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Abstract
Neuroscience faces a growing need for scalable data analysis methods that reduce the dimensionality of pop-
ulation recordings yet retain key aspects of the computation or behaviour. To extract interpretable latent
trajectories from neural data, it is critical to embrace the inherent topology of the features of interest: head
direction evolves on a ring or torus, 3D body rotations on the special orthogonal group, and navigation is
best described in the intrinsic coordinates of the environment. Accordingly, we recently proposed the mani-
fold Gaussian process latent variable model (mGPLVM) to simultaneously infer latent representations on non-
Euclidean manifolds and how neurons are tuned to these representations. �is probabilistic method generalizes
previous Euclidean models and allows principled selection between candidate latent topologies. While pow-
erful, mGPLVM makes two unjusti�ed approximations that limit its practical applicability to neural datasets.
First, consecutive latent states are assumed independent a priori, whereas behaviour is continuous in time. Sec-
ond, its Gaussian noise model is inappropriate for positive integer spike counts. Previous work in Euclidean
LVMs such as GPFA has shown signi�cant improvements in performance when modeling such features ap-
propriately (Jensen et al., 2021). Here, we extend mGPLVM by incorporating temporally continuous priors
over latent states and �exible count-based noise models. �is improves inference on synthetic data, avoiding
negative spike count predictions and discontinuous jumps in latent trajectories. On real data, we also mitigate
these pathologies while improving model �t compared to the original mGPLVM formulation. In summary,
our extended mGPLVM provides a widely applicable tool for inferring (non-)Euclidean neural representations
from large-scale, heterogeneous population recordings. We provide an e�cient implementation in python,
relying on recent advances in approximate inference to e.g. �t 10,000 time bins of recording for 100 neurons
in �ve minutes on a single GPU.

Manifold GPLVM

�e details of mGPLVM are described by Jensen
et al. (2020). Brie�y, neural activity is assumed to
arise from a set of latent states {g} on some poten-
tially non-Euclidean manifold M through a Gaus-
sian process observation model de�ned on the mani-
fold:

{g} ∼ pM({g}) (prior over latents) (1)
fi ∼ GP(0, kMi (·, ·)) (prior over tuning) (2)

yit|gt ∼ p(yit|fi(gt)) (noise model) (3)

�is model succesfully infers non-Euclidean latent
states and tuning curves from synthetic and exper-
imental data, and correctly identi�es the underly-
ing latent topology on manifolds ranging from rings
and tori to the group of 3D rotations. Jensen et al.
(2020) assume that the prior over latents (Equation 1)
factorizes over time, pM({gt}) =

∏
t p
M(gt), with

pM(g) being uniform onM. �is is an inappropriate
model for processes with known temporal dependen-
cies such as navigation or recurrent network dynam-
ics. However, extending the model to non-factorized
priors is challenging due to the non-Euclidean nature
of the latent space. Furthermore, the noise model in
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Equation 3 was previously assumed to be Gaussian,
which is inappropriate for e.g. count-based data such
as that arising from electrophysiological recordings.
Here, we extend mGPLVM to both include tempo-
rally continuous priors and �t count-based observa-
tions.

Continuous temporal priors
We start from the mGPLVM Evidence Lower Bound
(ELBO; Jensen et al., 2020):
L = H(Q)︸ ︷︷ ︸

entropy

+EQ[log p(Y |{g})]︸ ︷︷ ︸
likelihood

+EQ[log p({g})]︸ ︷︷ ︸
prior

,
(4)

whereQ is a variational distribution with parameters
θ, and Y ∈ RN×T is the recorded activity of N neu-
rons at T time steps. We encourage temporally con-
tinuous latent variable trajectories by introducing a
Markovian prior:

log pM({gt}) = log pM0 +
∑
t=1

log pM(gt|gt−1), (5)

where the latent state at time t depends on that at t−
1. Here, we propose a tractable density pM(gt|gt−1)
de�ned on Lie groups, which allows for Monte Carlo
estimation of the prior. In Euclidean space, we
can de�ne a random walk prior as pRn

(xt|xt−1) =
N (xt;xt−1 + µ,Σ), where µ and Σ are learnable
parameters. Generalizing this to non-Euclidean Lie
groups, we de�ne a reference distribution on the tan-
gent space, r(x) = N (x;µ,Σ), and project it onto
the manifold:

pM(gt|gt−1) =
∑
x∈Rn:

ExpG(x)=g−1
t−1◦gt

r(x)|J(x)|−1, (6)

where J(x) is the Jacobian of the exponential map
ExpG at x (Jensen et al., 2020; Falorsi et al., 2019), µ
models any systematic dri� onM, and Σ models the
degree of continuity.

Count-based observations
To generalize the observation model to �t count data,
we use a variational distribution q(u) = N (u|m,S)
to lower-bound the GP likelihood term in the ELBO
(Hensman et al., 2015):

log p(y|{g}) ≥ Eq(f)[log p(y|f)]− KL(q(u)|p(u|{g})),

where y is a single row ofY , f are the corresponding
function values of the GP, and

q(f) =

∫
u

p(f |u)q(u)du. (7)

Under a Poisson noise model with an exponential
link function commonly used for neural count data,
this lower bound can be evaluated analytically. For
more general noise models, we instead approximate
Eq(f)[log p(y|f)] using Gauss-Hermite quadrature,
which is applicable to any noise distribution with a
closed-form likelihood p(y|f) (Hensman et al., 2015;
Jensen et al., 2021). �is allows us to �t more gen-
eral count models and account for e.g under- or over-
dispersion in neural data with binomial or negative
binomial noise models (Keeley et al., 2020; Liu and
Lengyel, 2021).

Results

For synthetic data with a smooth latent trajectory on
a ring, mGPLVM recovers the true latents be�er with
a time-continuous than a discontinuous prior (Figure
A), and the learned parametersµ and Σ approximate
the distribution over consecutive displacements. �is
leads to lower uncertainty in the variational distribu-
tion and improved log marginal likelihoods (∆LL =
(0.10 ± 0.02) × NT ). For synthetic count data, the
Poisson noise model improves the inferred tuning
curves, capturing changes in uncertainty with pre-
ferred orientation and avoiding negative spike counts
(Figure B). Combining these features, we compare
models with temporally continuous or discontinuous
priors and Gaussian or Poisson noise models on count
data from a synthetic Poisson head direction circuit
with trajectories generated from a random walk on
the circle. We �nd that including both a continuous
prior and Poisson noise improves the ability to infer
ground truth latent states and reduces posterior un-
certainty (Figure C). Our method also generalizes to
higher dimensional non-Euclidean manifolds. We �t
mGPLVM with a toroidal latent and time-continuous
prior to count data from a 2D synthetic head direction
circuit and recover ground truth latent states and tun-
ing curves in a completely unsupervised manner (Fig-
ure D). Finally, we �t electrophysiological data from
the mouse anterodorsal thalamic nucleus (Peyrache
et al., 2015) using a circular latent. Neural �ring is
highly overdispersed for this data, and we �nd that
a negative binomial noise model with a continuous
prior outperforms a Poisson model and uncovers both
the measured head direction and appropriate tuning
curves (Figure E).

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.11.490308doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.490308
http://creativecommons.org/licenses/by/4.0/


(A) True and inferred latents for mGPLVM ��ed on a ring with time-discontinous (green) or -continuous
(blue) priors. (B) Tuning curves for synthetic count data ��ed with a Gaussian or Poisson noise model. (C;
top) Recovery of latent trajectories with temporally discontinuous (D) or continuous (C) priors and Gaussian
(G) or Poisson (P) noise models for synthetic head direction data (mean RMSE ± sem). (C; bottom) Example
latent posteriors. Black lines are the ground truth and blue vertical lines indicate the posterior mean ± std.
(D) Latent trajectory (le�) and example tuning curves (right) for mGPLVM with a temporally continuous prior
and Poisson noise ��ed to synthetic count data on a torus. (E) Mouse head direction and inferred latents with
a time-continuous prior and negative binomial noise model (le�), and four example tuning curves (right).
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