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 Abstract 
 Detecting somatic mutations is a cornerstone of cancer genomics and clinical genotyping; 
 however, there has been little systematic evaluation of the utility of RNA sequencing (RNA-seq) 
 for somatic variant detection and driver mutation analysis. Variants found in RNA-Seq are also 
 expressed, reducing the identification of passenger mutations and would not suffer from 
 annotation bias observed in whole-exome sequencing (WES). We developed RNA-VACAY, a 
 containerized pipeline that automates somatic variant calling from tumor RNA-seq data, alone, 
 and evaluated its performance on simulated data and 1,349 RNA-seq samples with matched 
 whole-genome sequencing (WGS). RNA-VACAY was able to detect at least 1 putative driver 
 gene in 15 out of 16 cancer types and identified known driver mutations in 5’ and 3’ UTRs. The 
 computational cost and time to generate and analyze RNA-seq data is lower than WGS or 
 WES, which decreases the resources necessary for somatic variant detection. This study 
 demonstrates the utility of RNA-seq to detect cancer drivers. 
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 Introduction 
 The detection of somatic variants through next generation sequencing (NGS) has enabled 
 researchers and clinicians to associate genetic mutations and disease phenotypes. The rapid 
 improvement and falling costs of these technologies have led to the discovery of a whole host of 
 crucial cancer-driving mutations and have opened new doors for targeted therapies in many 
 cancers. Discovering  EGFR  mutations in lung cancer  1  and  BRAF  mutations in melanoma  2  have 
 led directly to novel treatments  3,4  that have redefined  standard of care options for eligible cancer 
 patients. Continued advances in NGS technology, particularly whole exome sequencing (WES), 
 whole genome sequencing (WGS), and RNA sequencing (RNA-seq), have allowed researchers 
 to generate massive amounts of NGS data and better understand the genetic basis of cancer. 
 RNA-seq is commonly employed for gene expression and alternative splicing analyses, which 
 has given researchers an opportunity to uncover the transcriptional and post-transcriptional 
 phenotypes of cancer cells. 

 Existing variant callers are designed primarily to handle WES or WGS data and have 
 demonstrated the ability to detect novel somatic variants  5  .  Variant calling tools are built to 
 differentiate somatic mutations from inherited or  de novo  germline mutations, neutral 
 polymorphisms, and artifacts derived from misalignments, sequencing errors, or PCR errors  6–9  . 
 WES utilizes probes designed for exonic regions, which both introduces annotation biases  10  and 
 results in the omission of variants within UTRs. Variant detection using RNA-seq data includes 
 such regions of transcripts and therefore represents a more comprehensive search space for 
 variants. Variants found in these transcripts are known to be expressed and are more likely to 
 have a functional impact on the cell phenotype. UTRs are responsible for gene expression 
 regulation and while their connections to disease are still being understood, mutations in these 
 regions have been previously linked to cancer formation  11,12  .  Despite these advantages, the 
 transcriptome’s inherent complexity can prove to be technically challenging when detecting 
 variants. RNA-seq data often contain reads that span intronic regions or harbor variants in 
 genes with low expression, which pose problems for many of these current variant calling 
 tools  13  . The identification of somatic variants in  RNA-seq data has previously been achieved  14–16  , 
 but there has yet to be an integrated pipeline with its results validated by a matched 
 whole-genome variant list. 

 Here we present RNA-VACAY (  RNA-seq  Va  riant  Ca  lling  Pipeline), an integrated pipeline 
 for detecting somatic variants in RNA-seq data (  Fig.  1)  . We evaluated the performance of 
 several existing variant callers that can handle RNA-seq and determined that Platypus 
 performed the best in terms of speed and ability to find variants. We incorporated Platypus into 
 our RNA-VACAY somatic variant calling pipeline and compared the RNA-seq variants with a 
 consensus list of somatic variants detected in matched whole genome sequencing samples. 
 After extensive filtering of the raw candidate variants produced by Platypus, we demonstrate 
 that our pipeline can effectively use RNA-seq data to reliably generate somatic calls found in 
 whole exome and genome sequencing. Unlike other existing variant calling pipelines, it does not 
 require a matched normal RNA-Seq sample. Many RNA-seq datasets lack matched normal 
 samples because it requires biopsying adjacent tissue and is often difficult to obtain. 
 Additionally, we detected recurrent mutations in 5’ and 3’ untranslated regions that are typically 
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 not detected in WES. Our pipeline also identified potential somatic driver mutations that are 
 consistent with previous reports. RNA-VACAY is a fast and low-cost somatic variant calling 
 pipeline that demonstrates that cancer drivers can be discovered using tumor-only RNA-seq 
 data. 

 Results 
 To test the performance of existing variant callers, we first created a synthetic RNA-seq dataset, 
 using normal RNA-seq aligned reads from Pan-Cancer Analysis of Whole Genomes Consortium 
 (PCAWG) of the International Cancer Genome Consortium (ICGC). We spiked 300 somatic 
 SNVs into 20 of these samples, from diverse cancer types, to generate our synthetic RNA-seq 
 dataset. We then surveyed multiple open-source variant callers (  Extended Data Table 1  ) and 
 cataloged their relevant features. Platypus  17  , GATK  5  ,  VarDict  18  , and FreeBayes  19  were all 
 evaluated for their ability to detect variants in RNA-seq data. RNA-MuTect  16  , an existing 
 RNA-seq somatic variant caller, was not evaluated because it requires a matched normal 
 WES/WGS sample. FreeBayes was quickly eliminated as an option due to its massive 
 requirements for both time and computational resources (  Fig. 2a  ). Platypus, GATK, and VarDict 
 all have multithreading options, allowing the user to decrease the total time necessary to run 
 each tool when using a multicore system. Platypus had the best combination of recall and 
 positive predictive value (PPV) of these three tools when analyzing this dataset (  Fig. 2b  ). 
 VarDict had the highest recall, but also detected a large number of false positives. We further 
 curated a small subset of 20 samples with matched tumor and normal RNA-seq data from 8 
 tumor types within PCAWG to measure the performance of the tools with real world data. The 
 variants detected in the normal RNA-seq were used to identify germline calls and potential false 
 positives due to artifacts of sequencing and alignment. We compared RNA-seq-based variants 
 with the consensus WGS variant calls from the same samples to measure recall. As expected, 
 we saw higher recall at higher levels of expression and coverage across all tools (  Fig. 2c  ). 
 GATK had the highest recall in this analysis, which is likely due to GATK being a major 
 component of the PCAWG WGS variant calling pipeline. Platypus had the next best 
 performance after GATK and was again significantly faster and less resource intensive. As a 
 result, Platypus was chosen to be incorporated into a new pipeline to detect somatic mutations 
 in RNA-seq data. 

 Since PCAWG samples have both whole genome and RNA-seq data, we used this data 
 as an opportunity to benchmark the RNA variant callers by comparing variant calls from 
 RNA-seq data with known somatic variant calls from the whole genome sequencing data. We 
 first broadly examined the performance of Platypus, alone, for detecting variants in known 
 cancer-associated genes within a specific cancer type. We found that a large number of variants 
 reported by Platypus did not replicate the consensus variants found in the matched WGS data. 
 Starting with Platypus variants, we further filtered existing common variants found in dbSNP  20 

 and known RNA editing sites from REDIportal  21  . We  also generated a panel of normal variants 
 from samples from the Genotype-Tissue Expression  22  (GTEx) project as another baseline filter. 
 Further analysis of the candidate variants revealed significant amounts of alignment artifacts, 
 particularly around insertions and deletions and in specific regions of the genome. Gene 
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 ontology analysis was performed on potential false positive variants and a striking number were 
 found in immunoglobulin (Ig) and human leukocyte antigen (HLA) genes. Transcripts from these 
 genes often feature extreme levels of diversity, making accurate mapping to these regions 
 difficult for most tools  23,24  . Previous studies also  applied similar filters, such as removing variants 
 found at known RNA editing sites and near splice junctions  15  .  Other potential false positives 
 were found nearby homopolymer tracts and on reads with multiple variants in close proximity 
 (within 50bp). These events were deemed to be likely sequencing or alignment artifacts and 
 were removed from the candidate variant list. 

 The above filtering steps were incorporated into our final RNA-VACAY pipeline 
 (  Extended Data Fig. 1  ). We found that the majority  of variants reported by RNA-VACAY 
 matched those identified in their whole genome counterparts and significantly lowered the 
 number of potential false positives. For example, in lung squamous cell carcinoma (LUSC), we 
 detected 3,577,489 variants across the entire cohort using Platypus alone. Our pipeline 
 delivered 7,326 candidate variants; 4,319 candidate variants were found in the WGS data. 
 When we subsetted for only cancer-related genes in this cohort, we found 241 candidate 
 variants were found in both RNA-seq and WGS data. 177 variants found in the WGS data were 
 not detected by RNA-VACAY, showing a marked increase in recall. This finding was mirrored 
 across all tissue types in the study (  Extended Data  Fig. 2  ). We specifically looked at the 
 performance of the pipeline in two genes,  NOTCH1  and  NFE2L2  , that have been linked to 
 cancer formation in LUSC (  Fig. 3a  ). While the variants  reported by Platypus alone point to a 
 false hotspot mutation, RNA-VACAY largely replicated the WGS mutations found in  NOTCH1  . 
 The  NFE2L2  R34 hotspot mutation was detected with  RNA-VACAY with no false positives 
 across the rest of the gene. Of the missed variants, many resulted in truncations or stop codon 
 creation (  Extended Data Fig. 3  ), which in turn commonly  lead to degradation of the transcript 
 by nonsense-mediated decay  25  ; therefore, expression  of these variants is low and subsequently 
 were not detected by our pipeline. For example, truncating mutations in  TP53  reported in lung 
 adenocarcinoma (LUAD) WGS data were not identified by RNA-VACAY. Many driver genes are 
 often highly expressed  26  and therefore our pipeline  detects these high impact variants with 
 confidence. 

 Using this finalized pipeline, we detected 161,809 single nucleotide somatic variants in 
 all 1,349 RNA-seq samples from the PCAWG dataset  27  .  We surveyed several known 
 cancer-associated genes with published hotspot mutations  28  (  KRAS  G12  29  ,  BRAF  V600  2  , 
 PIK3CA  H1047  30  , etc.) in multiple cancer types to  assess the pipeline’s performance in all of the 
 cancer types analyzed by PCAWG. We measured all WGS variants found in these genes and 
 found that 78% of these variant calls were also detected by RNA-VACAY, demonstrating the 
 pipeline’s ability to detect these variants in cancer-related genes while analyzing only RNA-seq 
 data across different tumors (  Fig. 3b  ). RNA-VACAY  somatic mutation calls in  TP53  , the most 
 frequently mutated gene in this study, recapitulated the WGS mutational frequency profile and 
 demonstrated similar high mutational frequencies in liver cancer, colon adenocarcinoma, bone 
 cancer, and breast adenocarcinoma. Similarly, mutation frequencies and counts in  KRAS  ,  MYC  , 
 CREBBP  , and  SOCS1  were very similar in both RNA-seq  and WGS data. Both  KMT2D  and 
 ARID1A  surprisingly had a larger share of RNA-seq  only variants. After individual confirmation 
 with the WGS aligned reads, the variants were present in both datasets, suggesting that these 
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 particular WGS variants were removed during the consensus variant calling process in WGS 
 analysis. Many of these removed variants were flagged as having a strand bias; our pipeline 
 also identifies strand bias, but does not filter these variants due to the existence of stranded 
 RNA-Seq library preparation methods . 

 In order to assess our pipeline’s ability to detect cancer driver genes, we used 
 oncodriveFML  31  to compare the driver mutation profiles  of matched RNA-seq and WGS samples 
 in multiple cancer types. OncodriveFML predicts which genes harbor driver mutations using 
 functional impact scores derived from the Combined Annotation Dependent Depletion (CADD) 
 tool. The mean functional impact (FI) score of the mutations within a gene are compared with 
 the distribution of mean functional impact scores of randomly generated mutations. Genes with 
 significant differences in FI scores are likely to be driver genes. We used single nucleotide 
 variants in coding regions from the RNA-seq data across all tumor types to generate driver gene 
 profiles and compared these profiles to their matched WGS samples. The driver mutation profile 
 of RNA-seq variants called by Platypus alone initially resulted in a multitude of potential driver 
 genes, which can be attributed to the inclusion of germline or false positive variants (  Fig. 4a  ). 
 However, RNA-seq variants called from our RNA-VACAY pipeline are often consistent with their 
 WGS equivalents (  Fig. 4a,b and  Extended Data Fig.  4  ). Known driver genes were identified 
 such as  TP53  ,  KMT2D  ,  CDKN2A, and NFE2L2  in both LUSC  RNA-seq and WGS data. 
 NOTCH1  , another cancer-related gene, was also predicted  to be a driver gene using 
 RNA-VACAY variants, but not WGS. Similarly,  TP53  and  KDM6A  were reported to have driver 
 mutations in bladder adenocarcinoma RNA-seq and WGS data.  SPTAN1  and  KMT2D  were also 
 predicted to be driver genes from RNA-VACAY variants, but not WGS. The mutations in 
 NOTCH1  ,  SPTAN1  and  KMT2D  detected by RNA-VACAY were  also found in the WGS 
 consensus calls. However, additional synonymous mutations found in the WGS lower the mean 
 FI score of those genes. Interestingly, the mutations in  NOTCH1  and  TP53  not found in the 
 RNA-seq data are either synonymous or missense mutations, suggesting that the variants are 
 not expressed and may not be functional.  TP53  , the  gene with the most recurrent mutations, 
 was most commonly reported as being a driver gene in 13 cancer types using WGS variants. 
 RNA-VACAY delivered the same finding in 11 cancer types. In chronic lymphocytic leukemia 
 (CLLE) and renal cell carcinoma (RECA), there were significantly more driver gene candidates 
 found in the RNA-VACAY variants than the WGS variants (  Extended Data Fig. 4  ). Upon 
 inspection, there was a significantly higher number of variants found on the same reads and in 
 close proximity to one another, which may point to either a technical artifact introduced during 
 sample preparation or alignment. However, in cancer types with a high mutation frequency such 
 as skin cutaneous melanoma (SKCM), we saw less overlap between the RNA-seq and WGS 
 data; multiple genes from the  protocadherin alpha  gene cluster (  PCDHA6, PCDHA10, PCDHA7, 
 PCDHA1,  etc.) were reported as potential driver using  the WGS data (  Extended Data Fig. 5a  ). 
 These genes are lowly expressed in this cancer type, which could explain why RNA-VACAY was 
 unable to detect these variants (  Extended Data Fig.  5b  ). Overall, 16 cancer types reported one 
 or more driver genes using WGS variants and RNA-VACAY was able to detect at least 1 
 matching gene in 13 of them. RNA-VACAY described 1 or more potential driver genes in 15 of 
 16 cancer types that were also listed in the Cancer Gene Census, a curated database of 
 mutations implicated in cancer  32  . The driver gene  profiles generated from somatic variants 
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 detected by RNA-VACAY largely match the driver gene profiles generated from variants found in 
 the corresponding WGS data, demonstrating the ability to use RNA-seq alone to find driver 
 genes. 

 Previous PCAWG studies identified recurrent noncoding point mutations in multiple 
 genes as being strong candidate drivers  33  . As RNA-seq  captures both 5’ and 3’ untranslated 
 regions (UTRs), we decided to test RNA-VACAY’s ability to detect these same UTR mutations. 
 Somatic variants in the 5’ UTR of  MTG2  and 3’ UTR  of  TOB1  and  NFKBIZ  were detected by 
 RNA-VACAY (  Fig. 5  ). RNA-VACAY was unable to detect  5’ UTR mutations in  PTDSS1  and  DTL  , 
 as the vast majority of RNA-seq samples had virtually no aligned reads in the specified region of 
 those genes. This may be because somatic variants in this region can often downregulate or 
 upregulate the expression of these genes, particularly in a cancer context  34  . An alternative 
 explanation is that RNA-seq data can exhibit a 3’ end coverage bias due to the cDNA 
 amplification process, resulting in reduced 5’ UTR coverage. Provided there is satisfactory 
 coverage, RNA-VACAY is successfully able to detect recurrent UTR variants. 

 Discussion 
 WES and WGS continue to be the main sources of genomic data for identifying 
 cancer-associated somatic variants, but the function and cost of RNA-seq make it an 
 increasingly attractive option for characterizing tumors. In situations where no WES or WGS 
 data are available, existing RNA-seq data collected for differential gene expression or gene 
 fusion analysis can also be used for somatic variant detection. We applied RNA-VACAY to over 
 1,300 RNA-seq samples and were able to detect somatic variants with high recall. Across all 
 samples, the median recall was 0.25, but increases to 0.48 when looking specifically at 
 cancer-related genes (  Extended Data Fig. 2  ). Our study  demonstrates that RNA-seq data can 
 function both as a supplement and as a substitute for WES and WGS data when detecting 
 somatic variants. These variants were detected in actively expressed regions, so they are more 
 likely functionally relevant and significant. RNA-VACAY has demonstrated its ability to detect 
 somatic variants in RNA-seq that match the driver gene profiles of variants detected in WGS. 

 Using RNA-seq also allows for the discovery of somatic variants in the 5’ and 3’ UTR, 
 allowing for further discovery of the functional impact of these noncoding variants. While we 
 currently filter out previously identified RNA editing sites, future applications of our pipeline 
 could also be to measure the RNA editing profile of a transcriptome or detect novel RNA editing 
 sites. However, our pipeline is also limited by the biological underpinnings of RNA-seq. Variants 
 in lowly expressed genes or that decrease expression are difficult to detect. Genes with 
 tissue-specific expression can also make variant discovery challenging. 

 Our pipeline does not currently detect insertions and deletions. The preprocessing step 
 with Opossum has only been evaluated in the context of single nucleotide variant detection. 
 Platypus has been reported to detect indels in WES and WGS data, so extending the scope to 
 detect indels would be a natural goal for updated versions of this pipeline. A consensus strategy, 
 incorporating multiple variant callers into the pipeline, could also be used to increase both recall 
 and PPV. 

 Tumor-only sequencing can also misidentify germline variants as being somatic variants. 
 Our filtering approach utilizing multiple public variant and mutation databases is designed to 
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 minimize this scenario. Sequencing adjacent normal tissue can decrease the number of 
 inaccurately defined somatic variants. Our driver analyses of cancer cohorts also decrease the 
 chances of a rare germline mutation being identified as a significant somatic mutation. 

 RNA-VACAY is capable of harnessing existing RNA-seq data and provides a 
 cost-effective and reliable option for the validation of variants found through other methods 
 (  Extended Data Fig. 6  ). For example, for the size  of the PCAWG study of 1,349 samples we 
 estimate that the cost of detecting somatic mutations from RNA-seq of only tumor samples to be 
 $592,487, while the cost of WGS is estimated at $1,472,926  35,36  .  Using RNA-seq would also cut 
 the runtime from 68,326 hours to 16,275 hours. Next generation sequencing technologies 
 continue to enter into the clinic and have become the gold standard in the genetic diagnosis of 
 cancer and other genetic diseases. The importance of RNA-seq as a clinical diagnostic tool 
 requires robust and straightforward pipelines to automate analysis of this data. 

 Methods 
 Aligned reads processing 
 We used data from The Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium  37  of the 
 International Cancer Genome Consortium (ICGC). We downloaded 1,349 RNA-seq samples 
 from the PCAWG data portal  37  . This dataset features  30 cancer types. 161 of these samples 
 originate from normal solid tissue or tissue adjacent to the tumor. These reads were aligned with 
 STAR (v2.4.0i) and hs37d5 or Gencode (release 19) as the reference gene annotation. Matched 
 WGS data for these samples were used to evaluate pipeline performance. To generate a 
 synthetic dataset, 300 randomly selected somatic single-nucleotide variants (SNVs) were 
 manually added to aligned reads from 20 PCAWG normal tissue RNA-seq samples to simulate 
 tumor RNA-seq data. All variants were located in the coding regions of the genome and had 
 random allele frequencies. A test dataset of 8 donors with matched tumor and normal RNA-seq 
 from 8 tumor types were curated and used to evaluate the performance of the variant calling 
 tools. 

 Normal tissue samples were downloaded from the Genotype-Tissue Expression (GTEx) 
 project  22  portal and re-aligned with identical parameters.  Variants detected in these samples 
 were then used to generate a panel of normal variants. 20 samples from 11 different tissue 
 types were incorporated into this panel (  Supplementary  Table 1  ). 

 Pipeline description 
 The RNA-VACAY pipeline is a modular workflow built on Python 2.7 that automates task 
 assignment, downloading and preprocessing data, tool execution, and variant analysis. Each 
 task is completed within a Docker container. Source code can be found at: 
 https://github.com/BrooksLabUCSC/RNA-VaCay. 

 1.  Data retrieval 
 This pipeline is built to specifically handle RNA-seq reads aligned with STAR 
 (  Supplementary Note 1  ) currently stored in either  PCAWG or TCGA repositories. The 
 download module includes the recommended tools by each consortium. RNA-VACAY 
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 accepts file manifests generated by these data repository portals and automates 
 downloading. It can also accept user-generated file manifests to call variants in either 
 previously downloaded data or RNA-seq data generated by the user. 
 2.  Preprocessing data 
 Aligned reads are sorted and indexed by samtools  38  if necessary and then preprocessed 
 with Opossum (v0.2)  39  . Opossum prepares RNA-seq data  for variant calling by Platypus, 
 GATK, and other callers. It splits reads mapped across splice junctions and ensures that 
 minimal information is lost at read ends by merging overlapping reads and modifying 
 base qualities at the edges of these reads. Opossum also eliminates duplicate reads. 
 3.  Variant calling 
 Platypus is a Bayesian haplotype-based variant caller that uses local  de novo  assembly 
 and realigns sequences to detect variants. Platypus also shares variant information 
 between multiple samples, increasing the confidence of calls that are weakly supported 
 in one sample, but strongly supported in related samples. 
 4.  Filtering 
 Raw variant calls from Platypus are first filtered with a custom panel of normal variants 
 generated from RNA-seq samples from the GTEx repositories. Subsequent filters 
 incorporate a combination of preexisting common and normal variant databases - 
 dbSNP  20  , gnomAD  40  , and REDIportal (RNA editing sites)  21  .  Variants with low quality 
 scores or sequencing depth (<7) were filtered. Variants found in certain locations, such 
 as known decoy regions, and repeat regions were excluded. Variants found in human 
 leukocyte antigen genes, immunoglobulin genes, and pseudogenes were also excluded. 
 Variants found within 50 bases of other variants with similar allele frequencies or within 
 10 bases adjacent to homopolymer tracts of 5+ bases were also excluded. An optional 
 filter will prevent removal of variants found in known cancer hotspots, regardless of call 
 quality. Normal variants from matched normal RNA-seq samples, if available, can also 
 be incorporated as an optional filter. 
 5.  Annotation and analysis 
 Filtered variants were annotated with SnpEff (v4.3t)  41  .  SnpEff categorizes the variants 
 based on their genomic locations and predicts the coding effects of these variants. 
 These candidate variants were then analyzed using custom Python scripts. Driver 
 analysis was performed by oncodriveFML. OncodriveFML calculates a profile of somatic 
 mutations in specific genomic regions and identifies genes that have a higher mutational 
 frequency compared to their background mutation rate. All calls outside of the coding 
 region and any non-single nucleotide variants were filtered before running 
 oncodriveFML. 

 Initial variant caller evaluation 
 Four open-source variant callers previously reported to be compatible with RNA-seq data were 
 evaluated – Platypus (v0.8.1.1) , GATK (v4.1.9), VarDict (v1.5.5), and FreeBayes (v1.1). We ran 
 the tools using default recommended options and recommended preprocessing steps for 
 Platypus (Opossum  39  ) and GATK (SplitNCigarReads).  We measured the speed, recall, PPV, and 
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 resource requirements of the four variant callers processing 10 RNA-seq samples, comparing 
 the results between the 5 pairs of normal and tumor samples. 

 PCAWG RNA-seq data analysis 
 RNA-seq samples were downloaded as cohorts based on cancer type. RNA-VACAY was run on 
 multiple OpenStack instances in parallel. Custom python scripts were developed to handle and 
 aggregate results. 

 Single gene variant comparison 
 The variants in particular genes were visualized as stickplots with cBioPortal  42,43  . Known 
 cancer-related genes in specific cancer types were chosen and plotted using the 
 MutationMapper tool. Custom python scripts were written to analyze the overlap between the 
 RNA-VACAY and WGS variant sets. 

 Cancer type variant comparison 
 The RNA-VACAY and WGS mutational frequencies of the 25 most mutated cancer-related 
 genes were compared across each PCAWG tumor type using a custom python scripts 
 (https://github.com/BrooksLabUCSC/RNA-VaCay). 

 Driver mutation profiling 
 OncodriveFML (v2.2.0) was used to identify genes with potential driver mutations. We ran 
 oncodriveFML with default settings on filtered variants, using the whole-exome sequencing 
 option. 

 5’ and 3’ UTR mutation confirmation and visualization 
 Custom python scripts were written to uncover variants detected by RNA-VACAY that matched 
 previously published genes with recurrent 5’ and 3’ UTR mutations. We used Integrated 
 Genomics Viewer (v2.8.3)  44  to visually confirm the  variants. 

 Data availability 
 Data associated with this research will be submitted to the Genomic Data Commons (GDC) and 
 European Genome-Phenome Archive (EGA). A list of data files used for filters and analysis is 
 provided in  Supplementary Note 2  .  To access information  that could potentially identify 
 participants, such as the underlying sequencing data and sequencing variants at 
 https://dcc.icgc.org/PCAWG  , researchers will need  to apply to the TCGA data access committee 
 via dbGaP (  https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login  )  for access to the TCGA 
 portion of the dataset, and to the ICGC data access compliance office (http://icgc.org/daco) for 
 the ICGC portion of the dataset. 
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 Code availability 
 All code and software used in this study is available through GitHub 
 (https://github.com/BrooksLabUCSC/RNA-VaCay/). Commands associated with the pipeline are 
 also provided in  Supplementary Note 3  . 
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