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Abstract
Predicting the effect of protein mutation is crucial in many applications such as

protein design, protein evolution, and genetic disease analysis. Structurally, the

mutation is basically the replacement of the side chain of a particular residue.

Therefore, accurate side-chain modeling is useful in studying the effect of mutation.

Here, we propose a computational method, namely OPUS-Mut, which significantly

outperforms other backbone-dependent side-chain modeling methods including our

previous method OPUS-Rota4. We evaluate OPUS-Mut by four case studies on

Myoglobin, p53, HIV-1 protease, and T4 lysozyme. The results show that the

predicted structures of side chains of different mutants are consistent well with their

experimentally determined results. In addition, when the residues with significant

structural shifts upon the mutation are considered, it is found that the extent of the

predicted structural shift of these affected residues can be correlated reasonably well

with the functional changes of the mutant measured by experiments. OPUS-Mut can

also help one to identify the harmful and benign mutations, and thus may guide the

construction of a protein with relatively low sequence homology but with similar

structure.
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Main Text

Introduction
Protein amino-acid mutations play a key role in protein engineering and protein

evolution (1), which are also the root causes of many genetic diseases (2). Therefore,

it is crucial to predict the change of mutant properties against their original unmutated

counterparts (wild-type). In recent years, with the development of deep learning

techniques, many successful researches have been performed to predict the change of

different properties for mutation, such as thermodynamic stability (3, 4), enzyme

activity (5), and loss- or gain-of-function (6, 7). However, limitations still exist. For

example, for protein stability prediction, due to the sequence similarity between

proteins used in training and test datasets, the methods tend to overestimate the

prediction performance (8).

From a structural point of view, a mutation is basically the replacement of the

side chain of the corresponding residue. In this case, we study the effect of protein

mutation through side-chain modeling. By comparing the differences between the

predicted unmutated (wild-type) side chains and the predicted mutant side chains, we

can infer the extent of structural perturbation and the affected residues whose

predicted side chains are significantly shifted due to the mutation. To quantify the

extent of structural perturbation, we use the summation of the differences of all

predicted side-chain dihedral angles (from χ1 to χ4) over all residues between the

wild-type and mutant. In this paper, for the purpose of clarity, we name this

summation of differences over all residues as �����. It is assumed that larger �����

corresponds to more severely predicted structural perturbation, which means the

mutation is more likely to be harmful. From the affected residues, we can correlate

them with the functional changes. In protein engineering, for example, with the

possibility of inferring the affected residues for a particular mutation, we may

selectively avoid the type of mutations that could potentially impair the functions

related to certain residues.

There are some advantages in studying the effect of mutation through a general
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side-chain modeling method, in oppose to computational methods using the

experimentally obtained mutational-functional changes data. They are 1) it has no

system dependence and can be generalized to any target without requiring further

system-specific data for fine-tuning; 2) it focuses on the side-chain modeling ability

and is not limited by the shortage of the experimental data of mutant properties; 3) it

is straightforward to interpret since it is based on the predicted structural shift.

In recent years, many protein structure prediction methods have been proposed

(9-12). Among them, AlphaFold2 (11) is the best and, in some cases it delivers the

predictions close to the experimental results. However, AlphaFold2 may not be

suitable for the protein mutation task (13). Firstly, they are insensitive to the single

site mutation. In our study, we find that the predicted backbone for the wild-type

sequence and the sequence with single site mutation are usually identical, maybe

because they all depend on the results of multiple sequence alignment, which are

similar to each other when the query sequences are almost the same. In contrast,

OPUS-Mut adopts deep neural network to capture the local environment for each

residue, therefore, it is sensitive to the point mutation. Secondly, the structure

prediction methods, like that of AlphaFold2, usually deliver predictions carrying

stochastic noise. Sometimes, the structural difference between their predicted

structures is larger than the difference caused by the mutation. Therefore, it may be

difficult to distinguish whether the structural difference is caused by the mutation or is

merely the prediction noise. In this case, using the side-chain modeling results with a

fixed backbone (here, we use wild-type experimental backbone for both wild-type and

mutant cases) as a first order approximation is a rational trade-off for studying protein

point mutation from structural perspective.

For backbone-dependent side-chain modeling, many successful methods have

been developed. For sampling-based methods (14-17), they sample the rotamers from

the rotamer library, and use their scoring functions to determine the best rotamer for

each residue with the minimal score. However, this kind of methods is limited by the

discrete rotamers in the rotamer library and the accuracy of the scoring function.

Recently, some deep learning-based methods have been proposed (18, 19), which
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improve the accuracy of side-chain modeling by a large margin.

In this research, we propose a computational method, named OPUS-Mut, which

is mainly based on our previous work OPUS-Rota4 (19), but with some

improvements. In OPUS-Mut, we modify our loss function for the predicted dihedral

angles according to that in AlphaFold2 (11). To increase the sensitivity of OPUS-Mut

towards the point mutation, we add an additional neural network node to predict the

root-mean-square-deviation (RMSD) of the predicted side chain against its native

counterpart for each residue. Therefore, OPUS-Mut can evaluate the correctness of its

prediction at each site. In our study, OPUS-Mut outperforms OPUS-Rota4 and other

backbone-dependent side-chain modeling methods on three native backbone datasets.

The excellent side-chain modeling ability of OPUS-Mut is the foundation of this

research.

For further evaluation, four case studies (Myoglobin, p53, HIV-1 protease and T4

lysozyme) have been conducted, from either structural or functional perspectives.

From structural perspective, we adopt the mutants that have experimentally

determined structures, and focus on the accuracy of the predicted side chains

comparing to their experimental counterparts. From functional perspective, we focus

on the extent of structural perturbation and the affected residues whose predicted side

chains are significantly shifted due to the mutation, and the correlation between them

and the functional changes. The results show that OPUS-Mut can be used in the

following cases: 1) it can be used to infer the functional changes of the mutation from

structural perspective; 2) it can be used to infer the affected residues due to the

mutation, therefore avoid the unwanted effect on specific sites in the case of protein

engineering; 3) it can help us to identify the harmful and benign mutations. As one of

the applications, it may guide us to construct a relatively low-homology mutant

sequence but with similar structure, thus may be helpful in studying protein

engineering and protein evolution.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

Side-chain modeling performance of OPUS-Mut

We compare OPUS-Mut with two sampling-based methods SCWRL4 (16) and

OSCAR-star (17), and two deep-learning based methods DLPacker (18) and

OPUS-Rota4 (19), on three native backbone test sets CAMEO60, CASP14 and

CAMEO65. In terms of the percentage of correct prediction with a tolerance criterion

20° for all side-chain dihedral angles (from χ1 to χ4), OPUS-Mut outperforms other

methods either measured by all residues (Figure 1) or measured by core residues only

(SI appendix, Fig. S1). The percentage of correct prediction for each type of residue

on CAMEO65 is also listed in SI appendix, Table S1 (all residues) and SI appendix,

Table S2 (core residues).

[Figure 1]

Case study: Myoglobin

Myoglobin is an essential hemoprotein that regulates cellular oxygen

concentration in striated muscle. It can bind oxygen reversibly by its heme prosthetic

group (20).

From structural perspective

Previous study showed that the substitutions (V68A, V68I, V68L and V68F) at

the position 68 do not affect the secondary or tertiary structure of the protein

significantly, and the largest changes caused by these substitutions are the distortions

of the interior spaces (21). Meanwhile, the structure of these mutants (V68A (PDB:

1MLF), V68I (PDB: 1MLM), V68L (PDB: 1MLQ) and V68F (PDB: 1MLJ)) have

been determined by Quillin et al. (21). Therefore, examining the side-chain modeling

results for these four substitutions is an ideal way to verify the sensitivity of

OPUS-Mut towards the single-site mutation.

Following the research from Nienhaus et al. (22), we download the structure of
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the wild-type (PDB: 2MGK) sperm whale MbCO (23). Then, we replace the Val at

position 68 by Ala, Ile, Leu and Phe, and reconstruct their side chains with

OPUS-Mut, respectively.

As shown in Figure 2, the side-chain modeling results for each mutant are

consistent well with their X-ray crystallographic results (21). From the side-chain

prediction results of mutant V68F (Figure 2f), we can infer that the benzyl side chain

that partially fills the Xe4 cavity (region C in Figure 2a) may become a steric barrier

to the ligand association. This assumption has been confirmed through experimental

approaches (21, 22).

[Figure 2]

Case study: p53

The tumor suppressor p53 plays an important role in maintaining the genomic

integrity of the cell, and it is mutated in half of all human cancers (2). In the last few

decades, many researches have been done to study the different properties of its

mutations (24-31).

From structural perspective

Fersht group constructed T-p53C, a superstable quadruple mutant

(M133L/V203A/N239Y/N268D) of human p53 core domain (30) and determined its

structure (PDB: 1UOL) (29). Furthermore, based on T-p53C, the experimental

structure of a series of mutants were determined (27, 28), including R273C (PDB:

2J20), R273H (PDB: 2BIM), F270L (PDB: 2J1Z), V143A (PDB: 2J1W), Y220C

(PDB: 2J1X), R282W (PDB: 2J21), and triple mutant T123A/H168R/R249S (PDB:

2BIQ).

In this study, we download the T-p53C (PDB: 1UOL chain A). Then, we

substitute the residues according to the corresponding mutations mentioned above and

reconstruct their side chains with OPUS-Mut, respectively.

As shown in Figure 3 and SI appendix, Fig. S2, our side-chain modeling results
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for each mutant are very close to their experimental counterparts, especially for the

mutations inside the protein: R273C (Figure 3a), R273H (Figure 3b), F270L (Figure

3c) and V143A (Figure 3d). For the mutation on the loop area Y220C (SI appendix,

Fig. S2b), the prediction is also accurate and the biases are mainly caused by the

main-chain perturbation, which means the main chains of the loop area in the original

structure (PDB: 1UOL chain A) we used for side-chain modeling is not strictly

identical to that in the mutant structure (PDB: 2J1X). For R282W (SI appendix, Fig.

S2c), the side-chain predictions for its nearby residues that are close to the

deoxyribonucleic acid are less accurate than the others, because OPUS-Mut doesn’t

take the effect of deoxyribonucleic acid into account. The results for

T123A/H168R/R249S (SI appendix, Fig. S2d) indicate the good performance of

OPUS-Mut in modeling the side chains of multiple mutant.

[Figure 3]

From functional perspective

In this section, we focus on three Zn2+ region mutations (R175H, M237I and

C242S) and a DNA region mutation (R282W) (2). We download the p53-DNA

complex (PDB: 1TUP chain B) (32) and substitute the residues according to the

mutations mentioned above. Then, we reconstruct their side chains with OPUS-Mut

respectively. Note that, according to Bullock et al., Zinc-binding site consists of four

residues: C176, H179, C238 and C242 (2).

As shown in Figure 4, all the affected residues are shown and marked in green.

Apart from the affected residues, the side chains of other residues in the protein

remain relatively unshifted. Figure 4a-c show that the residues at Zinc-binding site

(C238 and C242 in Figure 4a, C242 in Figure 4b, and H179 in Figure 4c) are the

affected residues in each mutant, which indicate the Zn2+ region may be modified in

these three mutants.

For R282W (Figure 4d), R283 and H115 are its affected residues. According to

Rippin et al., R283 belongs to a DNA binding determinant (31). We assume that this

may be a clue for R282W’s binding affinity loss. The predicted side-chain
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conformation changes at H115 maybe a prediction bias since it’s far away from

W282.

[Figure 4]

Case study: HIV-1 Protease

HIV-1 protease is an important anti-AIDS drug target (33), and many studies

have been conducted to investigate its different properties (33-40).

From structural perspective

Ala et al. determined the structure of the mutant HIV-1 proteases (V82F, I84V)

complexed with cyclic urea inhibitors (35). Since the backbone structure of HIV-1

protease may be shifted along with different inhibitors. In this case study, instead of

using the wild-type backbone structure and replace the mutation residues at the

corresponding sites, we download the mutant backbone structure (PDB: 1MEU chain

A) directly and reconstruct its side chains.

As shown in Figure 5, for mutation residues F82 and V84, the side-chain

modeling results are very close to the experimental results. The predictions for their

nearby residues (< 5 Å) are also accurate, except the predictions for the surface

residues R8 and E21.

[Figure 5]

From functional perspective

The complete mutagenesis of HIV-1 protease has been performed by Loeb et al

(40). In that study, they measured 336 single missense mutations and their

corresponding phenotypes. The phenotypes were categorized into three groups based

on their ability to process the Pol precursor in E. coli: negative (no mature processed

products), intermediate (some mature processed products), and positive (processed

similarly to the wild-type). In this case study, we collect their results to form a HIV-1

protease mutagenesis dataset that contains 319 results (because some results are hard
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to distinguish from their paper, especially for upper-case I and lower-case l). The

dataset we collected contains 153 negative phenotype data, 66 intermediate phenotype

data, and 100 positive phenotype data (SI appendix, Table S3).

Following the research from Masso et al. (5), we download the structure of the

wild-type HIV-1 protease with 99 residues in length (PDB: 3PHV) (41). We predict

the side chains for all 99 × 19 = 1881 possible single site mutations. For each

mutation, we sum up the differences of all side-chain dihedral angles (from χ1 to χ4)

between the predicted wild-type side chains and the predicted mutant side chains, and

use it as an indicator for the extent of structural perturbation due to the mutation. Here,

beside the summation of differences over all residues �����, we use �����_�������� to

denotes the summation of differences on some critical residues (such as the residues

in active site).

In all 1881 possible single site mutations, only 319 of them have experimental

results (the data in the HIV-1 protease mutagenesis dataset), therefore, we use them to

do the statistical analysis. As shown in Figure 6a, the mean of ����� for the mutations

in negative (0), intermediate (1) and positive (2) phenotype group is 28.3, 23.0 and

21.7, respectively. The median of them is 27.0, 20.5 and 17.0, respectively. Both mean

and median of these three groups show that more severely predicted structural

perturbation corresponds to a higher probability of loss-of-function. Among 319

mutations, 7 out of the top 10 mutations with the highest ����� belong to the negative

phenotype group, 2 out of the top 10 mutations belong to the intermediate phenotype

group, and only 1 out of the top 10 mutations belongs to the positive phenotype

group.

According to Mager et al. (34), D25, T26 and G27 are the key residues involved

in the active site of HIV-1 protease. To find out the impact of each mutant on the

active site, we sum up the differences (�����_��������) on these three residues

exclusively (Figure 6b). The mean of them is 1.33, 0.68 and 0.47, respectively. The

median of them is 0.42, 0.21 and 0.18, respectively. Comparing to the three groups

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491420
http://creativecommons.org/licenses/by-nc-nd/4.0/


obtained by summing up the differences (�����) over all residues, the groups obtained

by summing up the differences (�����_��������) on three active site residues are more

distinguishable. Among 319 mutations, 7 out of the top 10 mutations with the highest

�����_�������� belong to the negative phenotype group, 2 out of the top 10 mutations

belong to the intermediate phenotype group, and only 1 out of the top 10 mutations

belong to the positive phenotype group.

[Figure 6]

In Table 1, we list the top 10 mutations with the highest �����_�������� on three

active site residues (D25, T26 and G27) in all 1881 possible single site mutations. The

mutations on residues 24-28 are ignored since they are too close to the active site.

Among these predicted top 10 mutations, V82I (39) and V82E (42) have been

confirmed that they can reduce the inhibitor affinity. In addition, V82, I84 and L90 are

the hot spots of the drug resistance mutation (43). Therefore, OPUS-Mut would be a

useful tool in finding the possible harmful mutations based on their influences on the

protein’s critical region.

[Table 1]

For each of 1881 possible single site mutations, we sum up the differences (�����)

of all side-chain dihedral angles between the predicted wild-type side chains and the

predicted mutant side chains over all residues (with the differences on three active site

residues multiplied by a factor of 10 in order to emphasize the significance of the

active site residues). Then, for each residue site, among its 19 possible mutations, we

keep the one with the lowest �����. Therefore, we get 99 sequences, each with a

single site mutation, that have the smallest structural perturbation. We sort 99

sequences according the value of their �����. For a desired mutation rate, for example,

10% in Type 1, Table 2, we combine the top 10 sequences with the lowest ����� to
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construct a sequence with 10% of mutation rate. For comparison, another type of

multiple mutation sequence is constructed reversely, by combining the sequences with

the highest ����� in the procedure mentioned above (Type 2, Table 2). We use

AlphaFold2 (11) without template to predict the structure for the sequences with 10%,

20%, 30%, 40%, and 50% of mutation rate. As shown in Table 2, by preferably using

the minimally disturbing mutations (with the lowest �����), the constructed multiple

mutation sequences (Type 1, Table 2) tend to cause smaller structural perturbation

than those (Type 2, Table 2) constructed by preferably using the maximally disturbing

mutations (with the highest �����). For example, the TM-score of the Type 1 sequence

with 50% of mutation rate is 0.85, which is still reasonably high (note the TM-score

of the wild-type structure prediction is 0.93). The details of the structure and sequence

of this multiple mutant are shown in SI appendix, Fig. S3.

[Table 2]

Case study: T4 lysozyme

T4 lysozyme is a monomeric protein which contains 164 residues that

hydrolyzes peptidoglycan (44). Many studies have been performed to investigate the

different properties of its mutations, especially by Matthews’s group (45-50).

In this case study, we download the structure of the wild-type T4 lysozyme (PDB:

2LZM) (45), and predict the side chains for all 164 × 19 = 3116 possible single site

mutations. According to the PDB file of 2LZM (45), E11 and D20 are the active site

residues, L32, F104, S117 and N132 are the binding site residues.

From functional perspective (protein stability)

Masso et al. (51) collected the experimental stability changes of 293 T4

lysozyme mutants at physiological pH from ProTherm (52). From the figure of the

mutational array in their paper (51), we identify 292 of them, in which 80 of them will
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increase the stability and 212 of them will decrease the stability (SI appendix, Table

S4).

As shown in SI appendix, Fig. S4a, the mean of ����� for the mutations in

decreased stability group and increased stability group is 13.2 and 10.0, respectively.

The median of them is 10.0 and 7.0, respectively. Among 292 mutations, 9 out of the

top 10 with the highest ����� belong to the decreased stability group. The results are

consistent with our assumption that more severely predicted structural perturbation

corresponds to a higher probability of stability decrease.

We also sum up the differences (�����_��������) of all side-chain dihedral angles

between the predicted wild-type side chains and the predicted mutant side chains on

the binding site residues (L32, F104, S117 and N132) of T4 lysozyme exclusively (SI

appendix, Fig. S4b). The mean of them is 26.6 and 14.0, respectively. The median of

them is 3.1 and 1.7, respectively. Among 292 mutations, all of the top 10 with the

highest �����_�������� belong to the decreased stability group. The results also indicate

the importance of critical residues on distinguishing different type of mutations.

Same as the study on HIV-1 protease, for all 3116 possible single site mutations,

we sum up the differences (�����) of all side-chain dihedral angles between the

predicted wild-type side chains and the predicted mutant side chains on all residues,

with the differences on two active site residues and four binding site residues

multiplied by a factor of 10. Two types of sequences with 10%, 20%, 30%, 40%, and

50% of mutation rate are constructed: 1) the first type of multiple mutation sequences

is constructed by preferably using the minimally disturbing mutations (with the lowest

�����); 2) the second type of multiple mutation sequences is constructed by preferably

using the maximally disturbing mutations (with the highest �����). The results also

indicate that the combination of the minimally disturbing mutations may lead to a

multiple mutation sequence with smaller structural perturbation (SI appendix, Table

S5).
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From functional perspective (enzyme activity)

Masso et al. (5) collected the experimental enzyme activities of 2015 T4

lysozyme mutants obtained by Rennell et al. (53). Among them, 1552 mutants are

labeled as active, 263 mutants are labeled as inactive.

In all 3116 possible single site mutations, the top 10 mutations with the highest

�����_�������� on two active site residues (E11 and D20) are as following: 2 of them

have no experimental data, 7 of them belong to the inactive group in the experimental

enzyme activity data, and only one of them belongs to the active group. For further

illustration, in Table 3, we list the top 20 mutations under the following rules: firstly,

we exclude the mutations without experimental data; secondly, for a residue site with

many mutations existed, we show up to 3 mutations (such as the mutations in Q105 in

Table 3). The results show that 15 out of the top 20 mutations belong to the inactive

group.

[Table 3]
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Concluding Discussion
Modeling protein mutation is crucial for protein design, protein evolution, and

genetic disease analysis. The foundation for studying mutation is the ability to

accurately model the side-chain conformations. In this research, we study the effect of

protein mutation through the extent of predicted structural perturbation upon the

mutation, specifically, through the extent of shift of the predicted side chains. To this

end, we propose a computational method, namely OPUS-Mut. As shown in Figure 1,

SI appendix, Fig. S1, SI appendix, Table S1 and SI appendix, Table S2, OPUS-Mut

outperforms other backbone-dependent side-chain modeling methods including our

previous method OPUS-Rota4 (19), either measured by all residues or measured by

core residues exclusively. We evaluate the performance of OPUS-Mut on modeling

mutation side chains. As shown in Figure 2, Figure 3, Figure 5 and SI appendix, Fig.

S2, by comparing to experimental results, OPUS-Mut is capable of delivering

satisfactory results for mutations.

OPUS-Mut can be used to infer the functional changes of the mutation. As

exemplified in Figure 2f, from the side-chain prediction results of myoglobin mutant

V68F, we can infer that the benzyl side chain, which partially fills the Xe4 cavity,

may become a steric barrier to the ligand association. In addition, as shown in Figure

4, by comparing the differences of all side-chain dihedral angles (from χ1 to χ4)

between the predicted wild-type side chains and the predicted mutant side chains, we

find that the affected residues, whose predicted side chains are significantly shifted

due to the mutation, can correspond well with the functional changes of the mutant.

For example, the affected residues of the p53 Zn2+ region mutations are located at the

Zinc-binding site (Figure 4a, Figure 4b, and Figure 4c), which indicate that the Zn2+

region may be affected in these mutants. In this case, OPUS-Mut can also be used to

infer the affected residues caused by the mutation, therefore avoid the unwanted effect

on specific sites in the case of protein engineering.

Although some mutations can lead to the perturbation of backbone, in our study,

the backbone is set to be fixed as a first order approximation. Therefore, there could
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be some bias in our computation. However, we assume that the extent of the predicted

side-chain shift can imply the interference of the corresponding mutation on the whole

structure. From this point of view, the smaller differences (�����) between the

wild-type side chains and the mutant side chains, the smaller functional perturbation

the mutation may cause. Therefore, using the side-chain modeling results with a fixed

backbone as a first order approximation is a rational trade-off for studying protein

point mutation.

OPUS-Mut can be used to identify the harmful (maximally disturbing) mutations.

For a particular mutation, we sum up the differences (�����) of all side-chain dihedral

angles (from χ1 to χ4) between the predicted wild-type side chains and the predicted

mutant side chains, and use it as an indicator for the extent of structural perturbation

due to the mutation. By comparing with the experimentally determined functional

changes data, the results show that larger structural perturbation corresponds to a

higher probability of loss-of-function (Figure 6) or stability decrease (SI appendix,

Fig. S4). Furthermore, as shown in Table 1 and Table 3, the harmful mutations are

most likely in the top rank of the mutations with the maximal predicted structural

perturbation.

OPUS-Mut can be used to identify the benign (minimally disturbing) mutations,

which may guide us to construct a relatively low-homology mutant sequence but with

similar structure. We screen all possible single site mutations for HIV-1 protease and

T4 lysozyme. Among them, by preferably using the minimally disturbing mutations

(with the lowest �����), the constructed multiple mutation sequence tends to cause

smaller structural perturbation with respect to wild-type structure, inferred from the

predicted backbone generated by AlphaFold2 (Table 2 and SI appendix, Table S5).

For example, the TM-score of the AlphaFold2 prediction for the HIV-protease mutant

(SI appendix, Fig. S3) with 50% of mutation rate is 0.85, which is still reasonably

high (the TM-score of the predicted wild-type structure is 0.93).

The 3D structure of protein determines its biological functions, therefore,

studying protein mutation from structural perspective is important. There are two
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major types of methods for studying protein mutation from structural perspective. The

first one is through protein structure prediction methods like AlphaFold2, which are

capable of delivering all-atom structure for a particular sequence with relatively high

accuracy based on multiple sequence alignment. However, their predictions are

insensitive to the single site mutation, maybe due to the fact that the results of

multiple sequence alignment are similar to each other when the difference between

the wild-type and mutation sequences are relatively small. The second one is through

backbone-dependent side-chain modeling methods, such as OPUS-Mut in this study.

OPUS-Mut models the side chains using a fixed backbone (here, we use wild-type

experimental backbone for both wild-type and mutation cases) as a first order

approximation, and studies the effect of protein mutation through extent of predicted

side-chain perturbation upon the mutation. OPUS-Mut adopts deep neural network to

capture the local environment for each residue. Both kinds of method have their pros

and cons, the former may be more suitable for mutations with larger mutation rate,

and the latter may be more suitable for mutations with smaller mutation rate, even for

single site mutation.
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Materials and methods

Framework of OPUS-Mut

OPUS-Mut is mainly based on our previous work OPUS-Rota4 (19), but with

some modifications. In calculation, only the protein residues are taken into

consideration, other ligands are omitted. The neural network architecture of

OPUS-Mut is shown in SI appendix, Fig. S5. In OPUS-Mut, we introduce the

auxiliary loss ���������� fromAlphaFold2 (11) to keep the predicted points close to

the unit circle. For a dihedral angle �, we output two predictions for sin (�) and

cos (�), respectively. The loss function is listed as following:

� = �������� + 0.02����������

�������� = sin � − sin � ����
2

+ ||cos � − cos � ����||2

���������� = ���( sin � 2+cos � 2 − 1)

In addition, we add an additional node to predict the root-mean-square-deviation

(RMSD) of the predicted side chain against its native counterpart for each residue.

The side-chain RMSD ranges from 0 to 1, and segmented into 20 bins. The

cross-entropy loss is used for the prediction.

OPUS-Mut is implemented in TensorFlow v2.4 (54) and trained on one NVIDIA

Tesla V100. The Glorot uniform initializer and the Adam optimizer (55) are adopted.

The initial learning rate is 1e-3 and it will be reduced by half when the accuracy of the

validation set is decreased. The training process will stop after being reduced by four

times. We train 5 models and the median of their outputs is used to make the final

prediction.

Datasets

In OPUS-Mut, the dataset used for training is the same as that in OPUS-Rota4

(19), which contains 10024 proteins in the training set and 983 proteins in the

validation set, culled from the PISCES server on February 2017 (56). Note that none

of the original structures and their related mutants mentioned in the four case studies
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of this paper are present in the dataset that is used to train the OPUS-Mut.

For evaluation, we use three native backbone test sets: CAMEO60, collected by

OPUS-Rota3 (14), contains 60 hard targets released between January 2020 and July

2020 from the CAMEO website (57); CASP14, collected by OPUS-X (9), contains 15

FM targets downloaded from the CASP website (http://predictioncenter.org);

CAMEO65, collected in this study, contains 65 hard targets released between May

2021 and October 2021 from the CAMEO website.

Performance Metrics

To measure the accuracy of side-chain modeling methods, we use the percentage

of correct prediction with a tolerance criterion 20° for all side-chain dihedral angles

(from χ1 to χ4). The residue with more than 20 residues, between which the Cβ-Cβ

distance (Cα for Gly) is within 10 Å, is defined as core residue.

Code Availability

The code and pre-trained models of OPUS-Mut as well as the datasets used in

the study can be downloaded from http://github.com/OPUS-MaLab/opus_mut. They

are freely available for academic usage only.
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Figures and Tables
Figure 1. The percentage of correct prediction with a tolerance criterion 20° for all side-chain dihedral
angles (from χ1 to χ4) of different methods measured by all residues.
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Figure 2. Side-chain modeling results of wild-type MbCO and its mutants. a) The local environment
around V68 in the wild-type MbCO crystal structure (PDB: 2MGK). The Xe4 pocket consists of region
B and C. b) The side-chain structures in the wild-type structure (PDB: 2MGK) and the side-chains
predicted by OPUS-Mut. c)-f) The crystal and predicted side-chain structures for each mutant: c) the
V68Amutant (PDB: 1MLF); d) the V68I mutant (PDB: 1MLM); e) the V68L mutant (PDB: 1MLQ);
and f) the V68F mutant (PDB: 1MLJ). The crystal side-chain structure at the mutation site is marked in
red, the crystal side-chain structures of the nearby residues are marked in blue, and the predicted side
chains are marked in yellow. The results indicate that the predicted mutant side chains (yellow) are
consistent with their crystal structures (red and blue). Note in the side-chain modeling calculation, the
heme group is not included. However, for the purpose of illustration, the heme group is shown in each
panel.
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Figure 3. Side-chain modeling results of T-p53C mutants. a) The R273C mutant (PDB: 2J20); b) the
R273H mutant (PDB: 2BIM); c) the F270L mutant (PDB: 2J1Z); and d) the V143Amutant (PDB:
2J1W). In all panels, the side chains from the crystal structures are marked in red for the mutation sites,
and in blue for neighboring residues within 5 Å from the mutation sites. The side chains predicted by
OPUS-Mut are marked in yellow.
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Figure 4. Side-chain modeling results of p53-DNA complex mutations. a) The R175H mutant; b) the
M237I mutant; c) the C242S mutant; and d) the R282W mutant. The mutation site is marked in red,
and all the affected residues are shown and marked in green. The affected residue refers to the residue
whose mean absolute error of all predicted side-chain dihedral angles between the wild-type and
mutant is greater than 5 degree. The predicted side chains of the wild-type (PDB: 1TUP) are marked in
green (red at the mutation site), and the predicted side chains of the mutants are marked in yellow.
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Figure 5. Side-chain modeling results of HIV-1 proteases complexed with cyclic urea inhibitors. The
side chains from the crystal structure (PDB: 1MEU) are marked in red for the mutation sites (V82F,
I84V), and in blue for neighboring residues within 5 Å from the mutation sites. The cyclic urea
inhibitor is shown in brown. The side chains predicted by OPUS-Mut are marked in yellow.
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Figure 6. The summation of differences of all side-chain dihedral angles (from χ1 to χ4), either
summed over all residues (�����) or summed over three active site residues (�����_��������), between the
predicted wild-type side chains and the predicted mutant side chains on HIV-1 protease mutagenesis
dataset. In the Box plot, “x” represents the mean of each group, the line inside the box represents the
median of each group. The data from three groups (negative (0), intermediate (1) and positive (2)
phenotype group) are shown. The mutations on the first and the last residues (P1 and F99) are ignored
because the side-chain modeling may have a bias on the end of the sequence. a) shows the differences
(�����) summed over all residues. To avoid the influence of outliers, if the difference between the two
residues is smaller than 1 degree, we set it to be 0; if it’s smaller than 5, we set it to be 1; if it’s smaller
than 10, we set it to be 2; if it’s smaller than 20, we set it to be 3; if it’s larger than 20, we set it to be 4.
b) shows the differences (�����_��������) summed over three active site residues (D25, T26 and G27).
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Table 1. The top 10 HIV-1 protease mutations with the highest �����_�������� on three active site
residues (D25, T26 and G27) in all 1881 possible single-site mutations.

Mutant �����_��������

P9Y 7.32
V82I 7.17
V82G 7.10
I84N 6.76
L90R 6.63
P9F 6.31
I84D 5.69
L90Y 5.68
A22M 5.22
V82E 5.01
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Table 2. The TM-score of each HIV-1 protease (with 99 residues in length) multiple mutation sequence
predicted by AlphaFold2. “Type 1” represents the TM-score of the sequences with 10%, 20%, 30%,
40%, and 50% of mutation rate, constructed by preferably using the minimally disturbing mutations
with the lowest �����. “Type 2” represents the TM-score of the multiple mutation sequences
constructed by preferably using the maximally disturbing mutations with the highest �����.

Wild-type 10% 20% 30% 40% 50%
Type 1 0.93 0.91 0.90 0.86 0.85 0.85
Type 2 - 0.83 0.82 0.82 0.62 0.50
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Table 3. The selected top 20 T4 lysozyme mutations with the highest �����_�������� on two active site
residues in all 3116 possible single site mutations. ‘Rank’ refers to the real rank before selection.
‘Activity’ refers to the experimental enzyme activity, ‘N’ denotes inactive, ‘P’ denotes active.

Rank Mutant �����_�������� Activity
2 T26Y 15.68 N
3 T142E 15.6 N
4 T26R 15.08 N
5 V149E 14.76 N
7 T26K 14.63 N
8 L7F 14.54 P
9 Q105F 13.99 N
10 Q105Y 13.62 N
12 Q105L 12.31 P
19 L7H 11.63 P
22 L7Y 10.26 P
26 T142Y 9.67 N
27 G30L 9.62 N
30 G30K 8.69 N
32 G30Q 8.17 N
34 L32F 7.51 P
37 T142K 7.38 N
38 F104E 7.35 N
39 F104Q 7.32 N
44 F104S 7.17 N
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