We matched these findings in a separate cohort of mCRPC patients. Importantly, we were

able to uncover transcription factors (ELK3, MYB and MXD1) whose regulatory patterns were significantly

associated with response-disrupted regulatory modules. Finally, we experimentally validated in two different

cell lines the key rewiring predictions identified from the response-specific regulatory modules.

MATERIAL AND METHODS

TraRe: Phenotype-associated transcriptional rewiring

We present TraRe, a computational method to elucidate transcriptional rewiring across phenotypes from RNA

sequencing data.

Given a gene expression matrix for n samples, the phenotype class of each sample, and a list of

transcription factor (TF) regulators, TraRe infers regulatory modules and their phenotype-specific network

disruptions (rewiring) by measuring changes in driver-target co-expression among phenotypes (Supplementary

Figure S1). In order to infer such rewired networks, TraRe first infers the overall regulatory landscape of the

samples, and then uncovers those modules whose topology is rewired between the phenotypes. In addition,

TraRe also identifies TFs and regulons (a TF and its corresponding target genes) that are significantly prevalent

in the rewired modules.

Module-based inference of GRNs

TraRe uncovers the GRNs governing the transcriptomic activity of all samples via a module-based approach,

where a module represents one or several related biological functions22. The module-based approach for

inferring GRNs has been shown to be more accurate than inferring a unique global GRN and then isolating

individual communities within it22, 23.

First, the gene expression data is divided into a matrix Z for the expression of target genes and a matrix X
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for the expression of the driver regulators (Supplementary Figure S1A). Z is then iteratively partitioned into

K gene sub-modules where each sub-module’s expression pattern is approximated by a sparse combination of

driver gene expression profiles. Specifically, two steps are taken per iteration. In the first step, for each of the

K inferred sub-modules, the expression profile that is most correlated, on average, with all the sub-module

genes is selected as its representative. We denoted this representative profile as the eigengene y, as it is

the first eigenvector of the sample covariance matrix of the sub-module22. Then, the regulatory program of

each sub-module (i.e., the set of driver genes regulating it, represented as the sparse vector β) is inferred by

approximating the expression profile of the eigengene y with a sparse linear combination of driver genes.

That is,

ŷ ≈ y = βTX.

This inference is done via Variational Bayes Spike regression (VBSR)24. Within the VBSR, βs are computed

via a coordinate ascent algorithm which iteratively minimizes the Kullback–Leibler (KL) divergence among

the approximate posterior distributions q̂βj
and the complete posterior distribution of the VBSR model

p(θ|W ) (see ref.24).

The inferred approximation of the eigengene ŷ becomes the new sub-module representative profile. In

the second step of each iteration, each target gene is reassigned to the sub-module whose representative it is

most correlated with. Target and driver genes are iteratively reassigned to sub-modules as aforementioned

until no further reassignments occur or when a specified number of iterations is reached.

Note that all target genes get assigned to a particular sub-module. As such, there may be outliers that

are not well fit by the inferred regulatory program β. Thus, as a final refinement step for each inferred

sub-module, the expression of each target gene is modeled from the driver genes in the sub-module via a new

VBSR model. This process yields a weighted, undirected bipartite graph for each sub-module representing

its individual GRN drawing specific connections between target genes and their inferred regulators. During

this step, target genes within sub-modules can be rejected during the fitting. Therefore, outlier target genes

will be dropped out due to lack of good model fit, leading to refined sub-modules with consistent GRNs

(Supplementary Figure S1B).

At the end of this stage, TraRe has generated a set of refined sub-modules depicting the regulatory

landscape of the provided input gene expression data Z. It is worth mentioning that TraRe’s package includes

two additional regression models to link targets and drivers. These models are Linear Regression Model

(LM) and Least Absolute Shrinkage and Selection Operator (LASSO).

Uncovering of rewired GRNs

After inferring the refined sub-modules as described above, TraRe assesses the refined sub-modules inde-

pendently for evidence of network rewiring between phenotypes. Hence, the description below focuses on a

single sub-module.

Given the gene expression matrix associated with each sub-module (Supplementary Figure S1C), the

gene-gene covariance matrix associated to each binary-labeled phenotype is computed separately, namely Σ0
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and Σ1. Then, the distance between the two covariance matrices is computed as the Frobenius norm of the

difference between both of them:

s =
∑
i

∑
j

(Σ0
ij − Σ1

ij)
2

This distance, which we term the rewiring score is used as a statistic to measure the dissimilarity between

the covariance matrices, and thus, the differential regulatory effect of the sub-modules across phenotypes. In

order to assess the statistical significance of the rewiring score s a permutation test is performed, where the

rewiring score is evaluated against a null distribution H0 generated via random permutations of the phenotype

labeling (Supplementary Figure S1D). Thus, a sub-module is said to be rewired if its rewiring score s satisfies

PH0(s) < τ

where τ is a user-defined threshold, set by default to 0.05. Note that a significant dissimilarity over

the covariance matrices may indicate fundamental underlying disruptions in gene co-expression between

phenotypes.

Uncovering robust rewired GRNs across multiple runs

Unraveling GRNs from transcriptomic data, also known as reverse engineering the transcriptome, is a

complex problem that generally requires heuristic algorithms. Thus, every run of TraRe (with a unique

random seed) generates slightly different results. Hence, towards accounting for the implicit variability of

TraRe and increasing its generalization capabilities, the module generation process is repeated B times using

different subsets of 80% of the samples. Refined sub-modules that generalize well across different runs

and different samples should be similarly captured in each run. Hence, similar sub-modules across runs

will cluster together, giving rise to consistent regulatory modules in which spurious patterns coming from a

specific group of samples are dropped out.

After inferring the rewired sub-modules from all runs as mentioned above, an similarity matrix is built so

that similar rewired sub-modules are grouped together through hierarchical clustering. Specifically, the ij

similarity value of this matrix is defined based on the log significance (using the hypergeometric test) of the

overlap of the pair of submodules:

− log (PHyper(k;N, k, n)) = − log

(
Σi>k

(
N
i

)(
N−K
n−i

)(
N
n

) )
where N is the total number of genes in the dataset, K and n are the number of genes in the rewired

sub-modules j and i, respectively, and k is the number of common genes between both rewired sub-modules.

Then, hierarchical clustering is performed to group together very similar rewired sub-modules that have

spawned across different runs, yielding robust rewired regulatory modules (Supplementary Figure S1F).

Uncovering rewiring-specific driver genes

We classify transcription factors (TFs) as rewired-specific if they appear statistically significantly more times

in rewired sub-modules than in non-rewired ones. We set the re-runs of TraRe to B = 50, and computed an
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enrichment p-value of the over-presence of a given TF in rewired sub-modules using a hypergeometric test

with

TF does not drive (0) TF does drive (1)

Rewired sub-module (Rw) Rw0 Rw1

Not-rewired sub-module (Rw) Rw0 Rw1

as the associated contingency table. Here, Rw and Rw are the non-rewired and rewired sub-modules,

respectively, and their sub-indexes point to whether the transcription factor is (1) or is not (0) a driver in the

sub-module, respectively.

In addition, the Odds Ratio test is used to further assess the rewiring specificity of the driver genes.

Specifically, the odds ratio is computed as

OR =
(Rw0/Rw1)

(Rw0/Rw1)
,

where the Haldane25-Anscombe26 correction, is applied due to the sparsity of the contingency table. Finally,

rewired-specific TFs are filtered by a threshold (set to 0.05 for the hypergeometric test and to 1 for the OR

test by default) and sorted according to the associated p-value.

Uncovering rewiring-specific regulons

As opposed to the previous analysis where we evaluated the specificity of driver genes within rewired

sub-modules, target genes can not be evaluated using the aforementioned approach, as they are assigned to

a unique sub-module in each run. Therefore, we chose to assess target genes via the regulons of rewired

sub-modules that they are associated with.

From the inferred rewired sub-modules, we first extract all regulons, which are composed by a driver

gene and its associated target genes. Note that these regulons form simple networks and hence can be tested

for their potential rewiring applying the same test as we did for the inferred sub-modules (see above).

Therefore, each regulon will have an associated p-value (adjusted with the Benjamini-Hochberg multiple

hypothesis correction to compensate for spurious significant p-values), which is informative about the

network’s disruption significance within that set of targets associated with a single driver gene. Only

significant rewired regulons (corrected p-values below 0.05) are taken henceforward.

Along the 50 runs, several regulons may be led by the same TF and contain repeated associated targets;

thus, we merged those regulons under the same driver gene. Then, we computed the multiplicity for each

target, defined as the number of times they appear within the unified regulons, and its significance, defined as

the Fisher’s combined probability test over the p-values associated with the regulons it appears in. Targets

whose p-values are below a threshold (set to 0.05 by default) are dropped out and the remaining targets are

sorted by the multiplicity. The filtering process can drop out every target within a regulon. If this is the case,

the associated regulon is removed.
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Additionally, we computed the overall multiplicity of the targets across all the rewired regulons (not only

in those under the same driver gene) and calculated the associated p-values with the aforementioned Fisher’s

exact test. A list of rewired targets, those whose p-value is below the threshold (set to 0.05 by default) is

generated.

Visualization of the results in TraRe

TraRe includes a set of functions that allow the visualization of the results obtained in the stages of the

method in an html report. Moreover it outputs different summary files and figures that include the sub-module

similarity matrix in the form of a clustered heatmap with the corresponding dendrogram and the modeled

bipartite graphs of the different robust, rewired regulatory modules that the clustering algorithm identifies.

Datasets

We have tested our method using clinical and molecular data from two metastatic castration-resistant prostate

cancer (mCRPC) datasets: 1) Mayo Clinic clinical trial (NCT: 01953640), Prostate Cancer Medically

Optimized Genome-Enhanced Therapy (PROMOTE) and 2) the Abida et al.27 study from the work of Stand

Up 2 Cancer-Prostate Cancer Foundation Prostate Dream Team (SU2C).

PROMOTE study

The PROMOTE study aimed to identify the genomic alterations associated with resistance to abiraterone

acetate/prednisone (AA/P) treatment11. The primary resistance was determined at 12 weeks of therapy

using several criteria for progression such as serum prostate-specific antigen (PSA) measurement, bone, and

computerized tomography imaging and symptom assessments. In the original PROMOTE study11, whole

transcriptome sequencing (RNAseq) was performed using the TruSeq poly-A selection library and Illumina

HiSeq 2000 instruments. For this manuscript, we obtained the RNA sequencing from 64 tumor samples

and normalized the gene counts using conditional quantile normalization. This gene expression data came

from 46 bone and 18 soft tissue metastatic sites before the AA/P treatment began. We performed our TraRe

analysis on only the 46 bone samples, from which 29 and 17 were Abi responders (R) and non-responders

(NR), respectively.

Stand Up 2 Cancer Study

In addition to the PROMOTE study, we ran TraRe on the ’Stand Up 2 Cancer’ study data, which also consists

of patients with mCRPC disease. We downloaded the clinical data and sequencing data from the database of

Genotypes and Phenotypes (dbGaP) (accession code,phs000915.v2.p2) and the cBioPortal28 Public Datahub

(https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019). Since the PROMOTE RNA

sequencing study data was generated using TruSeq poly-A selection library, in the SU2C study, we filtered

out the data generated using a hybridization capture-based library. We obtained the RNAseq gene expression

data (FPKM) from 270 SU2C samples generated using the TruSeq poly-A selection library, and removed
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genes with no expression in more than 90% of the samples. The FPKM data was then quantile normalized

and log2 transformed.

Study harmonization

To harmonize the information of both studies, only those patients treated with Abi in the SU2C study were

selected. Specifically, 121 patients whose transcriptomic data was available prior to Abi treatment were used

to infer the regulatory modules.

Note that the number of genes examined from the two matrices differ. Therefore, only common genes

(12791) have been selected when evaluating both datasets jointly. In all other analyses, the original features

(genes) have been maintained. In order to partition the genes in this analysis between regulators and targets,

we defined the regulators as all genes which match the list of transcription factors selected from the Human

Protein Atlas 2020 available from v19.329, and the targets as all of the remaining genes.

Enrichment analysis

We used the CommunityAMARETTO algorithm30 to cluster together similar inferred sub-modules and to

assign them a biological meaning. Using an hypergeometric test with a FDR < 1e−6, a module-based network

of overlapping sub-modules is created and then significantly connected subnetworks are identified using

the Girvan-Newman algorithm31 and clustered into regulatory modules, which are assessed for enrichment

(hypergeometric test) with known functional categories in the curated (C2) and Hallmark (H) gene sets of

Molecular Signatures Database (MSigDB32, v5.2) For the biological processes (BP) Ontology (C5, MSigDB)

enrichment analysis of the genes included in the rewiring-specific driver list, regulons and rewired regulatory

modules, the following R packages were used: clusterProfiler (v4.0.5), org.Hs.eg.db (v3.13.0), AnnotationDbi

(v1.54.1) and DOSE (v3.18.3).

Simulated data generation

To evaluate our methods, we generated a simulated dataset with underlying regulatory modules, some of

which were rewired, and its corresponding simulated gene expression data. For our simulated evaluations,

10 sub-modules were generated through the following process. Driver genes from the PROMOTE’s dataset

were selected and sampled such that a linear combination of them defined each sub-module mean expression

profile µ, with an average number of drivers within each sub-module set to 5. Target gene expression profiles

were generated by sampling 200 times from a Multivariate Gaussian distribution N(µ, σI). As σ was selected

to be much lower than the variance of µ, sub-module’s genes were strongly correlated (> 0.7) to each other.

In order to simulate rewiring within sub-modules, targets genes and TFs within samples from one phenotype

class were decorrelated (whitening), imposing a clear disruption among phenotype’s covariance sub-matrices.

From the 10 generated sub-modules, sub-module 1, 4 and 7 were randomly chosen to be rewired sub-modules

and the seed was fixed to maintain consistency across scenarios.
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TraRe’s inference method was applied to the simulated sub-modules selecting VBSR, LM and LASSO as

the fitting models. This process was repeated 5 times with random 80% of the samples each, to increase the

inference generalization. Finally, we clustered the inferred sub-modules yielding the final inferred regulatory

modules. To that end we developed a decoder-encoder-based pipeline where two graphs were built.

First, simulated and inferred sub-modules were paired and used to build a bipartite graph where the

Jaccard index was used as the similarity metric to relate the simulated and inferred sub-modules. From these

sub-module pairs, an alluvial plot was drawn showing the flow of simulated-to-inferred sub-modules across

the 5 runs (decoding). A second graph was built over inferred sub-modules using the aforementioned similarity

metric, where edge betweenness clustering (from R’s igraph library) was applied to group similar inferred

sub-modules (nodes) from each run (encoding). A second alluvial plot was drawn to show connections

from inferred to clustered regulatory modules. These two alluvial plots were connected to visualize the

complete flow from simulated sub-modules to clustered inferred regulatory modules. The intuition behind

the sub-module’s clustering is that, if simulated sub-modules are correctly uncovered on every run, a graph

clustering technique should group them together across runs, recovering the original regulatory modules.

In order to assess TraRe’s inferring capability within the simulated data, three scenarios were considered,

where the three fitted models were benchmarked using classification metrics. On each scenario, ROC curves

were calculated when varying: i) the noise variance σ = [0.01, 0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8, 3.2, 3.6, 4, 4.4,

4.8, 10, 25, 50, 100], ii) the p-value threshold prior to Bonferroni correction (0.02 to 0.14 for VBSR and

LM, 1 to 0 for LASSO), and iii) the number of samples (10, 16, 28, 38, 46) in the generated bulk RNAseq

expression matrix. Note that, in the absence of p-value for the LASSO model, the Lambda parameter has

been used.

Finally, we evaluated VBSR, LASSO and LM for a fixed σ (1.3), p-value threshold (0.05) and number

of samples (46), which are the default parameters henceforth. For each driver gene, simulated-inferred

sub-modules pairs were evaluated by measuring true positives (TP), if a driver is contained in both the

simulated and the inferred sub-module, false positives (FP), if there is a driver in the inferred but not in the

simulated and false negative (FN), if there is a driver in the inferred but not in the simulated sub-module.

Moreover, a linear model was used to fit the inferred regulatory program of TFs based on the simulated

regulatory programs. R2 adjusted, Precision and Recall parameters were used for model assessment.

Cell culture

22Rv1 and LNCaP cells purchased from ATCC were cultured in RPMI1640 medium (Gibco, Grand Island,

NY) supplemented with 10% FBS (Sigma) and 1% Pen-Strep. To develop Abi-resistant cell lines (LNCaP-

AR or 22Rv1-AR), cells were maintained in the medium supplemented with 5 µM of abiraterone (Selleck

Chemicals, Houston, TX) until viability reached over 95%. Abi-resistance was validated by proliferation

assay. For knockdown experiments, cells were seeded in regular RPMI1640 in 6-well plates, and were

transfected using siRNA against ELK3, MXD1, MYB, ZNF3, ZNF91 or non-targeting siRNA (Horizon

Discovery) by RNAiMax (Thermo Fisher Scientific) according to manufacturer’s protocol. siRNA sequences

can be found in Table S10
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Proliferation assay

36 hours before Abi treatment, cells were seeded in phenol red-free RPMI1640 (Gibco, Grand Island, NY)

supplemented with 10% charcoal stripped FBS (Sigma) in 96-well plates, and 50 nM pregnenolone was

added after 16 hours. Cells were then treated with Abi or vehicle and monitored for proliferation at day 0, 2, 4

and 6 after initiation of treatment by Cyquant direct assay (Thermo). For proliferation after knockdown, cells

were trypsinized 24 hours after transfection and reseeded in 96-wells plates. Proliferation was monitored at

day 1, 3, 5 and 7 after reseeding.

qRT-PCR

Total RNA for qRT-PCR was extracted from cell lines 48 hours after knockdown using Quick-RNA MiniPrep

Kit (Zymo Research, Irvine, CA) according to the manufacturer’s instructions. qRT-PCR was performed

using the Power SYBR® Green RNA-to-CT™ 1-Step Kit (Life Technologies, Grand Island, NY) and

QuantiTect® (QIAGEN, Germantown, MD) or PrimeTime® (IDT, Inc., Coralville, Iowa) pre-designed

qPCR primers (IDT Coralville, IA). Gene expression analyses were performed using the ∆∆Ct method, and

GAPDH was used as the internal reference. Two independent experiments were performed. Primer sequences

are in Supplementary Table S9.

Wound-healing assay

LNCaP, 22Rv1 or their Abi-resistant cells were seeded in 6-well plates at 6 x 105 density, and transfected

with siRNA targeting ELK3 or scrambled siRNA control. 24 hours after transfection, a scratch wound was

made by pipet tip. Images were then taken immediately and after 24 hours.

RESULTS

Overview of the study

We applied the developed TraRe framework (Figure 1) to the gene expression profiles of 46 mCRPC baseline

pretreatment samples from the PROMOTE study. Abi response annotation for all patients was measured at

three months after treatment initiation and patients were separated into two groups: treatment responders (R)

and non-responders (NR)11. Given the availability of pre-Abi treatment gene expression of the PROMOTE

samples and a set of known transcription factors (TFs), TraRe first performed an iterative clustering process,

which partitions target genes into different sub-modules, whose expression can be modeled by the expression

of a sparse set of TF regulators (Supplementary Figure S1B, see Methods). In order to overcome sensitivity

to outliers in the data, TraRe was run several times, each run randomly selecting a different subset of the

patient samples (80-20 split), as well as a random initialization of the parameters. We then created our

regulatory modules by clustering the similar inferred sub-modules across the multiple runs. We reasoned

that regulatory modules sharing common sets of genes across subsampled runs would uncover a regulatory
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landscape of biological processes that are not a consequence of overfitting to a specific set of patients, and

therefore, better generalize to the disease population. To validate this hypothesis, regulatory modules were

independently inferred on the SU2C27 dataset consisting of 121 mCRPC patients (see Methods). Module-

oriented community detection and functional annotation methods30 showed that indeed our method found

shared regulatory modules between PROMOTE and SU2C.

We next aimed at unraveling those regulatory modules from PROMOTE showing differential mechanistic

regulation between Abi R and NR. Specifically, for each sub-module generated across runs, we performed

a statistical rewiring test based on the differences between Frobenious norms of the gene-gene covariance

matrices to identify those whose co-expression patterns were significantly different between the two response

groups (Supplementary Figure S1C-D). We considered a robust regulatory module to be rewired if at least

40% of its sub-modules showed significant rewiring by our test.

We then sought more insights into the key TFs potentially driving the response-specific rewiring process.

We used Bayesian sparse regression13 models in each sub-module to associate each TF to a specific set of

target genes, known as regulons (see Methods). We, thus, were able to rank TFs and their target genes by

their associations with the response-specific rewiring process. Finally, we closely investigated the regulons of

key rewired regulatory modules in order to uncover specific regulatory relationships between TFs and targets

that behaved distinctly between response groups.

Therefore, in this study we developed TraRe, a computational method that provides a three-tier analysis to

identify key biological processes and genes associated with phenotypically-driven regulatory differences: i) at

the module level, by inferring differentially regulated modules; ii) at the regulon level, by identifying specific

regulatory relationships that may be associated with phenotypic differences; and iii) at the single gene level

by identifying TFs consistently associated with rewired modules. We concluded this study by experimentally

validating a subset of our findings with TF knockdown in Abi-resistant prostate cancer cell lines. We also

shared our findings on the ideal selection of regression models for uncovering phenotype-associated regulatory

rewiring disruptions, as well as the success of the proposed rewiring statistical tests on varied simulated

benchmark datasets.

TraRe recapitulates regulatory programs associated with metastatic Castration-Resistant
Prostate Cancer

We first focused on uncovering the regulatory landscape and associated key biological processes of mCRPC.

To that end, TraRe was ran on the 46 PROMOTE samples from pre AA/P-treatment bone biopsies. TraRe was

run 10 times with each time sampling without replacement 80% of the samples, and each run set to infer up

to 100 sub-modules (K = 100). This number of sub-modules was chosen following previous works22, 33, 34.

Nevertheless, we tested different values of K and lower numbers yielded sub-modules with impractical sizes

(K = 50), whereas larger numbers (K = {200, 300, 500}) generated sub-modules of sizes unfit for gene set

enrichment analysis (Supplementary Figure S2). Across all runs, TraRe inferred a total of 835 sub-modules,

and identified 83 distinct communities of overlapping sub-modules (hypergeometric test, FDR < 10−5) (see

Methods). Of the 83, 38 were identified as (robust) regulatory modules as they contained sub-modules shared
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among at least half of the 10 runs (See Supplementary Tables S1 to S3 on pages 5–8). These 38 regulatory

modules were functionally annotated with cAMARETTO software30 using curated C2 and hallmark gene

set enrichment analysis (Figure 2A, see Methods, Supplementary zip file). Some regulatory modules, such

as P-M15 and P-M18, contained genes enriched in gene sets related to cell constitutive and housekeeping

functions such as G protein-coupled receptors (GPCR) and peptide-ligand binding receptors (P-M15 and

P-M18) or cell-cycle and transcription (P-M15), and are thus not explicitly associated to Abi response (Figure

2C).

We then sought to test our regulatory modules for differential mechanistic regulation between 29 Abi

R and 17 NR in the PROMOTE dataset. To achieve this goal, we applied our rewiring statistical test (see

Methods) to all sub-modules separately. We found that 4 out of the 38 regulatory modules (P-M1 to P-M4)

were enriched with rewired sub-modules. These rewired regulatory modules were characteristically enriched

for: embryological and hematopoietic-related gene sets (P-M1), mitochondrial gene sets (P-M3) and different

gene sets related to cancer and reproductive system organs (P-M2 and P-M4) (Figure 2C). In accordance

with these findings, these regulatory modules were also enriched in GO Biological Process terms related

with the functions mentioned above: mitochondrial electron transport in P-M3 and activation of different

hematologic cells and immune response in P-M1 (neutrophil, leukocytes, etc.). In the case of the other two

regulatory modules, the most important GO Biological Processes associated functions were related to RNA

processing (P-M2) and cell migration, angiogenesis and extracellular matrix organization (P-M4) (Figure 2B,

Supplementary Excel).

We then examined the TFs driving the global expression patterns of these rewired regulatory modules

(Supplementary Table S1). We found that TFs CEBPE, GATA1, KLF1 and MYB, which drove regulatory

module P-M1, are the master regulators of granulocytes differentiation35, 36, erythroid development37 and

other hematopoietic and immune pathways38, 39. In regulatory module P-M2, the key driver gene ELK1 (a

nuclear target of the MAPK signaling cascade) has a potential role in the activation of AR signaling of growth

genes in prostate cancer40, while SREBF2 is overexpressed in more aggressive prostate cancer cell lines and

metastatic prostate cancer41. The important driver gene from regulatory module P-M3, SMAD7 was shown

to also promote migration and invasion in prostate cancer cells42, and SOX8 is known to be involved in

cisplatin-chemoresistance in different cancers43, 44. Finally, in regulatory module P-M4, SNAI2, is involved

in epithelial-mesenchymal transitions in different cancer types45, 46, has anti-apoptotic activity47 and it is a

metastasis-promoting TF in breast cancer progression48.

Other regulatory modules containing rewired sub-modules (P-M5, P-M8 and P-M9) were found to be

enriched with genes down-regulated in prostate cancer samples (as well as different cancer types) (Figure

2A). The driver gene ETV5 from P-M9 is involved in the AR signaling pathway associated with invasion

and it has been identified to participate in rare gene fusion permutations in prostate cancer49. Interestingly,

P-M5, with two rewired sub-modules, was found to be enriched with liver and xenobiotic metabolism-related

pathways such as HNF1A, cytochrome P450 and glucuronidation, affecting drug response and efficacy.

To further validate the regulatory modules uncovered by TraRe in the PROMOTE dataset we ran TraRe

on the 121 mCRPC samples of the SU2C dataset (see Methods) with the same run settings. We found 49
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robust regulatory modules in the SU2C dataset. Six of these SU2C robust regulatory modules were highly

overlapping with our regulatory modules identified from the PROMOTE dataset. These six modules were

enriched with cell cycle related genes that were also found to be differentially regulated in different cancer

cells (SU2C S-M21), haematologic (S-M9), embryological and cell cycle (S-M4), breast and prostate cancer

gene sets (S-M2, S-M3 and S-M6) (Figure 2D). We were especially interested in the significant overlaps

of the six SU2C modules with our rewired regulatory modules from PROMOTE (Figure 2E). P-M1 from

PROMOTE was closely related with S-M4 from SU2C, as expected by their common gene set enrichment

analysis (hematologic gene sets, Figure 2D), and also with S-M2, a module enriched with immune gene sets.

Similarly, P-M4 (related with breast and prostate cancer) from PROMOTE was related to the modules S-M2,

S-M3, and S-M6 from SU2C, primarily enriched with the same cancer gene sets (Figure 2D). As a final

note, we were unable to compare if the SU2C modules have similar associations with response to that of

PROMOTE due to the lack of an analogous clinical response measurement after three months of treatment.

Thus, TraRe was able to generate biologically meaningful robust regulatory modules from PROMOTE

data that were consistent across multiple runs (Figure 2A). Specifically, the highlighted PROMOTE regulatory

modules P-M1, P-M2, P-M3 and P-M4, which were enriched with differentially rewired sub-modules between

Abi R and NR, captured novel transcription regulation that may help elucidate the foundations underpinning

abiraterone sensitivity and resistance. Similar modules were also observed in an independent mCRPC study

(SU2C).

TraRe identifies transcription factors playing a key role driving abiraterone response

Next, we investigated individual TFs that may be driving significant differences in the regulatory networks

between the Abi treatment responder (R) and non-responder (NR) groups. We hypothesized that the rewired

regulatory modules inferred in the previous section are likely to be regulated by TFs that themselves might

not be rewired between R and NR as the conserved behaviors of these TFs could underpin the module that

they regulate (as we show in the following section). To increase the statistical power required when working

at single-gene resolution, we ran TraRe 50 times on the 46 PROMOTE samples with the usual settings,

yielding 4088 sub-modules, from which 225 were marked as significantly rewired by TraRe. We then selected

those TFs that were identified as the “drivers” driving the core sub-module expression and that were highly

enriched in rewired sub-modules (see Methods). The resulting ranking contained 33 TFs that likely played a

key role in the driving rewiring of the GRNs associated with the different Abi treatment outcomes (Table 1).

Interestingly, the highest ranked TFs were those also found in the most significantly rewired regulatory

module (P-M1), such as CEBPE, GATA1 or KLF1. Furthermore, using the STRING database50, we found

that the interaction network between the top ranked TFs (Figure 3A) showed multiple connections between

those TFs identified in P-M1. The top enriched pathways associated with those TFs included regulation of

hemopoiesis and different blood cell differentiation pathways, specifically myeloid cells, indicating a strong

functional relation among these TFs (Figure 3B, Supplementary Table Excel). These results showed the

robustness of the rewiring analysis of the P-M1 since its drivers were also among the top significant rewired

TFs, highlighting the capability of TraRe to infer GRNs with drivers and target genes that are associated with
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the same pathways and biological functions.

In order to provide a better understanding of the rewired regulatory modules that were generated by

TraRe, we explored the relationships between TFs and target genes at the regulon level. A regulon is defined

as a set of target genes associated with one driver gene, in this case, a TF. Therefore, we identified robust

rewired regulons across the rewired modules (see Methods, Supplementary Excel). A visual example of

these is shown in Figure 3C for three TFs selected for further biological validation, ELK3, MYB and MXD1.

In total, there were 50 significant rewired regulons and almost all of the top TFs described in the previous

section, such as MYB or MXD1, were master regulators of these regulons. Functional enrichment analysis

with GO terms of the regulons shows that the most frequent terms outputted from the over-representation

analysis with biological processes were under broader terms related with regulation of immune response and

cell migration, extracellular matrix organization, cell adhesion and angiogenesis as well as different receptor

signaling pathways. Consistent with the results obtained in the functional annotation of the rewired regulatory

modules, the regulons of the master regulators presented in P-M1, such as CEBPE, GATA or NFE2, were

enriched in gene sets related with neutrophils and innate immune response (Figure 3D, Supplementary Excel).

In summary, we showed that TraRe was able to uncover key TFs and regulatory programs (regulons)

related to ABI response and associate them with functional pathways. Furthermore, these analyses at both

single-gene (TF) level and regulon level complemented the findings at module level (previous section).

TraRe uncovers regulatory changes between response-specific GRNs

In previous sections, we showed that TraRe was able to recapitulate known biological processes in mCRPC

through the inference of regulatory modules. Some of those modules showed significant evidence of

containing Abi response-specific gene regulation patterns, indicating that potential perturbations in the GRNs

underlying their biological processes could relate to the success of Abi treatment. To further delve into these

altered regulatory processes, we used TraRe to find regulatory modules formed by consistently rewired GRNs

whose rewiring was associated with Abi response.

To better understand how the interactions between TFs and their target genes differ between the samples

from Abi R and NR, we focused on the significantly rewired and highly robust regulatory module PROMOTE

module P-M1 (see Supplementary Table S1). P-M1 was composed of 11 sub-modules from the 10 original

runs of TraRe. Note that each run would ideally contribute at least one sub-module to the regulatory module

P-M1, indicating that P-M1 is consistently discovered across different runs. Indeed most runs contributed with

one sub-module to P-M1, with the first and seventh runs splitting the co-expressed genes into two separate

sub-modules (Supplementary Figure S9). All 11 of the individual sub-modules were statistically significantly

rewired with respect to Abi response, with a total of 9 driving regulators (TFs) found (Supplementary

Figure S12); GATA1, CEBPE, FOXN1, MYB, TAL1, GLI1, KLF1, MXD1, and NFE2. We merged the 619

unique genes of the 11 individual sub-modules and used the Variational Bayes Spike Regression (VBSR, see

Methods) model to redraw the combined GRN using all 46 bone samples (Figure 4A, right). The resulting

network successfully modeled the expression of 222 of the target genes using the 9 different regulators. We

also created VBSR-based GRNs for the 17 NR and 29 R patients separately (Figure 4A left and center)
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to examine the differences in the underlying regulatory networks for the two groups (similar results were

observed using all patient samples and alternative regression methods, see Supplementary Note S1.1 and

Supplementary Table S12).

Interestingly, the expression levels of the nine driving TFs were, generally, higher and less variable in

R than NR (Figure 4B). Our method was also able to identify important module regulators that themselves

were not differentially expressed (GATA1, KLF1, MYB) between the two patient groups. TAL1, a BHLH

DNA binding transcription factor essential for maintaining the mutlipotency and quiencese of hemopoietic

stem cells51 and implicated in the development of hemopoietic malignancies, was significantly differentially

expressed (p-value 0.036) with decreased expression levels in NR. When considering the target genes of the

module, we found regulators such as NFE2 and CEBPE, each regulated expression of more than 20% of the

222 targets in the bone samples, while others like MYB and FOXN1 only associated with the expression of a

few targets. We found that across all regulators, the targets of those regulators were more highly expressed

in R (Figure 4C), with NFE2 and CEBPE again regulating targets that were most strongly differentially

expressed.

When we turned our attention to the types of relationships between regulators and their targets in P-M1,

we observed that there was generally a positive correlation representing an activatory role of the regulators.

In the patients who respond to abiraterone treatment, the positive correlations between the regulators and

targets were much stronger (Figure 4D). For the 25 targets of TAL1 and the 33 targets of KLF1, the strong

positive correlations were mostly preserved in R, while for other regulators like MXD1 (32 targets) and GLI1

(15 targets), their activation of the targets in NR seemed to be largely lost. The loss of the regulatory cohesion

in NR became even more pronounced in the context of correlations between all genes in P-M1 (Figure 4E).

A large percentage of gene pairs tightly co-expressed in the R showed weak or negative correlations in NR

represented by three-month response phenotype.

In summary, TraRe identified important regulators of P-M1 that played distinct roles in phenotype-

specific network rewiring, with target genes in P-M1 appearing to be much more strongly regulated in patients

that responded to abiraterone treatment and looser cohesion of the regulatory module was found in the

non-responders.

The role of ELK3, MYB and MXD1 in abiraterone response

Finally, we validated our findings based on identified regulons with significantly different regulatory program

between Abi R and NR using the prostate cancer cell lines LNCaP and 22Rv1. In order to examine the

potential differential-regulation between Abi-sensitive and Abi-resistant settings, we developed LNCaP and

22Rv1 Abi-resistant cell lines, namely LNCaP-AR and 22Rv1-AR (Figure 5B-C). We started by selecting five

regulons (ELK3, MXD1, MYB, ZNF3 and ZNF91) based on the following criteria: i) regulon significantly

rewired between responder and non-responder (combined Fisher p-value<0.01); ii) the TF genes were

expressed in both LNCaP and 22Rv1 using DepMap database (https://depmap.org/) (logTPM>1); and iii)

TF regulated a series of highly repeatable targets for at least one of the response groups (Figure 5A, see

supplementary S4 to S8 on pages 9–11) which were also expressed based on DepMap database (logTPM>1).
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All except ZNF91 were highly coexpressed with their targets in R only (Figure 5A). We performed siRNA

knockdown of each TF (Figure 5D), and examined the top-ranked predicted targets based on multiplicity

(Figure 5E-F). We found that targets in three regulons, regulated by ELK3, MXD1 and MYB, exhibited

significantly differential regulation of downstream targets between Abi sensitive parental cells and Abi-

resistant cells. Specifically, among the 30 tested targets in these three regulons, 19 were significantly

decreased in at least one parental cell lines but not in the Abi-resistant line, 10 were significantly decreased in

both parental cell lines but not in either Abi-resistant line after siRNA knockdown (Figure 5E-F). Therefore,

we further tested whether these three regulons might differentially affect the proliferation in parental vs.

Abi-resistant prostate cancer cell lines. Intriguingly, we found that knockdown of ELK3, MXD1 and MYB

appeared to negatively affect the proliferation in 22Rv1 and LNCaP parental cell lines but had minimal or no

impact on the Abi-resistant cells. These results indicate that the parental cell lines depend more on these TFs

to survive.

We also performed pathway analysis using the KEGG database to examine downstream functionalities

affected by these TFs. We found that the targets of ELK3 were enriched in focal adhesion and Rap1 signaling

pathway, which suggested a potential role of ELK3 in cell migration (Figure 5M). We thus performed

wound-healing assay in ELK3 or non-targeting control siRNA transfected cells. We found that the migration

was significantly inhibited in 22Rv1 and LNCaP parental cell lines, but not in the corresponding Abi-resistant

cell lines when ELK3 was suppressed (Figure 5N-O).

In summary, we tested the regulatory effects of key TFs identified by TraRe on inferred targets in

two models of Abi naïve and resistant cell lines obtaining differential response and cell proliferation, thus

confirming our in silico findings.

TraRe performance on simulated data benchmarks

In order to assess the performance of TraRe, we generated simulated data with 10 simulated regulatory

modules. These simulated modules were created from randomly sampled regulatory programs (set of TFs

driving the module’s expression) from the PROMOTE data, and adding multivariate Gaussian noise to

generate expression patterns of target genes (Figure 6A, see Methods).

Three well-known regression models were evaluated for their ability to discover the underlying simulated

modules: i) Variational Bayes Spike Regression (VBSR)13, 22, 24, which is the one used by TraRe (see

methods); ii) Least Absolute Shrinkage and Selection Operator (LASSO) regression, which has been used

extensively to relate driver genes to their regulators23, 30, 34; and iii) Linear Regression Model (LM)14, 52,

which is the baseline model. For each of these fitting models, TraRe was run 5 times using a random 80%

of the samples to assess its generalization ability. To visualize the inference capabilities of TraRe for each

model, we generated alluvial plots where the leftmost groups are the simulated regulatory modules, the

middle column shows the inferred sub-modules across the different runs, and the column on the right shows

the final inferred regulatory modules (Figure 6B-D). VBSR outperformed LM and LASSO, as TraRe was able

to correctly infer and mark as rewired simulated sub-modules, and those were correctly clustered together

(Figure 6B-D, Supplementary notes).
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Further, to evaluate the capability of TraRe to infer rewired sub-modules under different regression

models, three of the simulated regulatory modules were rewired by applying a whitening process to the gene

expression data on half of the samples (see Methods). Therefore, the rewiring test was applied to the inferred

sub-modules using a significance threshold of 0.01 (see Methods). The inference of rewired sub-modules was

visualized via a heatmap, where a blockwise-diagonal heatmap is expected when the rewired mocules are

properly discovered across runs (Figures 6E-G). From the three tested models, VBSR presented the largest

similarity, as measured by the Jaccard index, to the simulated regulatory modules (Figure 6B, Supplementary

notes).

Finally, we evaluated the behavior of VBSR, LASSO and LM over different noise levels, driver-assigning

thresholds and number of samples. For each of them, we plotted the false positive rate (FPR) to true positive

rate (TPR) curve. VBSR reported the largest TPR/FPR ratios on each of the scenarios (Supplementary notes

and supplementary figures S3 to S6 on pages 17–20). Based on these findings, VBSR was selected as the

default model for TraRe.

DISCUSSION

We presented TraRe, a computational method to understand mechanistically altered regulatory dynamics

through differential network analysis. We then applied TraRe to the transcriptomic data from the PROMOTE

study to mechanistically understand how the regulatory differences in transcription networks may contribute

to abiraterone response in mCRPC patients.

The analysis of differential networks can lead to a deeper understanding of network rewiring, elucidating

molecular relationships associated with a characteristic of interest, such as disease progression or clinical

treatments53, 54. Most of the approaches for differential network analysis have relied on different correlation-

based metrics to measure the dependencies between pairs of gene nodes in the network55, 56. However,

these methods are limited to marginal correlation networks (i.e., two nodes at a time) that are estimated

separately using observations within each response group and generally do not consider relationships that are

conserved across multiple groups. To address this issue, some methods separate group-specific conditional

dependencies into global and group-specific components which have been shown to improve performance

over other existing methods57. However, these methods were proposed for relatively small datasets (hundreds

of genes at a time rather than thousands) and do not scale well to bigger datasets58. In addition, they do

not consider the overall rewiring of individual GRNs and instead focus on pairwise gene-gene differential

correlations.

The developed method TraRe, on the other hand, provides a robust and efficient methodology to perform

differential network analysis, evidenced by handling large datasets of more than 20K genes. TraRe builds

regulatory modules through an efficient module-based approach 22 and identifies key transcription factors via

Variational Bayes Spike regression. To uncover potential transcriptional rewirings associated with a particular

phenotype TraRe performs an efficient permutation test on the Frobenious norm of the difference of the

estimated covariance matrices of each phenotype.
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When applied to the PROMOTE mCRPC dataset, TraRe highlighted key regulatory modules associated

with essential regulatory dynamics. These regulatory modules were also recapitulated when applying TraRe

to the independent SU2C mCRPC study. More importantly, TraRe identified a regulatory module (P-M1)

associated with immune response that was highly enriched in rewired regulons between Abiraterone R and

NR. One of its TFs, TAL1, was strongly differentially expressed and showed an activating relationships with

targets in both patient groups whereas the TF NFE2, although not significantly differentially expressed itself,

led to strong differential expression of downstream target genes, demonstrating a mostly activating role. On

the other hand, the TFs GLI1 and MXD1 were also not significantly differentially expressed but showed

a significant loss of correlations with their targets in the NRs. These findings show the complexity of the

regulatory landscape of metastatic cancer tissue and how TFs may have distinct roles in phenotype-specific

network rewiring.

Leveraging TraRe’s inferred information, we identified and validated three transcription factors, ELK3,

MYB and MXD1, whose expression were not significantly different between Abi R and NR, however, their

regulatory networks were significantly disrupted in NR. The regulons driven by these TFs in R probably

played important roles in tumorigenesis or progression in the Abi-sensitive samples. For example, we showed

that knockdown of ETS family gene ELK3 suppressed the proliferation of Abi-sensitive prostate cancer

cell lines and, more importantly, inhibited migration by suppressing the expression of genes related to focal

adhesion and motility, including RAPGEF159, ACTN460, RAB11B61, MYO18A62, and PIK3CA63.

These genes have been previously linked to RAC1-PAK1 mediated E-cadherin stability, epithelial-

mesenchymal-transition, FAK-induced invasion and metalloproteinase expression. This finding is consistent

with Mao et al.64, who showed that silencing of ELK3 in prostate cancer cell lines induced S-M phase arrest,

inhibited cell proliferation and migration. However, these regulations were not observed in Abi-resistant

settings, probably due to the extensive reprogramming of regulation networks in the development of Abi-

resistant phenotype. This may help explain why ETS family and ETS-fusion, despite their high prevalence in

prostate cancer65, 66, are controversial in their prognostic values, especially in metastatic setting67.

Similarly, we found that knockdown of either MYB and MXD1 suppressed proliferation of Abi-sensitive

cell lines. MYB is known to be overexpressed in prostate cancer cells. It interacts with AR and sustain

AR activity under androgen-depleted condition68. MXD1 usually functions as antagonist of MYC-MAX

signaling, but it was also reported to mediate HIF-1 α -induced PI3KAKT activation and chemoresistance

in U2OS and MG-63 cells69. Interestingly, we found that MYB and MXD1 shared a number of genes in

their regulons, such as DMTN and MSRB1, the prior of which regulates actin cytoskeletal organization70,

while the latter responds to oxidative stress71. This crosstalk of regulons indicated potential co-regulations

between the two transcription factors, which was not widely reported previously. Again, these signaling

cascades have been disrupted in the development of Abi-resistance, probably due to the reprogramming of

the transcriptional regulation networks. All these results emphasized the difficulties to therapeutically target

transcription factors due to their dynamic regulatory adaption.
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TABLE AND FIGURES LEGENDS

Table 1: Rewired TFs. TF: Transcription Factors; FP: Fisher’s p-value; OR: Odds Ratio.

Figure 1: TraRe’s workflow overview. Input Data: Datasets used in the study: bulk RNAseq

data from Stand Up 2 Cancer (SU2C) and Promote studies of mCRPC cohorts previous to abiraterone

treatment; Simulated Data: Generation and visualization, via PCA, of the simulated modules. Driver

genes from the PROMOTE’s dataset were selected and sampled such that a linear combination of them

defined each simulated module mean µ. For each module, target genes were generated by sampling from a

multivariate Gaussian distribution. TraRe: Build Regulatory Modules (Step 1); Functional annotations:

over-representation analysis of Regulatory Modules, regulons and TFs with curated genesets associated with

biological functions.Identify Rewired Modules (Step 2); Gene and Regulon level: ranked TFs associated

with response and TF-target association in regulons; Network level: phenotype specific regulatory module

analysis. Validation: Study comparison: Comparative analysis of regulatory modules of PROMOTE and

SUC2 study. Biological assays: in vitro TF knock-down studies with naïve and Abi-resistant cell lines to

assess proliferation and target mRNA expression; Comparison model performance: Alluvial plot built to

compare fitting models across simulated GRNs.

Figure 2: TraRe recapitulates complex regulatory interactions on metastatic Castration-Resistant
Prostate Cancer. A: Some regulatory modules identified with cAMARETTO software on inferred GRNs

with TraRe. B: Gene Ontology gene sets of biological processes terms in which the rewired regulatory

modules are enriched. C-D: Categorization of functional annotation enrichment found with cAMARETTO

software in selected PROMOTE’s (C) and SU2C’s (D) regulatory modules. E: Similarity heatmap (Jaccard

index) between rewired regulatory modules in PROMOTE study and overlapped SU2C study regulatory

modules. ECM: Extracellular matrix.

Figure 3: TraRe unraveled Transcription Factors playing a key role in Abiraterone Response of
mCRPC patients. A: Protein-protein association network of top rewired TFs. Relationships are based on

experimental data (purple), curated databases (blue), co-expression (black) and text mining (yellow). 21 out

of 33 nodes contain an edge. Pprotein-Protein Interaction enrichment p-value: < 1.0e-16. Figure generated

with STRING Database50 web tool v.11.0 (Permanent hyperlink). B: Enrichment analysis of Gene Ontology

Biological Process top terms of the rewired TFs. C: Enrichment analysis on Gene Ontology Biological

Process terms of the targets in the regulons. Gene Ontology analysis was performed by using R package

clusterProfiler (v3.18.1) and org.Hs.eg.db. D: Graphical representation of three regulons (edges filtered for

better visualization)

Figure 4: Regulatory Signals of P-M1. A: Sparse VBSR regulatory networks for P-M1 (Hematopoietic

and immune response) built from expression data from only responders, only non-responders, and all bone
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samples. Regulators (orange squares) are connected to their target genes (blue circles) by edges colored by

their regulatory relationships (green positive, red negative). B: For each regulator of the regulatory module

community, a violin plot showing the regulator expression among responders (pink) and non-responders

(blue). C: Changes in the expression (t-statistic) of the global all-bone sample targets of each regulator

between responders and non-responders. D: Correlation relationships between regulators and their all bone

sample targets among samples of the different response classes. E: Pairwise correlation among P-M1 genes

within responders and non-responders.

Figure 5: Experimental validation of regulons significantly different between responders and
non-responders. A: Multiplicity of target genes identified within five selected regulons. B-C: Proliferation

assay of 22Rv1 (B) and LNCaP (C): parental and Abi-resistant cell lines in the presence of vehicle or

abiraterone, presented as mean ± SD of 3 replicates. D: qRT-PCR measurement of knockdown efficiency of

selected transcription factors, as mean ± SD of 2 replicates. E-F: Quantification of expression of targets

after knockdown of selected transcription factors using LNCaP (E) and 22Rv1 (F) and their respective

Abi-resistant cell lines by qRT-PCR, as mean ± SD of 2 replicates. G-L: Proliferation assay of 22Rv1

and 22Rv1 Abi-Resistant cell lines after knockdown of ELK3 (G), MXD1 (I) and MYB (K), presented

as mean ± SD of 3 replicates. Proliferation assay of LNCaP and LNCaP Abi-Resistant cell lines after

knockdown of ELK3 (H), MXD1 (J) and MYB (L). M: KEGG Pathway analysis of ELK3 targeted genes.

N: Representative picture of wound-healing assay of 22Rv1, LNCaP and their Abi-resistant cell lines after

knockdown of ELK3. Pictures were taken at 0 and 24 hours after scratch. O: Quantification of wound

healing assay. Data was presented as mean ± SD of 6 replicates. Statistical difference was tested by paired

two-sided Student’s t-test.

Figure 6: TraRe is able to recapitulate rewired regulatory modules on simulated data. A-C:
Alluvial plots showing the flow of simulated regulatory modules to the corresponding inferred submodules

and the cluster of these into regulatory modules by similarity for VBSR, Linear and LASSO models. D-
F: Heatmaps showing clustered rewired regulatory modules from labeled-as-rewired simulated inferred

submodules (simulated module 1, 4 and 7). G: Models boxplot and paired Wilcoxon test showing the

distribution differences significance from the top 50 jaccard index scores.
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TF FP OR

CEBPE 1.4e-31 205.94

GATA1 1.6e-29 82.53

GLI1 4.6e-14 90.74

KLF1 2.1e-12 125.89

PRRX1 2.0e-11 30.21

NFE2 7.4e-10 48.56

MXD1 2.8e-09 25.14

ZNF3 6.1e-09 30.89

MYB 1.9e-06 32.77

ZNF91 1.0e-05 13.97

IRF4 1.8e-05 17.63

PAX6 2.8e-04 7.16

NR1H4 4.7e-04 5.47

ELK3 7.7e-04 4.01

ZNF181 8.9e-04 14.30

KLF10 1.4e-03 12.10

ZFP3 1.5e-03 24.38

ZFHX2 1.5e-03 24.38

TAL1 1.5e-03 24.38

ZSCAN22 2.9e-03 6.64

EPAS1 3.7e-03 6.21

ZNF174 4.8e-03 13.53

TFAP4 4.8e-03 13.53

RUNX1 0.01 4.14

BATF3 0.01 28.90

ZNF526 0.01 28.90

SOX1 0.02 17.33

ZNF574 0.03 12.38

ID2 0.03 5.79

ZNF286A 0.04 9.62

RBAK 0.04 9.62

ZNF519 0.04 3.82

SNAI2 0.05 2.67

Table 1
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S1 Supplementary Notes

S1.1 Model and Sample Selection Comparison

The most robust rewired regulatory module in the PROMOTE data, PM-1, was found using the 46 bone-only

samples and Variational Bayes Spike Regression (VBSR) models to construct the regulatory submodules. We

also investigated the effect on the results of selecting that particular regression model and the single metastatic

site. For this analysis, we normalized 67 PROMOTE patient samples from all metastatic sites (41 responders

and 26 non-responders) with conditional quantile normalization. We kept these expression values for only

genes which had at least 32 reads from at least 2% of the samples from each class. For each configuration,

submodules discovery was completed with 80% of the samples in 10 repeated runs. Submodules across runs

were scored for rewiring, and rewired submodules were clustered using hierarchical clustering (Euclidean

distance and ward linkage) on the similarity matrix of submodule log10 hypergeometric test p-values. This

process for finding robust, rewired modules was run for three different types of regression models (VBSR,

Linear (LM), and LASSO (LASSOmin)) and two different subsets of patient samples (41 bone-only and

67 all sample sites). For each of these 6 configurations, VBSR was used to find the regulatory network

edges of the module formed from the cluster with the largest number of rewired submodules. In spite of

the differences between these analyses and with the analysis in the main text, each configuration resulted in

similar regulatory networks with a similar set of core regulators, CEBPE, GATA1, IKZF1, KLF1, NFE2, and

MXD1 (see Supplementary Table S12). The most interesting variation between the resultant networks comes

from the number of total driver regulators that contribute to the expression of the discovered submodules. We

ultimately selected VBSR for submodule discovery as presented in the main results because it consistently

returned modules with strong rewiring significance using a minimum number of driver regulators.

S1.2 Simulated data

S1.2.1 Alluvial plots analysis

When using VBSR as the fitting model for the module inference process, even though most of the inferred

modules across runs were composed by a mixture of genes coming from different simulated modules (Figure

6B-middle column), the majority of the genes came from a unique simulated module while few came from

another simulated module. More importantly, inferred modules were correctly grouped into a single module

after the clustering step that integrates different runs (Figure 6B-leftmost column). Moreover, rewired

modules were correctly inferred and labeled as rewired by TraRe, where rewired modules inferred across

different runs were correctly clustered together (Figure 6C).

When LASSO was selected as the fitting model, the inferred GRNs contained a larger presence of drivers

from other modules than when using VBSR which yielded a decrease on performance with respect to VBSR

(Figure 6D). Nonetheless, rewired simulated modules were correctly identified and grouped together across

runs (Figure 6F). Note that the similarity scores between rewired modules of different runs was generally

lower than when using VBSR (Figure 6F).
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LM, on the other hand, often inferred noisy modules containing large mixed proportions of genes coming

from several simulated modules (Figure 6D). This behavior led to a single inferred GRN to be identified as

rewired. Further, similarity between rewired GRNs belonging to different simulated modules emerged due to

the mixed proportions of some inferred GRNs (Figure 6G).

S1.2.2 Parameter grid analysis

We assessed the behavior of the different models to changes on the noise level when generating the simulated

modules. In this case, LM was only able to infer modules in a short range of noise (σ = [1.2, 1.6, 2]), as

opposed to LASSO, which inferred modules on a larger range of noise variances at the expense of generally

large false positive rates (FPR). VBSR, on the other hand, was the only model that ensured a high true positive

rate (TPR) while controlling the FPR in a relatively large range of noise values (σ = 0.01− 2.8), see Figure

S4.

We then evaluated the different models by varying the internal threshold that each method uses to assign

a driver gene to a target gene: the p-value cutoff in VBSR and LM, and the λ parameter in LASSO (see

Methods). LASSO and LM obtained large FPRs even for small thresholds, while VBSR achieved the largest

area under the receiver operating characteristic (ROC) curve (AUCs) on every Jaccard index threshold.

(Figure S5).

We then verified the performance of the different models as a function of the number of available samples

(i.e., patients) via ROC curves. VBSR achieved the largest AUCs above 28 samples. LASSO was the only

model able to infer GRNs under 28 samples, maintaining similar TPR to FPR ratios of larger samples runs

(Figure S6)

Finally, when measuring the TP, FP and FN for a fixed noise variance, number of samples and internal

thresholds (see Methods), VBSR and LASSO models outperformed the LM in terms of the adjusted coefficient

of determination (adjusted R-squared coefficient) and the recall score. On the other hand, LM and VBSR

outperformed LASSO in precision (Figure S3).

Note that the evaluation metrics rely on matching inferred GRNs to the simulated ones. Thus, Jaccard

indexes were used as thresholds to define at which extent we included or not a matched pair in the evaluation.

Four different Jaccard thresholds were used: 0, where every match is included regardless of the number of

overlapping genes (as long as these are larger than one); 0.5; 0.8; and max, where only one pair, the one with

largest Jaccard index, is included for each simulated module.
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S2 Additional Tables

Regulatory
module

Nr
bootstraps

Nr
modules

Nr rewired
modules

% of
rewired
modules

TFs Nr TFs Nr targets

P-M1 9 11 11 100
CEBPE, GATA1, KLF1,

MXD1, NFE2, FOXN1,

GLI1, MYB, TAL1

9 619

P-M2 9 12 5 41.7

ZNF91, ZKSCAN1, ZNF519,

ELK1, HOXA6, SREBF2,

ZBTB26, ZFHX4, ZNF607,

ZNF778, ZNF827

11 1045

P-M3 7 9 5 55.6

PAX6, SMAD7, ZNF670,

LEF1, SOX8, STAT2,

ZBTB43, ZBTB45, ZFAT,

ZFP37, ZNF286A, ZNF69

12 879

P-M4 10 10 3 30
SNAI2, FOXC2, RARG,

RUNX2, SMAD1, TSHZ3,

ZNF655

7 1172

P-M5 7 7 2 28.6 NR1H4, HOXD12 2 475

P-M6 10 17 1 5.9

MEF2C, MSC, FLI1,

MEOX1, PRRX1, ZNF655,

BATF3, HIF3A, KLF10,

KLF15, KLF6, KLF8,

MYOD1, NKX3-1, NONO,

PAX3, SOX18, TCF7L1,

THAP11, ZBTB42, ZNF607, ZNF610

22 2337

P-M7 10 12 1 8.3
ELK3, FOXC2, DNMT1,

ZHX2, ZNF496
5 910

P-M8 9 14 1 7.1

ZNF709, ZSCAN22, ZNF670,

DLX1, E2F4, MAF,

MNT, MXD3, ZNF16,

ZNF174, ZNF192, ZNF347,

ZNF394, ZNF528, ZNF789,

ZNF800, ZSCAN23

17 1238

P-M9 6 7 1 14.3

EBF1, RUNX1, ETV5,

FOXA1, HOXB2, NFATC3,

NFATC4, NR6A1, RBPJ,

RUNX2, SP100, ZNF689

12 1137

Table S1: Summary table of regulatory modules generated with cAMARETTO software30 from all sub-modules
obtained in a 10-bootstrap run with TraRe on PROMOTE dataset (Part 1: Rewired Regulatory Modules).
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Regulatory module Nr bootstraps Nr modules Nr TFs Nr targets
P-M10 10 28 16 1834

P-M11 10 21 17 1524

P-M12 10 19 24 1848

P-M13 10 13 10 830

P-M14 10 13 13 1532

P-M15 10 12 9 1115

P-M16 10 12 12 1142

P-M17 10 11 11 1128

P-M18 10 10 8 1201

P-M19 10 10 9 1394

P-M20 10 10 6 870

P-M21 10 10 4 1482

P-M22 10 10 9 792

P-M23 9 11 10 1028

P-M24 9 10 10 1217

P-M25 9 10 16 1238

P-M26 9 10 11 1411

P-M27 8 8 9 766

P-M28 7 8 5 591

P-M29 7 8 10 1108

P-M30 7 8 6 657

P-M31 7 7 1 681

P-M32 7 7 6 468

P-M33 7 7 11 815

P-M34 6 7 5 665

P-M35 6 6 9 961

P-M36 5 6 5 823

P-M37 5 5 5 759

P-M38 5 5 2 511

Table S2: Summary table of regulatory modules generated with cAMARETTO software30 from all sub-modules
obtained in a 10-bootstrap run with TraRe on PROMOTE dataset (Part 2: Non-rewired Regulatory Modules).
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TF Targets p_value multiplicity

ELK3 CLASP1 9.28E-05 9

ELK3 SH3BP5 9.28E-05 9

ELK3 ARL10 9.28E-05 9

ELK3 SEPP1 9.28E-05 9

ELK3 RAPGEF1 9.28E-05 9

ELK3 MYO18A 9.28E-05 9

ELK3 DUSP18 9.28E-05 9

ELK3 SRGAP2P2 2.05E-04 8

ELK3 ARL15 2.05E-04 8

ELK3 FAM65A 2.05E-04 8

ELK3 TAX1BP3 1.92E-04 8

ELK3 RAB11B 2.05E-04 8

ELK3 ACTN4 4.56E-04 7

ELK3 MAP3K12 4.66E-04 7

ELK3 PIK3CA 4.66E-04 7

ELK3 NCK1 1.06E-03 6

Table S4: ELK3 regulon with selected targets for biological
validation
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TF Targets p_value multiplicity

MXD1 GCA 1.07E-04 9

MXD1 MMP25 2.42E-04 8

MXD1 PTPN6 4.64E-04 7

MXD1 HBQ1 5.83E-04 7

MXD1 DMTN 1.13E-03 6

MXD1 KEL 1.28E-02 3

Table S5: MXD1 regulon with selected targets for biologi-
cal validation

TF Targets p_value multiplicity

MYB ITGA2B 8.95E-03 4

MYB FAM178B 4.40E-02 2

MYB ERMAP 3.77E-02 1

MYB GCA 3.77E-02 1

MYB NRGN 3.77E-02 1

MYB HBQ1 3.77E-02 1

MYB MSRB1 3.77E-02 1

Table S6: MYB regulon with selected targets for biological
validation

TF target p_value multiplicity

ZNF91 GEMIN5 1.39E-03 5

ZNF91 RSBN1 3.19E-03 4

ZNF91 MACROD2 6.48E-03 3

Table S7: ZNF91 regulon with selected targets for biologi-
cal validation
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TF target p_value multiplicity

ZNF3 NUDCD3 3.06E-05 8

ZNF3 STYXL1 3.06E-05 8

ZNF3 LAMTOR4 9.40E-05 7

ZNF3 PSMG3 1.90E-04 6

ZNF3 DTX2 5.92E-04 5

ZNF3 LRRC27 3.96E-02 1

Table S8: ZNF3 regulon with selected targets for biological
validation
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Gene Sequence Gene Sequence

MXD1
TGG TAA CAT GGA GGC ATA ACC

RAPGEF1
CTT CTG AGT TCA CGC CTT CC

GGC GGT TCG GAT GAA CA GTG CAG AAC GAT CCT CGA AT

MYB
CTC CTG CAG ATA ACC TTC CTG

MYO18A
CGG TTC TGG ATC TCA TTC TTC T

GCA GAA ATC GCA AAG CTA CTG GAA AGC ACG GAA AGC AAT GG

ZNF3
TCT GAC TTT TGT TGA TGC CAA TG

NUDCD3
TCT CTT CAA GTT CCT GCC TTC

ACT TCC GTT CTT TGT TCT GTC C GAC AGA CTT CTA TCG CTT GCT

ELK3
GCA ACT GCA ACA GGA ACT G

GCA
GGC AAT CAT AAT TCT GCA GGT T

CTG TCA GCA TGG AAA GTC G CCG TGT ATA CTT ACT TCA GTG CT

ZNF91
CCA GTG TGT ATC CTC TTA TGT CTT C

RSBN1
GTT ATG CGA GGT TGG TCA CT

TCA TTC CTC AAG TCT TTC TAC ACA CTA GAG CTC ATG CTG ATC ATG T

LAMTOR4
GCC TGC TCA TCA TTC TCC A

SEPP1
TCT TCA GTT TTA CTC GCA GGT C

AGA CTG CGA TGA CTT CTG C CAA GAT CCA ATG CTA AAC TCC AA

ACTN4
GCT TCT CGT AGT CCT CCA TCA

ITGA2B
ACC CTC CTG CTA GAA TAG TGT A

CCA GCT TCT ACC ATG CCT TT CTG CTG CTC ACC ATC CTG

DMTN
GGA GGT AAG TGG TTG CTT CT

MSRB1
GAG AAC AGC TCA TAG CCA CA

TCT ACA GAT GCC ATC AAC GAG GCA GCC TTT GGT CAG TTG

PIK3CA
TGC TGT CGA ATA GCT AGA TAA GC

LRRC27
CTC CAC AGG TAA CAT TTT GAT AGG

AGT GAT TAG TAA AGG AGC CCA AG TCA AGA TTT CTT TCA GTT GCT TCC

PTPN6
CGC AGT TGG TCA CAG AGT AG

HBQ1
TGG GAG AAG TAG GTC TTC GT

CAG CCG TGT CAT CGT CAT CGC CCT GTG GAA GAA GC

RAB11B
CTC TTG CTC TCC AGG TTG AAC

ARL15
GCA TCC ATG TCA TCC AGT GA

GAC GAC GAG TAC GAC TAC CTA T CAG CTC GCT CAG TAC AAG AG

SH3BP5
GAG TTT CTT CTC CAG CTG TCG

KEL
CTT CTG TTC TTG ATC TTG CTT GAG

GAT GCT GAA TCA CGC CAC T TTT CCC TTT CTT CAG AGC CTA C

FAM178B
GTG ATG TCC TGG CAG CTA AC

DUSP18
GTC AGT GGT CAG CAG TCA G

AGG AGC AAC AGC CAA AGG CTA CTT CCT GAG CGA ACC C

NCK1
GCC CAA TGC AGT AGA CAG TC

ERMAP
AGG ATG AGT TTG GGA TGT GC

GGC ATT AAA TGA AAG AGG ACA TGA GTG AAC TGA AGT TGA AAA GAG CTG

ARL10
CCA GTA GAA GCG CAG GTT C

DTX2
GTC CCC GTC TTC TCT CCA TA

TTC AAC TCC GTG CGT CTG CTC ACC AAG TGC AGC CAT

MMP25
CCA AAC TCA TGG ACA GCC A

STYXL1
GCA TGA GGT AGG CTA TGA TGG

CCT AGC CCA TGC CTT CTT C GCC CAG ATT CTT CCC TTC TTA C

GEMIN5
CCT CGA AGC CTA TGA ATA ACT TCT

MAP3K12
CTC TTG TCA CTC AGC TCC TT

TCT GTC TTA CTT GTT CAC CTC ATC ACC TGC ACA AGA TTA TCC ACA

MACROD2
CAT GTC CAG TAT CAC AGC CA

FAM65A
TAT GCC TCA TAC AGC TCA TCG

TCA CAT TGC TAG AGG TAG ATG C GCA GAT AAG GGA GTC CAA GAG

CLASP1
CAC CAT AAC CAC TTC CCA ACA

TAX1BP3
ATG TCC CAG CCG TTC AC

CAC AAG ACG GCA AAG CTC T CCG TGG TGC AAA GAG TTG A

SRGAP2P2
GGC AGA GAT TGA GAT GGA CTA C

NRGN
GAA AAC TCG CCT GGA TTT TGG

TCC TCC TGC TTT ACC GAT TTA C CGA CAC CAG CAT GGA CTG

PSMG3
CCT CCA TGC TTT TGT CCT TCA

CTT CTG GGG CAG GAT GAG

Table S9: Primer sequences for qRT-PCR assays
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Pool Catalog Number Gene Symbol Sequence

M-009325-01 MXD1

AAAGCCAAAUUGCACAUAA

GAAUAGACGGGCUCAUCUU

GAAUCAAGUCGACACACUA

GCAGAUCAACUCACAAUGA

M-010320-00 ELK3

GAUCUCCUCUUUAAUGUUG

GAACGAUGGUGAAUUCAAG

ACAAGAACAUCAUCAAGAA

GCACGAGCCGCAACGAAUA

M-003910-00 MYB

CCGAAACGUUGGUCUGUUA

CAACACCAUUUCAUAGAGA

CAACGACUAUUCCUAUUAC

GAAAUACGGUCCGAAACGU

M-016190-02 ZNF3

CGGAAGGAGUGGAAGCGUU

AGGCUGAUCUCGUAUCUCA

AGAAUUACGGGAAUGUGUU

GGGAUGAGAUGUUGGCGGC

M-019779-01 ZNF91

AGACAAUCCUUAACCCUUA

CCUCAAAGCUUACUACACA

UCAAGUCUUUCUACACAUA

UAACAAUCGCAUUAGACUA

Table S10: Sequences of siRNA for selected transcription factors.

Table S11: Enrichment of regulons with Gene Ontology
Biological Processes. See Excel Supplementary Data.
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MODEL DATA NETWORK

A. VBSR-VBSR
Bone Only

revised-pvalue: 0.00799

num-targets: 419

num-regulators: 6
regulator-names: CEBPE, GATA1 IKZF1, KLF1, NFE2, MXD1

B. LM-VBSR
Bone Only

revised-pvalue: 0.00599

num-targets: 451

num-regulators: 9
regulator-names: CEBPE, GATA1, IKZF1, KLF1 NFE2, MXD1 GFI1, TAL1 , GFI1B, LYL1

C. LASSOmin-VBSR
Bone Only

revised-pvalue: 0.015

num-targets: 257

num-regulators: 68
regulator-names: CEBPE, GATA1, IKZF1, KLF1 NFE2, MXD1 ,GFI1, TAL1, FOXD4L1,

HOXD11, NPAS2, NR4A2, ZNF518B, IRF4, MYB, GFI1B, ZNF485, TFDP1,

SPIB, ZIM2, ZNF446, ZNF558,ZNF726, ZFP62, ZSCAN22, MYBL2, DLX2,

HOXD8, FOXI1,ESR1,ZNF146, ZNF239, ZNF283, SP140, SP3, ZNF322,

TSC22D4, ZNF229, RELA, ZNF782, FOXG1, MAX,E2F4, TBX6, ZNF48,

NR2F6,WIZ, ZNF296, ZNF345, ZNF416, FOXO4, ARID4B, LHX9,

HOXD10, OTP, TEAD3, ZFP37, SPI1, NR4A1, SPIC, CREB3L2, ETV1,

ZNF286A, ZBTB45, ISX, ZNF75D, NKX2-6, ZNF396

Not shown

D. VBSR-VBSR
All Samples

revised-pvalue: 0.00799

num-targets: 303

num-regulators: 5
regulator-names: CEBPE, GATA1, KLF1, NFE2, MXD1

E. LM-VBSR
All Samples

revised-pvalue: 0.016

num-targets: 396

num-regulators: 8
regulator-names: CEBPE, GATA1, IKZF1, KLF1, NFE2, TAL1 , GFI1B, LYL1

F. LASSOmin-VBSR
All Samples

revised-pvalue: 0.014

num-targets: 242

num-regulators: 109
regulator-names: CEBPE, GATA1, KLF1,NFE2 MXD1, IKZF1, HES5, MTF1,

NFYC, NEUROD1, REL, SATB1, ZNF518B, OTP, MYB, TCF21, TEAD3,

ETV1, KAT6A, GFI1B, NFIB, ZNF248, ALX4, SOX6, ETV6, HOXC4,

TFDP1, ESR2, TBX6, TOX3, ETV4, ZFP3, ZNF594, NFATC1, ZNF296, ZNF302,

ZNF345, ZNF416, MYBL2, ARX, RUNX2, GBX1, HOXA11, ATF7, E2F4,

ZFPM1, FOXN1, ZNF563, ZNF567, ZNF571, ZNF585A, HDX, GFI1, HOXD9,

ZNF215, ZNF229, MAFF, NFE2L3, THAP8, ZNF536, DLX5, NFIL3,

NR4A3, SPIC, POGZ, NR4A2, OSR1, TLX2, UBP1, ZNF620, HMX1,

THAP6, NKX2-5, FOXH1, ZBTB43, ZNF268, TOX4, SALL1, ZNF174, RFXANK,

ZBTB45, ATRX, GRHL3, TAL1, ZNF879, NFYB, ZNF668, NR2F6, ZBTB32,

ZNF283, FOXO4, MTA3, PURB, RXRA, MXI1, SPI1, ZNF233, ZNF235, TSC22D3,

IRF4, OSR2, DEAF1, NANOG, LOC145783, HOXB3, TBX2, ZFP28, ZNF568, ID1

Not shown

Table S12: Consistent Discovery of P-M1: Identifying the most strongly rewired regulatory module from the 46
bone-only samples (A-C) resulted in similar regulatory networks, with the same core drivers (in colored text), regardless
of the regression model used to construct the co-expressed modules. This finding also held for using the data from all
68 patient samples (D-F).
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S3 Additional Figures
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Figure S1: Workflow of TraRe. A: Example of a gene expression matrix (genes by samples). Color of samples
indicates whether the patients are labeled as responders or non-responders. B: GRN inference process in two steps,
module generation and GRN generation. C: GRN rewiring process. A permutation test on sample class labels is
performed per module. D: A dissimilarity metric is evaluated for the true class labels and compared to a fixed amount of
permutations. E: Robust rewired GRN inference process begins with Hypergeometric tests performed between rewired
modules. F: Similar rewired modules are grouped via a hierarchical clustering yielding robust, regulatory modules.
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Figure S2: Variation of sub-module generation. We modified the number of the pre-set sub-modules to 50, 100, 200,
300 and 500 on PROMOTE data and run 5 bootstraps.Variation of sub-module generation. We modified the number of
the pre-set sub-modules to 50,100,200,300 and 500 on PROMOTE data and run 5 bootstraps. We show the influence in
the number of sub-modules generated (A), the number of transcription factors per generated sub-module (B) and the
number of targets per generated sub-module (C).
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Figure S3: Classification metrics along VBSR,LM and LASSO. For a fixed Jaccard index, variance noise σ, number
of samples and p-value thresholds, TP, FP and FN from simulated-inferred modules pairs are shown for each model. A
linear model has been fitted to explain driver’s regulatory programs within inferred GRNs based on simulated regulatory
programs. Moreover, R2 adjusted, precision and recall parameters from the fitted linear model are shown. VBSR
obtained perfect precision, which was almost scored by LM, and also obtained the largest R2. Largest recall score was
obtained by LASSO model, as it over-inferred drivers, which can be seen in the form of FPs at its precision score.
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Figure S4: Discrete ROC’s curves comparing simulated and inferred modules as a function of the simulated
modules variance noise σ. For each defined Jaccard index threshold and each value of σ = [0.01, 0.4, 0.8, 1.2, 1.6,
2, 2.4, 2.8, 3.2, 3.6, 4, 4.4, 4.8, 10, 25, 50, 100], TPR and FPR have been computed along VBSR, LASSO and LM.
Default number of samples and p-value thresholds have been used. As the Jaccard index threshold decreases (more
restrictive) the fitting models are less robust to noise variance. Also, VBSR achieved large TPR to FPR ratios in a wide
range of noises (up to σ=2.8).
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Figure S5: ROC’s curves as a function of p-value thresholds. TPR and FPR have been computed along a desired
p-value’s range (0.02 to 0.14) for each Jaccard index threshold and fitting models VBSR, LASSO and LM. Noise σ and
number of samples have been set to its default parameters. Note that, for the LASSO model, Lambda parameter has
been modified as a metric of sensitivity, selecting Lambda’s deciles from LASSO cross validation model. (R’s cv.glmnet

package). VBSR achieves the largest TPR to FPR ratio on every Jaccard index threshold.
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Figure S6: ROC’s curves a function of samples (patients). TPR and FPR have been computed for each Jaccard index
threshold and fitting models VBSR, LM and LASSO, along 10, 16, 28, 38 and 46 samples. Noise σ and p-value’s
threshold have been set to its default parameters (see Methods). Missing points when threshold = 0 are due to fitting
errors from specific models. Missing points distinct to the aforementioned in the remaining thresholds are due to the
filtering. Above 28 samples, VBSR achieved largest TPR to FPR ratio on every Jaccard index threshold. LASSO was
the only model able to infer GRNs under 28 samples, maintaining similar TPR to FPR ratios of larger samples runs.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491360doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491360
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S7: Expression Patterns in PROMOTE Data. For each of the reported experimental validations, we show the
corresponding expression information from the original PROMOTE data. Points are plotted for responders (yellow) and
non-responders (purple) with best fit lines drawn and correlations and their significance reported on the left hand side.
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Figure S8: Heatmap showing the 51 rewired modules as columns labeled by their community membership (C_##, C_0
for not a member of any community) and their bootstrap run (P_##). The rows are gene targets that are in at least four
of the rewired modules or regulator TFs in at least one. The red color of the cell indicates membership of the gene in the
module (dark red indicates the gene is a regulator of that module). Figure generated with Clustergrammer73 web tool.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491360doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491360
http://creativecommons.org/licenses/by-nc-nd/4.0/


CEBPE

GATA1

SLC2A14

S100A12

TSPO2

LCN2

SERPINB10

LOC388387

TARM1

LPO

WBP2

LTF

S100A9

MGAM

SLC22A16

MPO
SLCO4C1
MS4A3
TFR2

NLRP12

VPREB1

OLFM4
RNASE3

PADI4
S100A8
PAQR9

SEC14L4

PGLYRP1

SERPINB2

PKLR

SLC26A8

PRG2

SLC4A1
PRG3

SPTA1

PRRT4
TCN1

PRSS57

TRIM10

RETN

UGT3A2

RHAG
VSTM1

RHCE

RNASE2
PRTN3
HP

DNTT

ALAS2
HBD

ARG1

CYP4F3

AZU1

EPB42

BPI
AHSP

C17orf99

HEMGN
CA1

IGLL1

CAMP
ABCA13
CD5L
ELANE

CEACAM3
FCAR

CEACAM8

GPR97

GYPA
GYPB

HBB

CLC

HBM
CLEC4C

HMGB2

CLEC4D
IFIT1B
CR1L
KRT1

CTSG
DEFA4

TCL1A

RAG2

TRIM58

ORM1

PPBP

MMP8

MYL4

PIM1

RAB27A

LOC643802

LOC283392

G6PD

EPX

HBG2

C19orf59

FAM178B
ACSL6

HBA1

CD177

ANKLE1

CEACAM4
FAM129C

ADD2

FCN1

ADRBK1

GYPE

CLEC12B

HBG1

E2F2

EAF2

ART4

PF4

SLFN14

RFESD

PIM2

SEC14L3

NTNG2

LY6G6F

MFSD2B

MS4A2

HBZ

GCA

KEL

CASC3

GPR182

ACAP1

HRH4

CEACAM6

FPR2

CFP

GLT1D1

BEX1

APOBEC3A

CLEC12A

HMBS

ECRP

HSD17B11

ERMAP

FCGR3B

YPEL4

SIGLEC5

OR6N1

LGALS12

TMCC2

LBR

PIP5K1B

SLFN13

RAB37
TESC

MZB1

SLC38A10

NLRP7

PNPLA1

PTH2R

CLEC1B

ITGA2B

CSK

CTSE

CST7

CXCR1

HBA2

CXCR2

ARRDC5

FCRL1

CD27

SF3A1

TUBB1

LILRA3

PLAC8

SEPX1

PRAM1

SIRPB1

PTCRA

LILRA5

LTA4H

RNF182

S100P

ABCB10

HDC

HBQ1

IL5RA

ITLN1

DCAF12

CHIT1

EMR3

CNR2

C19orf35

C19orf77

ANKRD34B

IL17RA

GRAP2

GRIA1

CD79A

GP9

TMEM170B

MEFV

MXD1

NRGN

MMP27

PGD

TREML2

PROM1

NFE2

PSTPIP2

SIGLEC8

LPPR3

TIMD4

RD3

TNFRSF10C

REG4

UNC5A

ZNF385A

MCM5

WNT10A

EMB

GPR55

KLF1

C1orf186

ARL5C

CD101

BLK

GRK6

IPCEF1

CMTM2

CPA3

C8orf80

CRISP2

HAL

ICAM3

C9orf139

ARSG

FOLR3

FCER2

CCDC163P

IPO8

FUT4

BTNL8

FUT7

FAM117A

MS4A1

MTMR3

RHD

PTPN6

OR6K3

PVALB

RGS14

VPREB3

TRHDE

LOC606724

LY6G6E

PROK2

TALDO1

SLC6A19

RFPL3

SLC7A10

TMEM86B

MMP25

RLTPR

SNCA

LINC00494

PDE6H

TSPAN5

SPTB

RPIA

STAP1

STRN

SFRP5

SEMA4D

CTDSP1

CDC20B

C9orf66

C17orf102

CYFIP2

EPB49

CR2

BCL2L15

CRH

CAT

HCG27

DPP10

HELZ

GJB6

ATG7

TMEM156

PCSK2

POLDIP3

PRKAB1

LBH

NUCB2

PLD4

LOC729737

WNT11

PRSS33

SMA5

NUP214

TERF2IP

NAP1L6
TNFRSF13C

NUP50

PNMA3

R3HDM4

MYB

RAB33B

ZDHHC18

RBM38

MLC1

REM2

TAL1

LRRTM3

NIN

RGPD4

TMEM154

LOC147646

TNFAIP8

NBEAL2

TNFRSF17

RHOH

PLIN1

RNF139

PNPLA2

NCF1

VRK1

MARK3

WNT10B

SLC22A4

XK

LILRA4

MGC39372

FAM53B

GPM6A

GLI1

CNPY3

ATP2A3

H1FX

CYTH1

C16orf89

IGJ

CCNH

AMPD3

KRT13

FAM46C

FCRL5

C3orf62

C9orf79

CEBPZ

FKBP8

ERLIN1

CIDEC

DENND4A

HCAR3

FAM104A

FOXN1

KIAA0430

CDKN2D

CEACAM1

BEND2

KIAA0125

ARHGEF3

ADH1B

FAM157B

EMR1

KRT222

*P
.1
|M
od
.6
9

*P
.1
|M
od
.7
0

*P
.3
|M
od
.4

*P
.4
|M
od
.4

*P
.5
|M
od
.3
6

*P
.6
|M
od
.6
1

*P
.7
|M
od
.4
3

*P
.7
|M
od
.5
4

*P
.8
|M
od
.6
7

*P
.9
|M
od
.7
7

*P
.1
0|
Mo
d7
4

Figure S9: Heatmap showing the 11 modules of P-M1 as columns labeled by their bootstrap run (P.##) and within
bootstrap submodule (Mod.##) and flagged with "*" if rewired. The rows are gene targets that are in at least two of
the rewired modules or regulator TFs in at least one. The red color of the cell indicates membership of the gene in the
module (dark red indicates the gene is a regulator of that module). Figure generated with Clustergrammer73 web tool.
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Figure S10: Heatmap showing the 12 modules of P-M2 as columns labeled by their bootstrap run (P_##) and flagged
with "***" if rewired. The rows are gene targets that are in at least two of the rewired modules or regulator TFs in at
least one. The red color of the cell indicates membership of the gene in the module (dark red indicates the gene is a
regulator of that module). Figure generated with Clustergrammer73 web tool.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491360doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491360
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S11: Heatmap showing the 9 modules of P-M3 as columns labeled by their bootstrap run (P_##) and flagged
with "***" if rewired. The rows are gene targets that are in at least two of the rewired modules or regulator TFs in at
least one. The red color of the cell indicates membership of the gene in the module (dark red indicates the gene is a
regulator of that module). Figure generated with Clustergrammer73 web tool.
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Figure S12: Regulators of P-M1 shown as rows of a membership heatmap with the 11 modules of P-M1 as columns
labeled by their bootstrap run (P.##) and within bootstrap submodule (Mod.##) and flagged with "*" if rewired. Figure
generated with Clustergrammer73 web tool.
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