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Abstract

Bacterial colonies benefit from cellular heterogeneity, with cells differentiating into
diverse states of physiology and gene expression. As colonies grow, such cells in distinct
states arrange into spatial patterns. To uncover the functional role of these emergent
patterns, we must understand how they arise from cellular growth, phenotypic
inheritance, and mechanical interactions among cells. Here we present a simple,
agent-based model to predict patterns formed by motile and extracellular
matrix-producing cells in developing populations of Bacillus subtilis bacteria. By
incorporating phenotypic inheritance, differential mechanical interactions of the two cell
types, and the escape of peripheral motile cells, our model predicts the emergence of a
pattern: matrix cells surround a fractal-like population of interior motile cells. We find
that, while some properties of the emergent motile-matrix interface depend on the
initial spatial arrangement of cells, the distribution of motile cells at large radii are a
product solely of the model’s growth mechanism. Using a box-counting analysis, we find
that the emergent motile-matrix interface exhibits a fractal dimension that increases as
biofilms grow but eventually reaches a maximum as the thickness of the peripheral layer
of matrix exceeds the capacity of the inner cells to push matrix cells out of the way. We
find that the presence of the fractal interface correlates with a larger colony growth rate
and increases the local proximity of motile and matrix cells, which could promote
resource sharing. Our results show that simple computational models can account for
morphological features of active systems like bacterial colonies, where colony-level
phenotypes emerge from single cell-level properties and cells modifying their own
environment.
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Author summary

Like cells in our bodies, bacterial cells can differentiate into different cell types, which
perform different roles in colonies. During the growth of Bacillus subtilis colonies,
motile cells, which can swim, and matrix cells, which produce sticky polymers to adhere
cells together, form reproducible spatial patterns. Multiple factors could drive the
formation of these patterns, including inheritance of the motility and matrix states as
cells divide, and different mechanical interactions between different cell types as they
push each other around during growth. We created an agent-based computational
model, in which we represent bacterial cells as occupying squares within a grid. We find
that through inheritance of motile and matrix state and greater resistance to physical
pushing by matrix cells, our model produces patterns similar to those observed in
experiments—an exterior population of matrix cells surrounding an interior group of
motile cells with fractal arms that branch into the outer matrix layer. Our results show
that simple models can account for complex phenomena like the growth of
heterogeneous bacterial colonies.

Introduction 1

In stressful environments, bacteria differentiate into heterogeneous states [1] of 2

physiology [2] and gene expression [3]. For example, Bacillus subtilis bacteria generate 3

multiple cell types characterized by distinct gene expression states [4]. These states 4

include matrix producers, which synthesize extracellular polymers to bind cells together 5

into biofilms [5] and motile cells, which exhibit swimming and swarming behavior [6]. 6

As cells differentiate into these states, they change how they interact with each other 7

and the environment [7, 8]. The contents of surface-adhered biofilm colonies contain 8

cells in numerous phenotypic states [9, 10], leading microbiologists to make analogies 9

between the growth of biofilms and cell differentiation during development of 10

multicellular organisms [11–13]. 11

Bacterial biofilms are defined by the synthesis of extracellular matrix, which attaches 12

cells to surfaces and to each other [14]. In B. subtilis, the matrix-production and motile 13

states are regulated by a transcription factor network whose interactions cause the two 14

phenotypes to be mutually exclusive [6, 15] and heritable [16]. Within B. subtilis 15

biofilms, these phenotypic states form repeatable spatiotemporal patterns [10, 17]. 16

Despite the robustness of these patterns, their functional relevance remains unclear. To 17

explore the functional role of spatiotemporal patterns in bacterial colonies, we must 18

understand how they arise, and so it is essential to develop models that predict patterns 19

based on biological and physical factors that may create them. These factors include 20

phenotypic inheritance in dividing cells [1] and mechanical interactions among 21

bacteria [18]. 22

Agent-based models provide a framework to ask how colony-scale phenomena emerge 23

from the properties of individual bacterial cells. Such simulations have been used to 24

show how mechanical interactions lead to cellular re-ordering in dense colonies [19], how 25

cell shape affects the spatial partitioning of different species within microbial 26

communities [20], and how mechanical interactions and cell shape together lead to 27

fractal patterning in bacterial layers [21]. Furthermore, agent-based simulations have 28

been used to account for feedback of mechanical interactions on cell growth [22] and 29

interplay of mechanics with with other forms of interaction like quorum sensing [23]. 30

Nevertheless, the combined effects of mechanical interactions and heritable phenotypic 31

differences, including different degrees of motility, remain poorly understood. 32

Here, we present a simple, agent-based, computational model of motile-matrix 33

pattern formation in growing populations of B. subtilis and compare our results to 34
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experimental data. The model takes into account three key factors in the development 35

of motile-matrix patterning. First, cells are either motile or matrix, with daughter cells 36

perfectly inheriting their parent’s phenotype. Second, motile cells exposed to the edge 37

of the colony will “disperse” and swim away. Third, when a cell on the colony interior 38

divides, it must shove other cells out of the way to make space for the new cell. Matrix 39

cells resist shoving more strongly than motile cells. With these three rules, our model 40

lets a biofilm grow from an initial inoculum of cells. The model produces a biofilm with 41

an interior population of motile cells surrounded by matrix cells. The interface between 42

these two populations develops a fractal edge. We characterize the predicted pattern by 43

computing the fractal dimension of this interface and compare it to experimental data 44

from a B. subtilis biofilm grown in a microfluidic device [24]. Our model shows how 45

single cell-level properties, coupled with cells modifying the local environment, can lead 46

to population-level phenomena. 47

Results 48

Emergence of motile-matrix patterns in B. subtilis biofilms 49

To observe the formation of motile-matrix patterns, we grew B. subtilis biofilms in a 50

microfluidic device confined to a thickness of 1-3 cell layers (Fig. 1) [24]. We used a 51

strain with separate transcriptional fluorescent reporters for promoters of motility genes 52

and matrix production genes [10]. Two key observations emerged from this experiment. 53

First, upon initial cell loading, colonies did not exhibit distinguishable patterns of 54

motile or matrix cells. Second, after approximately 16 hours of growth, biofilms had 55

organized into a distinctive pattern, with a fractal-like population of motile cells 56

surrounded by matrix-producing cells (Fig. 1). 57

From our observations, two questions arose. 1) How, if at all, does the initial 58

arrangement of motile and matrix cells influence that pattern that arises during growth? 59

2) What mechanism leads to such a pattern? We sought to create a computational 60

model that could answer these questions. 61

An agent-based, mechanistic cell growth model 62

We model the dynamics of biofilm growth using sites on a square lattice (Fig. 2). For 63

computational simplicity, we restrict ourselves to parameters for which patterns freeze 64

when our simulated biofilms reach thousands of sites, whereas our experimental biofilms 65

typically grow to hundreds of thousands of cells. Therefore, each site can be thought of 66

as a coarse-grained packet of cells of the same phenotype (motile or matrix). 67

Furthermore, as described below, we assume no preferential direction for site growth 68

apart from steric hinderance due to existing sites (although we later check for the effects 69

of preferential growth direction). This assumption is also consistent with sites being 70

packets of cells, given that the packets are larger than the lengthscale over which cells 71

align due to their rod-like shape. We will later account for this coarse-graining when 72

comparing to the experimental data. From here on we use ‘sites’ and ‘cells’ 73

interchangeably, both referring to a lattice site within the grid. 74

We initiate the system by creating an inoculum of cells containing both phenotypes. 75

Each cell is given a growth time that acts as an internal clock, indicating when it is 76

time for the cell to divide (Fig. 2A). These growth times are randomly drawn from a 77

normal distribution centered at 1, with a standard deviation of 0.1. Thus time is 78

rescaled by the mean doubling time for a cell (or packet of cells). 79

At each step of the simulation, the cell with the minimum growth time is chosen (Fig. 80

2B). The chosen cell then goes through a process of determining if and how to divide 81
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100 μm

Motile (Phag-YFP) Matrix (PtapA-mCh)

Fig 1. Phenotypic Patterning in a Bacterial Biofilm. Fluorescence image of a
Bacillus subtilis biofilm grown in a microfluidic device. False color green is the signal
from a reporter on motility genes (Phag − Y FP ). Magenta is the signal from a matrix
production reporter (PtapA −mCherry).

and produce a daughter cell. If the cell is on the edge of the biofilm, it will choose from 82

the neighboring empty spaces with equal probability and grow into one of them, filling 83

the space with a daughter cell. Daughter cells inherit their mother’s phenotype with no 84

switching. The two new cells will then be assigned random growth times. 85

If instead the dividing cell is surrounded by other cells (Fig. 2C), then it must shove 86

those cells out of the way to create space for a new cell (Fig. 2D). The direction of 87

growth is chosen with an equal probability of being up, down, left, or right. We then 88

compute the total biomass between the chosen cell and the edge of the growing colony in 89

the chosen direction (Fig. 2D). We represent biomass with two random variables, α and 90

β, corresponding to motile and matrix cells respectively. These variables are normally 91

distributed with 〈β〉 > 〈α〉. Here we use α = 1 and β = 2, and a standard deviation of 92

0.1 for both distributions. Because matrix cells have greater biomass in our model, they 93

offer more resistance to pushing by growing cells. This choice reflects the fact that 94

matrix cells produce polymers that adhere them to the substrate and to each other. 95

We further assume there is a mechanical constraint on how much biomass a cell can 96

shove in order to create the space to produce a daughter cell: if too much biomass must 97

be moved to create room for a new cell, then a chosen cell will not grow, and will be 98

assigned a new growth time. We represent the mechanical constraint with a parameter 99

called the shoving capacity, Csh. If the bounding biomass is less than or equal to Csh, 100

then the stack of cells will be pushed out of the way, and a new daughter cell will be 101

created (Fig. 2E). The original growing cell and the new cell will then be given new 102

growth times (Fig. 2F) and the simulation will progress by choosing the cell with the 103

next minimum growth time. 104

Finally, if at any step of the simulation there is a motile cell at the edge of the 105

biofilm, it will disperse and be removed from the colony, which is a reasonable 106

assumption based on previous observation of passive escape of motile cells from the 107

edges of biofilms [25]. 108

Simulating biofilm growth from a small group of initial cells, our model produces 109

colonies with motile-matrix patterns qualitatively similar to those from experiments 110
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(Fig. 2G). We find shoving capacities within the range of Csh = 12− 18 produce fractal 111

structures most like those observed in experiments. With extreme values exhibiting 112

more circular like shapes. In our model, the interior pattern of motile cells eventually 113

becomes frozen in place after the width of exterior matrix cells exceeds the shoving 114

capacity. 115

Two key assumptions of our model reproduce salient aspects of the motile matrix 116

pattern: (1) dispersion of peripheral motile cells creates a motile interior surrounded by 117

a matrix exterior, and (2) differential resistance of the two phenotypes moves motile 118

cells during growth, creating branched arms. After observing similar patterns to those 119

in the experiment, we wanted to know how the initial arrangement cells influenced the 120

final pattern. 121
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G
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matrixmotile

Fig 2. Agent-Based Growth Model. (A-F) Growth and displacement mechanism.
(A) Growth times are drawn from a Gaussian distribution and are assigned to each site.
(B) The lattice site with the minimum growth time (outlined in red here) is selected and
given the opportunity to grow, where t01 is the initial growth time. (C) The direction of
growth is chosen randomly from four options. (D) If the cell is not on the edge, the
total biomass (BM) will be measured in the growth direction. The biomass of each cell
type is represented by α and β, which are Gaussian-distributed with different means
(〈β〉 > 〈α〉). (E) The biomass is pushed under the condition BM < Csh (F) New sites
are given growth times based on t01. (G) Resulting pattern once interior motile cells
become frozen because biomass exceeds shoving capacity.

Dependence of phenotypic patterns on initial conditions 122

To investigate how our model’s predictions depend on the initial arrangement of motile 123

and matrix cells, we carried out simulations with three different initial conditions (Fig. 124

3). In the first case, termed “bullseye,” a layer of matrix cells surrounds a group of 125

motile cells in the initial inoculum (Fig. 3A). In the second condition, “mixed,” the 126

initial colony consists of a mixture of motile and matrix cells, with each initially 127

occupied lattice site having equal probability of being either type (Fig. 3B). The third 128

condition, “concentric,” consists of alternating rings of each cell type with matrix cells 129

residing on the outermost ring. We show examples of our model’s simulated biofilm 130

growth from these three conditions in Fig. 3A, B, and C. 131

Each starting condition appears to create a different final pattern (Fig. 3A, B, and 132

C right). However, we observe that, in the final state for each condition, the regions of 133

the colonies that were populated only by the growth dynamics of the model, and not by 134

the initial cells, exhibit patterns that are qualitatively similar: branches of motile cells 135

that penetrate into an outer layer of matrix-producing cells. We highlight this in Fig. 136
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3D, E, F. When the initial group of cells is visually excluded, the ability to distinguish 137

which final pattern results from each distinct initial condition is lost. 138

We next sought to quantify the final patterns of motile and matrix cells generated 139

from each initial condition. We observed that every pattern simulated by our model 140

featured motile cells in the interior surrounded by matrix cells. To quantify these 141

patterns, we computed, for a given ring of cells, the motile cell proportion as a function 142

of the distance of the ring from the colony center. In Fig. 3G, we plot such curves for 143

bullseye, mixed, and concentric conditions. Each curve is an average of 300 simulations 144

run under the same conditions. Within each initial condition, we analyzed three 145

different initial colony radii. The initial proportion of motile cells was kept roughly 146

constant for each initial condition when the inoculation radius changed. All cases 147

feature patterns where the fraction of motile cells is high in the center and decays near 148

the edge. However, the curves differ in key ways. For different initial conditions, the 149

fraction of motile cells drops off at different distances from the colony center. The same 150

is true for the case of different initial radii within the same initial condition subset: 151

larger initial colonies exhibit a larger radius at which the motile proportion drastically 152

decreases (3G). 153

Motivated by our observation in Fig. 3D, E, F that biofilm regions that were 154

populated only by model growth looked the same, we thought that perhaps the curves 155

of Fig. 3G would collapse if the initial conditions were taken into account in the proper 156

way. When we normalized the proportion of motile cells throughout different radii by 157

the initial number of motile cells, we produced the curves in Fig. 3H. In this case, we 158

observe a collapse not only of all curves within an initial condition subset, but also of 159

curves representing all initial conditions. The point of collapse of Fig. 3H represents the 160

radius below which the initial condition has an effect. Beyond this point, all normalized 161

curves collapse, illustrating that our model simulates the distribution of motile cells 162

within biofilms during growth in a way that is insensitive to the initial cell arrangement. 163

This result suggests that the growth dynamics of our model produce patterns of motile 164

and matrix cells that are robust to changes in the initial cell arrangement. 165

Fractal interface formation between cell types 166

In both experimental images and model output, the interface between matrix cells and 167

motile cells appeared to have a fractal character (Fig. 1, Fig. 2G). For this reason, we 168

chose to quantify the patterns predicted by our model with fractal dimension (Fig. 169

4A,B). At each time point for model biofilms, we found the outline of the motile-matrix 170

interface and computed its fractal dimension using box-counting [26]. In this technique, 171

the number of pixels containing a part of the interface is counted. Space is then divided 172

into larger and larger boxes and, for each box size, the number of occupied boxes is 173

counted (Fig. 4A). The number of occupied boxes scales with some power of the box 174

size depending on the shape of the interface. That exponent is the fractal dimension. It 175

is 1 for a simple line, 2 for a two-dimensional plane, and between 1 and 2 for a rough 176

interface like that in our model. To extract the fractal dimension for the interface in our 177

model, we plotted the box size and the number of occupied boxes on a log-log plot and 178

fit a regression line. The negative slope of the regression line is the fractal dimension, D 179

(Fig. 4B). 180

For simulated biofilms initialized with a bullseye pattern, the fractal dimension 181

starts out near 1 as the motile-matrix interface is smooth for this condition. Once we 182

begin simulating growth with the model, cells shove each other out of the way as they 183

grow, roughening the interface, and increasing the fractal dimension. However, once the 184

outer matrix layer thickness exceeds the shoving capacity, the motile-matrix interface 185

freezes into place and the fractal dimension saturates (Fig. S1). Because increasing the 186

shoving capacity increases the time during which cells can grow and push each other 187
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Fig 3. Dependence of Patterns on Initial Conditions. The evolution of the
system from three different initial conditions: (A) bullseye, (B) mixed, and (C)
concentric. (D-F) Visual isolation of region of the biofilm unaffected by the initial
condition. (G) Proportion of motile cells within a ring at a particular distance from the
center of the final pattern, as a function of the distance. Each line within an initial
condition subset represents a different initial radius value ranging from R0 = 4 to
R0 = 8 (larger initial radii correspond to falloffs farther from the center). (H) When the
proportion of motile cells is divided by the initial number of motile cells, a collapse is
observed beyond a distance from the center corresponding to the initial condition.

May 11, 2022 7/15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491419


around, we hypothesized that the saturating fractal dimension would increase with 188

shoving capacity. After simulating biofilm growth for a range of shoving capacities, we 189

found that saturating fractal dimension does indeed increase with shoving capacity (Fig. 190

4C). The behavior of the fractal dimension in Fig. 4C is robust to changes in cell 191

growth decisions, for example whether the direction of cell growth is random or 192

preferential to the previous growth direction chosen by the parent cell (Fig. S2). 193

We wanted to know how the fractal dimension of experimental biofilms compared to 194

that of the model. To determine the experimental fractal dimension, we thresholded 195

biofilm images, found the outline of the interior motile population, and performed 196

box-counting. To account for the fact that a lattice site corresponds to a coarse-grained 197

packet of cells, we down-sampled our experimental images to make them the same 198

resolution as the model (Fig. 4D). We found that the experimental fractal dimension 199

was 1.26 ± 0.03 (N = 4), which is consistent with the range predicted by the model 200

(Fig. 4D). 201
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Fig 4. Fractal Dimension of Phenotype Interface. Fractal dimension is found
using the box counting method: (A) Grids of different box sizes are fit to the internal
motile sub-population to produce a graph like (B). The negative of the slope is the
fractal dimension. (C) The fractal dimension at saturation increases with the shoving
capacity. (D) Fractal dimension analysis of experimental biofilms. Fractal dimension
corresponds to shaded region in C.
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Potential biological implications of a fractal interface 202

Our model gives us the opportunity to ask how specific motile-matrix patterns may 203

impart function to biofilms. We hypothesized that formation of a fractal interface may 204

allow colonies to expand faster and to maximize the physical contact between motile 205

and matrix cells. The latter factor may be important if the two cell types share a public 206

good such as matrix polymers. 207

To investigate the question of colony expansion rate, we simulated the growth of 208

biofilms with a range of shoving capacities Csh, and therefore a range of resulting 209

fractal dimensions (Fig. 4C). For each value of Csh, we computed the average colony 210

radius at each time point and extracted the mean expansion rate (Fig. 5A). We found 211

that expansion rate increased with saturating fractal dimension, suggesting that colonies 212

expand faster into new areas if they form rougher interfaces. 213

To investigate the question of how fractal dimension impacts the average distance 214

between matrix cells and their nearest motile cells, we simulated growth under 215

conditions that lead to two different fractal dimensions. We then computed the distance 216

to the nearest motile cell for every matrix cell after the simulated colony reached a 217

saturating fractal dimension. We plot a histogram of these distances in Fig. 5B. For a 218

biofilm with a smooth motile-matrix interface (Csh = 0 and D = 1.068), we observe a 219

broad range of nearest-motile-neighbor distances, with a large portion of the matrix 220

population being more than three sites away from a motile cell (gray). On the other 221

hand, for a biofilm with a fractal interface (Csh = 17 and D = 1.361), we find that a 222

large fraction of matrix cells lie within a few sites of its nearest motile neighbor (black). 223
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Discussion 224

We have presented a simple, agent-based model that accounts for multiple features of 225

patterns formed by motile and matrix cell phenotypes in B. subtilis colonies. 226

Specifically, the model addresses two key questions: 1) how do motile-matrix patterns 227

depend on initial conditions? 2) What mechanism leads to the experimentally observed 228
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pattern? On the first question, we find that in uncolonized regions of space, our model’s 229

dynamics create patterns of motile cells that are robust to the initial arrangement of 230

cells. This arises from the model spatially distributing cells not only through growth 231

and inheritance, but also by mechanical shoving during cell replication. For three 232

different starting arrangements, we found that the limiting pattern depended strongly 233

on the initial condition within the initial inoculum radius, but beyond that radius the 234

normalized density of motile cells collapsed for all three initial patterns. On the second 235

question, the model predicts the emergence of a fractal interface between the two cell 236

types within a biofilm with fractal dimension consistent with experimental observations. 237

Simulated colonies with higher fractal dimension exhibit faster expansion and closer 238

physical distance between motile and matrix cells, suggesting potential functional roles 239

for this pattern-formation process. The latter phenomenon may be advantageous for 240

sharing of public goods between the two cell types. 241

Our model greatly simplifies B. subtilis colony growth. Among other things, the 242

model does not take into account nutrient availability, phenotypic switching, cell shape, 243

or the fact that cells grow continuously and not in discrete time. However, despite these 244

simplifications, it makes predictions that are consistent with experimental data and 245

suggests a mechanical mechanism for the spatial distribution of phenotypes within 246

biofilms. Furthermore, our model establishes a starting point for more detailed 247

agent-based simulations that take into account other factors like active cell movement, 248

metabolism, or cell shape. 249

The agent-based model is sufficiently minimal that future studies may investigate its 250

relationship to continuum expansion models. The expansion of a less viscous fluid into a 251

more viscous one is known to lead to branching or fingering patterns [27–30] reminiscent 252

of the ones we observe here. Indeed, viscous fingering is thought to underlie aspects of 253

pattern formation in microbial systems [31,32]. It is an interesting open question 254

whether taking the continuum limit of our lattice update rules would recover a known 255

continuity equation from fluid mechanics, or a variant thereof. Such an extension has 256

the potential to generalize the mechanism we report here beyond the realm of microbial 257

communities, or beyond living systems entirely. 258

Our finding that the final pattern only depends on the initial conditions at low radii, 259

and beyond this the resulting pattern is mechanistically determined, is something that 260

we could not have found from the experiment. The reason is that there is significant 261

uncertainty in our ability to determine the differentiation state at early time points. 262

This is one advantage to mechanistic modeling: it allows one to validate experiments in 263

particular regimes, and in doing so, makes predictions for regimes not yet accessible. 264

Attempts to use agent-based or statistical physics models for living systems must 265

take into account an essential feature of cells and organisms: they not only sense their 266

environment, they also change it. This feedback can lead to remarkable phenomena that 267

collectives of cells can take advantage of. Our results capture this phenomenon in a 268

simple way. As biofilm cells grow, they create a mechanically constrained environment, 269

altering patterns of growth and leading to a wide variety of potential cell-type patterns. 270

Materials and methods 271

Model 272

Determining the Fractal Dimension of Model Output 273

The fractal dimension is found using the box counting method. Within the model, first 274

the internal shape is recognized through a recursive shape fill method. From this, the 275

perimeter of this shape is isolated and the box counting method enforced. In order to 276

correctly identify the dimension of the shape, the grids of different box sizes are fit to 277

May 11, 2022 10/15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491419


the perimeter identified. This that, as the biofilm grows, the dimensions of the grids 278

utilized in analysis will change as well. At each time step, we produce a graph of ln(box 279

size) vs ln(occupied boxes). The negative slope of a regression line is taken as the 280

fractal dimension of the internal motile sub-population. The number of points within 281

this plot is reflective of the number of grids of different box sizes fit to the perimeter. 282

The algorithm attempts to maximize the number of points while limiting the overall 283

dimension of the grid used to cover the internal shape. When repeated over numerous 284

time steps as the biofilm grows and then averaging over hundreds of systems, we are 285

able to produce the results shown in Fig. 4. 286

Experiment 287

We grew biofilms in a microfluidic device as described in [24]. Biofilm growth media 288

consisted of liquid MSgg medium containing 5 mM potassium phosphate buffer (pH 289

7.0), 100 mM MOPS buffer (pH 7.0, adjusted using NaOH), 2 mM MgCl2, 700 µM 290

CaCl2, 5 µM MnCl2, 100 µM FeCl3, 1 µM ZnCl2, 2 µM thiamine HCl, 0.1 mM sodium 291

citrate, 0.5. % (v/v) glycerol and 0.4% (w/v) monosodium glutamate. Media were 292

made from stock solutions immediately before experiments, and the stock solution of 293

glutamate made fresh daily. We acquired images with a Fluoview FV3000 scanning 294

confocal microscope (Olympus Corp.) using a 10X, 0.3 NA air objective. We performed 295

experiments with a modified B. subtilis NCIB3610 strain with Venus yellow fluorescent 296

protein (YFP) fused to the hag promoter and mCherry fused to the tapA promoter. 297

Data Analysis 298

We analyzed images in Fiji [33]. In order to accurately compare our model to our 299

experimental data, we first needed to coarse-grain the experimental images–ensuring 300

that the experimental pixel size was comparable to the cell size of our model. To 301

achieve accurate scaling, we first cropped the time-lapse tiff stack for the YFP channel 302

so the saturated fractal filled the entire frame. At this point, select frames were 303

analyzed individually and were only chosen after a clear bimodal distribution arose in 304

the YFP channel–the brighter peak representing the high concentration of motile cells 305

inside the motile/matrix interface and the dimmer peak representing regions of the 306

biofilm containing mostly matrix cells. This step ensured that there was minimal bias in 307

thresholding, as images were thresholded simply by selecting the brighter peak of inner 308

motile cells. After filling the holes of the thresholded image, we could resize the entire 309

frame to 40 by 40 pixels, so it was comparable to the size of the saturated fractal in the 310

computer model. Next, we converted the threshold to binary and the fractal was 311

cropped to fit the entire frame–this ensures a more accurate measure of its fractal 312

dimension. We could finally outline the interface and use Fiji’s fractal box count tool, 313

selecting the same sized boxes used for the computer model’s fractal analysis, to identify 314

the fractal dimension of the experimental interface. 315
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Fig S1. Dynamics of Fractal Dimension. (A) The evolution of the fractal
dimension as the simulated biofilm grows (300 simulations averaged). Each line
represents biofilm growth under a different shoving capacity. (B) The peak and then
decline in fractal dimension is credited to the formation of motile islands. These are
motile cells that are not connected to the internal motile shape, but remain stuck inside
the matrix producing cells. The split in the two curves signalling the formation of these
islands coincides with the peak of the fractal dimension curve (Csh = 12 used).

Time (unitless)

1.05

1.1

1.15

1.2

1.25

1.3

Fr
ac

ta
l D

im
en

si
on

PGD   = 0    
PGD   = 0.25    
PGD   = 0.50   
PGD   = 0.75   

0 2 4 6 8 10 12

Fig S2. Effects of Preferential Growth Direction. Each line represents a
condition in which each cell has a certain probability of growing in the same direction
that it previously grew into. The probability for a lineage to continue to choose the
same growth direction does not effect how the fractal dimension of the internal motile
shape evolves.
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