Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The statistical power of three monkeys

View ORCID ProfileJean Laurens
doi: https://doi.org/10.1101/2022.05.10.491373
Jean Laurens
Ernst Strüngmann Institute (ESI) for Neuroscience, Frankfurt, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jean Laurens
  • For correspondence: jean.laurens@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Neuroscience studies in non-human primates (NHP) often follow the rule of thumb that results observed in one animal must be replicated in at least one other. However, we lack a statistical justification for this rule of thumb, or an analysis of whether including three or more animals is better than including two. Yet, a formal statistical framework for experiments with few subjects would be crucial for experimental design, ethical justification, and data analysis. Also, including three or four animals in a study creates the possibility that the results observed in one animal will differ from those observed in the others: we need a statistically justified rule to resolve such situations. Here, I present a statistical framework to address these issues. This framework assumes that conducting an experiment will produce a similar result for a large proportion of the population (termed ‘representative’), but will produce spurious results for a substantial proportion of animals (termed ‘outliers’); the fractions of ‘representative’ and ‘outliers’ animals being defined by a prior distribution. I propose a procedure in which experimenters collect results from M animals and accept results that are observed in at least N of them (‘N-out-of-M’ procedure). I show how to compute the risks α (of reaching an incorrect conclusion) and β (of failing to reach a conclusion) for any prior distribution, and as a function of N and M. Strikingly, I find that the N-out-of-M model leads to a similar conclusion across a wide range of prior distributions: recordings from two animals lowers the risk α and therefore ensures reliable result, but leaves a large risk β; and recordings from three animals and accepting results observed in two of them strikes an efficient balance between acceptable risks α and β. This framework gives a formal justification for the rule of thumb of using at least two animals in NHP studies, suggests that recording from three animals when possible markedly improves statistical power, provides a statistical solution for situations where results are not consistent between all animals, and may apply to other types of studies involving few animals.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted May 10, 2022.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The statistical power of three monkeys
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The statistical power of three monkeys
Jean Laurens
bioRxiv 2022.05.10.491373; doi: https://doi.org/10.1101/2022.05.10.491373
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The statistical power of three monkeys
Jean Laurens
bioRxiv 2022.05.10.491373; doi: https://doi.org/10.1101/2022.05.10.491373

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Subject Areas
All Articles
  • Animal Behavior and Cognition (3603)
  • Biochemistry (7570)
  • Bioengineering (5526)
  • Bioinformatics (20798)
  • Biophysics (10329)
  • Cancer Biology (7985)
  • Cell Biology (11640)
  • Clinical Trials (138)
  • Developmental Biology (6606)
  • Ecology (10205)
  • Epidemiology (2065)
  • Evolutionary Biology (13620)
  • Genetics (9542)
  • Genomics (12847)
  • Immunology (7921)
  • Microbiology (19543)
  • Molecular Biology (7660)
  • Neuroscience (42113)
  • Paleontology (308)
  • Pathology (1258)
  • Pharmacology and Toxicology (2202)
  • Physiology (3267)
  • Plant Biology (7042)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1951)
  • Systems Biology (5426)
  • Zoology (1117)