
 1 

A User-Friendly Guide to Using Distance Measures to Compare 1 

Time Series in Ecology 2 

 3 

Shawn Dove*1,2, Monika Böhm2,3, Robin Freeman2, Sean Jellesmark1,2, and David 4 

Murrell1 5 

 6 

1Centre for Biodiversity and Environment Research, University College London, 7 

Gower Street, London WC1E 6BT, UK. 8 

2Institute of Zoology, Zoological Society of London, Wellcome Building, Outer Cir, 9 

London NW8 7LS, UK. 10 

3Global Center for Species Survival, Indianapolis Zoo, 1200 West Washington Street, 11 

Indianapolis, IN 46222, USA 12 

 13 

*Corresponding author. Email: s.dove@ucl.ac.uk  14 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491333doi: bioRxiv preprint 

mailto:s.dove@ucl.ac.uk
https://doi.org/10.1101/2022.05.11.491333
http://creativecommons.org/licenses/by-nc/4.0/


 2 

Abstract 15 

1. Time series are a critical component of ecological analysis, used to track changes in 16 

biotic and abiotic variables. Information can be extracted from the properties of time 17 

series for tasks such as classification, clustering, prediction, and anomaly detection. 18 

These common tasks in ecological research rely on the notion of (dis-) similarity 19 

which can be determined by using distance measures. A plethora of distance 20 

measures have been described in the scientific literature, but many of them have not 21 

been introduced to ecologists. Furthermore, little is known about how to select 22 

appropriate distance measures and the properties they focus on for time-series 23 

related tasks.  24 

2. Here we describe 16 potentially desirable properties of distance measures, test 42 25 

distance measures for each property, and present an objective method to select 26 

appropriate distance measures for any task and ecological dataset. We then 27 

demonstrate our selection method by applying it to a set of real-world data on 28 

breeding bird populations in the UK. We also discuss ways to overcome some of the 29 

difficulties involved in using distance measures to compare time series.  30 

3. Our real-world population trends exhibit a common challenge for time series 31 

comparison: a high level of stochasticity. We demonstrate two different ways of 32 

overcoming this challenge, first by selecting distance measures with properties that 33 

make them well-suited to comparing noisy time series, and second by applying a 34 

smoothing algorithm before selecting appropriate distance measures. In both cases, 35 

the distance measures chosen through our selection method are not only fit-for-36 

purpose but are consistent in their rankings of the population trends.  37 

4. The results of our study should lead to an improved understanding of, and greater 38 

scope for, the use of distance measures for comparing time series within ecology, and 39 

allow for the answering of new ecological questions.  40 

 41 

Keywords 42 

dissimilarity measures, choosing distance measures, time series comparison, time 43 

series analysis, clustering, classification, similarity measures, distance measure 44 

selection  45 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491333doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491333
http://creativecommons.org/licenses/by-nc/4.0/


 3 

1. Introduction 46 

Time series are a critical component of ecological analysis: ecologists use time series 47 

to track changes in biotic variables, such as population sizes and mean growth rates 48 

of individuals, as well as abiotic variables, such as temperature and atmospheric 49 

carbon dioxide. Time series provide insight into food web and ecosystem function 50 

and the causes and effects of environmental change, and are vital to any scientific 51 

approach to environmental management (Boero et al., 2015). Time series datasets 52 

may contain thousands or even millions of time series (e.g., The Living Planet Index 53 

– WWF, 2020; BioTIME - Dornelas et al., 2018; the North American Breeding Bird 54 

Survey - Pardieck et al., 2019; the British Trust for Ornithology Breeding Bird Survey 55 

- Harris et al., 2020; and the Continuous Plankton Recorder Survey - Edwards et al., 56 

2012). Ecologists make inferences through time series comparisons. For example, 57 

one might look for similarities or differences in climate change response between 58 

populations within or across geographic or taxonomic groups. However, examining 59 

and analysing each time series by hand is unwieldy.  60 

Data mining of time series is the process of extracting information from the 61 

properties of time series for tasks such as classification, clustering, prediction, and 62 

anomaly detection (Esling and Agon, 2012). These tasks are common in ecology, e.g., 63 

clustering time series of parasite counts to identify infection patterns (Marques et al., 64 

2018); predicting the emergence of fruiting bodies by classifying time series of 65 

environmental drivers (Capinha, 2019); identifying insect species by classifying 66 

wingbeat frequency signals (Potamitis et al., 2015); surveying bird population sizes 67 

by classifying recorded calls (Priyadarshani et al., 2020); and predicting species 68 

distributions based on time series of environmental variables (Capinha et al., 2020). 69 

These tasks all rely on the notion of (dis-) similarity. Clustering involves grouping 70 

similar time series together by maximizing the similarity within groups and 71 

minimizing the similarity between groups (Liao, 2005; Esling and Agon, 2012; 72 

Aghabozorgi et al., 2015). Classification is like clustering, except labels are 73 

predefined and new time series are assigned to existing clusters to which they are 74 

most similar (Keogh and Kasetty, 2003; Esling and Agon, 2012). Prediction may rely 75 

on similarity to determine accuracy by comparing predicted time series against the 76 

originals (Capinha, 2019; Esling and Agon, 2012). Finally, anomaly detection 77 
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involves comparing time series against an anomaly-free model to determine if they 78 

fall outside of a similarity threshold (Teng, 2010; Esling and Agon, 2012).  79 

Similarity between time series can be determined by using distance measures to 80 

measure its inverse: dissimilarity. Dissimilarity is more intuitive as a measurement 81 

because a value of zero occurs when two time series are identical (while similarity is 82 

at a scale-dependent maximum value). Distance measures can be broadly categorized 83 

into four different types: shape-based, feature-based, model-based, and 84 

compression-based. Shape-based distances compare the shapes of time series by 85 

measuring differences in the raw data values (Aghabozorgi et al., 2015; Esling and 86 

Agon, 2012) and can be further divided into lock-step measures and elastic 87 

measures. Lock-step measures compare each time point of one time series to the 88 

corresponding time point of another time series, while elastic measures allow a single 89 

point to be matched with multiple points or no points (Wang et al., 2013). Elastic 90 

measures fall into two groups. The first, Dynamic Time Warping (DTW), computes 91 

an optimal match between two time series by allowing single points to be matched 92 

with multiple points, thus allowing local distortion or “warping” of the time 93 

dimension (Esling and Agon, 2012). The second comprises edit distances, which 94 

compare the minimum number of “edits”, or changes, required to transform one 95 

time series into another (Esling and Agon, 2012). They are based on the concept of 96 

transforming one string into another by changing one letter at a time, with each 97 

“edit” being an insertion, deletion, or substitution. Feature-based distances compute 98 

some feature of time series, such as Discrete Fourier Transforms or autocorrelation 99 

coefficients, and use either a specialized or common distance function (e.g., the 100 

Euclidean distance) to determine the distance between the computed features (Mori 101 

et al., 2016). Model-based distances compare the parameters of models fitted to the 102 

time series, such as autoregressive moving average (ARMA) models, with the 103 

advantage that they can incorporate knowledge about the process used to generate 104 

the time series data (Esling and Agon, 2012). Finally, compression-based distances 105 

assess the similarity of two digital objects according to how well they can be 106 

“compressed” when connected (Esling and Agon, 2012; Cilibrasi and Vitanyi, 2005); 107 

the more similar the objects, the better they compress when joined in series (Esling 108 

and Agon, 2012). Although there are comparatively few model-based and 109 

compression-based distance measures, there are many shape-based and feature-110 

based measures available.  111 
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 The choice of distance measure for any task should depend on the properties of the 112 

data to be analysed and the nature of the task (Esling and Agon, 2012). In practice, 113 

choosing a distance measure often becomes a matter of convenience. For example, 114 

the well-known and easy to use Euclidean distance is among the most widely used 115 

distance measures, although there are often better choices (Wang et al., 2012; 116 

Paparrizos et al., 2020). When investigating the performance of five distance 117 

measures for comparing animal movement trajectories, Cleasby et al. (2019) found 118 

that the most used measure was the least appropriate choice. One problem is that 119 

many distance measures originate within computer science, information science, 120 

systems science, and mathematics, and few are in common use within ecology. 121 

Another problem is that information on the strengths, weaknesses, and appropriate 122 

uses of distance measures is limited and often difficult to find. Some reviews of 123 

distance measures have been published (Liao, 2005; Lhermitte et al., 2011; Esling 124 

and Agon, 2012; Montero and Vilar, 2014; Mori et al., 2016), but are not generally 125 

aimed at ecologists (but see Lhermitte et al., 2011); analysis of the properties of 126 

distance measures is limited, and guidance of how to choose an appropriate distance 127 

measure is either missing or very general. Other studies have analysed the 128 

classification accuracy of multiple distance measures across a variety of datasets 129 

(Wang et al., 2013; Pree et al., 2014; Bagnall et al., 2017; Paparrizos et al., 2020), but 130 

pooled the results to give overall performance scores. This ignores the fact that 131 

different distance measures perform better on different datasets and for different 132 

tasks. Kocher and Savoy (2017) tested 24 distance measures for six properties, then 133 

compared their effectiveness in classification on 13 real-world datasets. However, the 134 

study focused on a single task (author profiling, i.e., determining demographic 135 

information about the author of a document based on the document itself) and did 136 

not present a general method for selecting distance measures for other tasks. 137 

Furthermore, the distance measures that demonstrated all proposed properties did 138 

not perform best on real-world datasets. Mori et al. (2015) developed an automated 139 

process for selecting distance measures based on nine quantifiable properties of 140 

datasets. However, their classifier is limited to clustering tasks, and only includes five 141 

common distance measures. We are not aware of any more generalized method of 142 

distance measure selection. 143 

In this study, we present a generalized, objective, user-driven method of choosing fit-144 

for-purpose distance measures for time-series comparison tasks (see Figs 5-6 and 145 
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Table 1). We evaluate 42 distance measures for 16 properties related to time series 146 

comparison. We then demonstrate our selection method by applying it to a set of 147 

real-world UK bird population trends from a study of the effectiveness of 148 

conservation measures (Jellesmark et al., 2021). Finally, we discuss how to select 149 

appropriate distance measure(s) for any dataset and task. 150 

2. Methods 151 

We selected 42 distance measures from the literature (see supplementary materials 152 

Table S1). We chose measures that had already been implemented in publicly 153 

accessible R packages, and that represented each of the categories we defined in the 154 

introduction, as well as a variety of potential use cases. Eighteen of the distance 155 

measures we selected are implemented in the R package ‘TSclust’ and have been 156 

studied for use in clustering time series (Montero and Vilar, 2014). The other twenty-157 

four are implemented in the R package ‘philentropy’ (Drost, 2018). 158 

We defined a set of 16 properties of distance measures that may be of interest in time 159 

series comparison: four metric properties, six value-based properties, five time-based 160 

properties, and one uncategorized property. Metric properties define whether 161 

dissimilarity is measured in metric space (a space that has real physical meaning). 162 

Distance measures that do not demonstrate all the metric properties (semi-metrics 163 

and non-metrics; McCune et al., 2002) are useful, but less intuitive (e.g., negative 164 

distances, or distances between identical objects may be non-zero). Value-based 165 

properties focus on dissimilarities on the y-axis (differences in values; Figs 1-2), 166 

while time-based properties focus on dissimilarities on the x-axis (differences in 167 

time; Fig. 1). 168 

2.1. Metric properties (adapted from McCune et al., 2002): 169 

M1. Zero distance. d(X, X) = 0. Identical time series should have a dissimilarity 170 

value of zero. 171 

M2. Symmetry. d(X, Y) = d(Y, X). The dissimilarity value should be the same 172 

regardless of the order in which time series are compared, X to Y or Y to X. A 173 

distance measure without symmetry might, for example, cluster a collection of 174 

time series differently depending on how the time series are ordered. 175 
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M3. Triangle inequality. d(X, Y) ≤ d(X, Z) + d(Y, Z).  Given three time series, the 176 

distance between any pair of them should never be larger than the sum of the 177 

distances between the other two pairs of time series. This property is related 178 

to Euclidean geometry (one side of a triangle cannot be longer than the other 179 

two combined). A distance measure that does not obey the triangle inequality 180 

is less intuitive to interpret. 181 

M4. Non-negativity. d(X, Y) ≥ 0. The dissimilarity value should never be less than 182 

zero.  183 

2.2. Value-based properties: 184 

V1. Translation invariance (also called amplitude shifting invariance or offset 185 

invariance; Fig. 1a). d(X + q, Y) = d(X, Y), where q is any real number 186 

(Batyrshin et al., 2016). If we increase the value of all observations of one time 187 

series by the same amount q, the dissimilarity value should not change. We 188 

can further define translation sensitivity, where the dissimilarity between X 189 

and Y increases relative to the value of q, and translation insensitivity, where 190 

the dissimilarity between X and Y increases by an amount that is independent 191 

of q. Translation sensitivity can be measured in relative terms, allowing 192 

comparison between distance measures.  193 

V2. Amplitude sensitivity (Fig. 1b). Translation sensitivity can be defined on a 194 

local scale (sensitivity to translation of a section of a time series) and in that 195 

case will be referred to as amplitude sensitivity. 196 

V3. White noise invariance (invariance against random noise; Fig. 1c). d(X + f(X), 197 

Y) ≈ d(X, Y), where f(X) is a function that adds a small pseudo-random value 198 

from a normal distribution with a mean of zero and standard deviation q to 199 

each observation of time series X (adapted from Lhermitte et al., 2011). 200 

Adding a random noise term to one time series from a pair should have an 201 

inconsequential effect on the dissimilarity value between them. A distance 202 

measure sensitive to white noise will show an increase in dissimilarity values 203 

relative to q, allowing us to obtain a relative measure of robustness against 204 

white noise. Robustness against white noise might be desirable, e.g., when 205 

comparing trends of stochastic processes, such as population growth.  206 
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V4. Biased noise invariance (invariance against non-random noise, i.e., noise in a 207 

single direction; Fig. 1d). d(X + g(X), Y) ≈ d(X, Y), where g(X) is a function 208 

that adds a small non-random value q to half of the observations (randomly 209 

chosen) of time series X (adapted from Lhermitte et al., 2011). Biased noise is 210 

different from random noise in that it is in a single direction and therefore 211 

more likely to be systematic or have important meaning.  212 

V5. Outlier invariance (Fig. 1e). d(X + h(X), Y) ≈ d(X, Y), where h(X) is a function 213 

that adds a large pseudo-random value q to a single randomly chosen 214 

observation of time series X. Outlier sensitivity is thus defined as the 215 

dissimilarity value increasing with q, and is a specific case of amplitude 216 

sensitivity limited to a single time point. Sensitivity to outliers is useful for 217 

detecting anomalies or disruptive events, but robustness may be preferred 218 

where outliers represent measurement errors or irrelevant anomalies. 219 

V6. Antiparallelism bias (see Fig. 2). Antiparallelism refers to line segments or 220 

trends which have slopes with the same value but opposite signs, while 221 

parallelism refers to those which have identical slopes in both value and sign. 222 

A distance measure with positive antiparallelism bias ignores the sign of the 223 

slope and treats antiparallel and parallel trend curves the same. A distance 224 

measure with negative antiparallelism bias treats trend curves with opposite 225 

signs as more dissimilar than those with identical signs. Distance measures 226 

with no antiparallelism bias (neutral) measure absolute differences on the y-227 

axis, without respect to slope or direction. Whether and which kind of 228 

antiparallelism bias is desirable depends on the application. For example, a 229 

negative antiparallelism bias might be desirable if one is more concerned with 230 

the direction of population trends than their slope. 231 

2.3. Time-based properties: 232 

T1. Phase invariance (Fig. 1f). d(Xi+p, Yi) = d(Xi, Yi) (adapted from Lhermitte et 233 

al., 2011). Phase invariance is the x-axis equivalent of translation invariance. 234 

If all observations of X are shifted horizontally by the same value p, it should 235 

not affect the dissimilarity value. Phase invariance may be a desirable 236 

property to detect similarities that occur separated in time. For example, when 237 

matching audio recordings of bird songs, it is likely that similar songs occur at 238 
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different time points in different recordings. Conversely, when comparing 239 

population trends of different species within a community or geographical 240 

area to see which ones responded similarly to a disruptive event occurring at 241 

time t, phase invariance is not a desirable property as responses should match 242 

in time. 243 

T2. Time scaling invariance (Fig. 1g). d(Xpi, Yi) = d(Xi, Yi) (adapted from Esling 244 

and Agon, 2012). If one time series is expanded or compressed along its time 245 

axis, the dissimilarity value should not change. This property is useful for 246 

certain applications, such as comparing animal behaviour patterns occurring 247 

at different speeds.  248 

T3. Warping invariance (Fig. 1h). Time scaling invariance can be defined locally, 249 

i.e., involving the expansion or compression of one or more sections of a time 250 

series, rather than the entire series (Batista et al., 2011). Warping invariance is 251 

particularly useful when matching similar time series which have plateaus or 252 

valleys of uneven lengths. 253 

T4. Frequency sensitivity (Fig. 1i). If time series Y is obtained by applying the 254 

same transformation j(t) to one or more observations t of time series X, such 255 

that d(X, Y) > d(X, X), then the dissimilarity value will depend on the number 256 

of observations to which the transformation j(t) is applied. In other words, if a 257 

distance measure is sensitive to frequency, increasing the number of 258 

differences between two time series should increase the dissimilarity value.  259 

T5. Duration sensitivity (Fig. 1j). If time series Y is obtained by applying the same 260 

transformation k(t) to one or more consecutive observations of time series X, 261 

such that d(X, Y) > d(X, X), then the dissimilarity value will depend on the 262 

number of consecutive observations to which the transformation k(t) is 263 

applied. This property is a special case of frequency sensitivity. Distance 264 

measures which are sensitive to duration must be sensitive to frequency, but 265 

the converse is not true.  266 

2.4. Other properties: 267 

N1. Non-positive value handling. Some distance measures will not return results if 268 

the data contains negative values or zeros. This has implications e.g., for tasks 269 
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such as classification, where it is common to first perform min-max 270 

normalization to rescale time series values to [-1,1]. 271 

 272 

Figure 1. Illustration of time series distortions used to demonstrate sensitivities or invariances of 273 

distance measures to: a) translation; b) amplitude; c) white noise; d) biased noise; e) outliers; f) 274 

phase; g) time scaling; h) warping; i) duration; and j) frequency. A dissimilarity value of zero (or 275 

equivalent, for any distance measure not demonstrating uniqueness) between any of the illustrated 276 

pairs of time series would indicate an invariance to that type of distortion. 277 
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 278 

Figure 2. Illustration of antiparallelism bias. Time series x and y are antiparallel (y has the same slope 279 

as x, but in the opposite direction), while z has a different slope than x, but in the same direction. The 280 

total difference in values between x and z is the same as that between x and y. Distance measures with 281 

positive antiparallelism bias rate time series x as more dissimilar to time series z than to time series y, 282 

while the opposite is true for those with negative antiparallelism bias. Distance measures with neutral 283 

antiparallelism bias rate the time series pairs as equally dissimilar. 284 

 285 

2.5. Metric properties tests: 286 

The metric properties of some distance measures are specified in the literature, but 287 

for others it is unclear. Therefore, we devised a set of tests for metric properties (see 288 

supplementary materials for details). We confirmed the robustness of our tests by 289 

comparing our results to the literature for distance measures with known metric 290 

properties. 291 

2.6. Time-based and value-based properties tests:  292 

We performed two types of testing for non-metric properties in this study. Controlled 293 

testing was performed on sets of short, simple time series to clearly demonstrate 294 

specific properties. However, the demonstrated properties may not translate as 295 

clearly onto real-world datasets, and the behaviour of distance measures may vary 296 

depending on the types of time series involved (see Lhermitte et al., 2011). Therefore, 297 

we employed uncontrolled testing by applying functions to real-world time series to 298 

induce differences, then comparing the altered time series to their unaltered 299 

counterparts. We applied the functions over a range of parameters, then plotted the 300 

resulting curves to show how responses of distance measures vary with magnitude. 301 

For full details, see supplementary materials. 302 
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 303 

2.7. Controlled testing: 304 

We created sets of short time series to demonstrate each property. We devised tests 305 

for all value-based and time-based properties (see supplementary materials for 306 

details) and applied the tests to all distance measures. For V1-V5, T4, and T5, we 307 

separated the resulting values into five bins, which we designated as “very low,” 308 

“low,” “medium,” “high,” or “very high.” For T1-T3, results were not binned. Distance 309 

measures were designated “sensitive” for a given property if the distance was directly 310 

dependent on the phase difference or degree of scaling or warping. For all 311 

sensitivities and invariances, distance measures were classified as “invariant” if they 312 

returned zero values for all time-series pairs, “insensitive” if the same non-zero value 313 

was returned for all time-series pairs, or “unpredictable” if distance values varied but 314 

did not show a clear relationship. All measures that were unable to handle unequal-315 

length time series were designated “n/a” for uniform time scaling invariance and 316 

warping invariance. 317 

Antiparallelism bias was tested by comparing pairs of time series that differed by the 318 

same relative amount in different directions. Distance measures were designated as 319 

“positive” bias if they gave a greater dissimilarity value to pairs of time series 320 

differing in opposite directions than to pairs differing in the same direction, 321 

“negative” bias if they gave a greater dissimilarity value to those differing in the same 322 

direction, or “neutral” if they assigned each pair of time series the same dissimilarity 323 

value. 324 

2.8. Uncontrolled testing: 325 

We created a function for each property to be tested, which applies a transformation 326 

to one or more time points of a real-world time series. Each function accepts a value 327 

q, the purpose of which varies depending on the function (see supplementary 328 

materials for details). For example, the translation function adds a real number q to 329 

every value of a time series. The transformed time series is returned as output and 330 

compared against its unaltered counterpart. We applied the functions to a range of q 331 

in increments, then graphed the results as response curves (see Figs S5-S8 in 332 

supplementary materials). We did not compare them against a reference or assign 333 
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sensitivity ratings, as they were intended only as a confirmatory check against the 334 

results of controlled testing. 335 

2.9. Selection process: 336 

We devised a selection process to guide researchers through determining the most 337 

appropriate distance measure(s) for their intended application. First, use the 338 

decision tree (Figs 5-6) to select a general category of distance measures. Next, use 339 

Table 1 to determine which pre-processing steps might be necessary to prepare the 340 

dataset and/or to further narrow the choice of distance measures. Finally, determine 341 

which properties will be most important to achieve the desired outcome and use Figs 342 

S1-S3 (see supplementary materials) to narrow the selection to the distance 343 

measures which exhibit these properties. We demonstrate the selection process on a 344 

real-world dataset. 345 

2.10. Example datasets: 346 

We used a dataset from a study of conservation impact of wet grassland reserves on 347 

breeding birds in the UK (Jellesmark et al., 2021). The dataset consists of 25 years of 348 

breeding pair count data for five wading bird species, from within and outside of 349 

reserves. The within-reserves data came from 47 RSPB lowland wet grassland 350 

reserves, while the counterfactual (outside of reserves) data was selected from the 351 

UK Breeding Bird Survey data. Data were matched to select sites that represent how 352 

reserve land would look in the absence of conservation measures. The reserve and 353 

counterfactual count data were aggregated into species trends, then converted to 354 

indices by dividing each annual species count total by the first-year species count 355 

total. Thus, each of the five bird species was represented with a reserve trend index 356 

and a matched counterfactual trend index. Jellesmark et al. (2021) compared each 357 

pair of indices to determine the effects of conservation efforts on each bird species, 358 

by calculating the percentage improvement of reserve indices over counterfactual 359 

indices and performing t-tests to determine significance and effect size of the 360 

difference. We ranked the results of Jellesmark et al. (2021) according to both 361 

percentage improvement and effect size. We then applied our selection method to 362 

select appropriate distance measures, ranked the dissimilarity results returned by 363 

each selected distance measure, and examined the rankings with respect to 364 
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Jellesmark et al. (2021). We also ranked the results returned by rejected distance 365 

measures as a reference (see supplementary materials). 366 

3. Results 367 

3.1. Metric test results: 368 

Fourteen out of 42 distance measures were identified as full metrics, meaning they 369 

passed the metric tests for uniqueness, symmetry, non-negativity, and the triangle 370 

inequality (see Fig. S1). Sixteen distance measures were identified as semi-metrics 371 

(failed the triangle inequality test but passed the other three tests) and 12 were 372 

identified as non-metrics (failed at least one of the tests for uniqueness, symmetry, or 373 

non-negativity; Fig. S1). However, in some cases results depended on settings or 374 

input values (some distance measures passed the triangle inequality and/or non-375 

negativity tests only when inputs were constrained to non-negative real numbers). 376 

All tested feature-based and model-based distances were full metrics, while all tested 377 

compression-based distances were non-metrics. Shape-based measures showed 378 

mixed results, even within families and groups. 379 

3.2. Sensitivity test results: 380 

Lock-step shaped-based measures varied in the strength of responses to the 381 

sensitivity tests, but none tested as unpredictable and only two (the Chebyshev 382 

distance and the Short Time Series, or STS, distance) showed any invariances or 383 

insensitivities. There were no clear differences between families of distance 384 

measures, with responses seeming to vary as much within families as between them. 385 

Elastic, feature-based and model-based distances showed greater variation in 386 

responses, with insensitivities, invariances, and unpredictability being common. The 387 

two compression-based distances we tested responded unpredictably to all controlled 388 

tests except translation and outliers; they responded unpredictably to all 389 

uncontrolled tests without exception. See supplementary materials for more detailed 390 

results. 391 

3.3. Time-based invariances and other test results: 392 

All distance measures except the Time Alignment Measurement (TAM) distance 393 

responded unpredictably to phase invariance testing. TAM was sensitive to phase 394 

changes, however the response curve in uncontrolled testing was not smooth, 395 
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suggesting some level of unpredictability. The Edit Distance with Real Penalty (ERP) 396 

distance was sensitive to uniform time scaling, while all other distances either 397 

responded unpredictably or were unable to be tested due to an inability to handle 398 

unequal-length time series. Warping sensitivity was more common, occurring in 399 

three elastic distance measures. DTW tested as invariant to warping and was thus the 400 

only distance measure we tested with any time-based invariances. Elastic measures 401 

were the only group of distance measures that showed any predictable time-based 402 

sensitivities or time-based invariances. 403 

Two distance measures in the Shannon’s entropy family were unable to deal with 404 

zeros, while the entire family was unable to deal with negative values. Three other 405 

lock-step shape-based measures also showed an inability to deal with negative 406 

values. Antiparallelism bias showed no obvious group-based patterns, but negative 407 

antiparallelism bias was most common and positive bias was least common. 408 

 409 

 410 

 411 

 412 
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 413 

Figure 3. Reserve and counterfactual trends for five wading bird species that breed on RSPB lowland 414 

wet grassland reserves in the UK. Left: Unsmoothed trends based on original data presented in 415 

Jellesmark et al. (2021). Right: LOESS smoothed trends with a span setting of 0.75. 416 

 417 

 418 

 419 

 420 
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3.4. Selection process: 421 

We began by examining our wading bird dataset in context of the decision trees in 422 

Figs 5-6. It consisted exclusively of short (25 data points), non-stationary time series. 423 

Following Fig. 5, we focused on shape-based distance measures, which compare raw 424 

data values. As the time series were of equal-length, in phase, using the same time 425 

scale, and without any missing data points, both lock-step and elastic measures 426 

would be appropriate (Fig. 6).  427 

Next, we worked through Table 1. As our wading bird trends were indexed to a 428 

starting value of one (Fig. 3), they had the same starting value and the same value 429 

scale. There were no negative values because the trends were indexed and based on 430 

wetland bird counts; nor were there any zeroes. However, we did notice that some of 431 

our time series were noisy (Fig. 3), which could obscure the trends. Noise is a 432 

common characteristic of population data, largely due to the stochasticity of 433 

population dynamics and the environmental variables they depend on (Vasseur and 434 

Yodzis, 2004). While this noise is often white (random, uncorrelated), biased ‘red’ 435 

noise (positively autocorrelated, tending toward a single direction) is also common, 436 

e.g., when environmental conditions are above or below average for an extended 437 

period (Vasseur and Yodzis, 2004; van de Pol et al., 2011). Biased noise is therefore 438 

more likely to represent a legitimate difference in trends. There are multiple ways to 439 

deal with noisy time series (Table 1). We first tried the properties-based solution 440 

(Table 1; see below for the pre-processing solution). Using Fig. S2, we filtered out all 441 

shape-based distance measures with a white noise sensitivity category of medium or 442 

higher (a sensitivity value of 0.7 or more). Next, we required biased noise to be at 443 

least two categories higher in sensitivity than white noise (Fig. S2; e.g., if white noise 444 

sensitivity was very low, biased noise sensitivity must be at least medium). Our 445 

choices here were based on practicality; sensitivity categories are arbitrary (we 446 

categorized them for convenience), so we wanted to avoid being too specific while 447 

ensuring that any chosen distance measure exhibited a non-trivial difference in 448 

sensitivity between white noise and biased noise.  449 

Finally, we considered the remaining properties in the context of our intended task 450 

and desired outcome. We deemed amplitude sensitivity to be important, as we were 451 

interested in the overall divergence between population indices within and outside 452 

reserves. Duration sensitivity was also important, as we would consider population 453 
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indices which diverge more steeply or for a longer period to be more different, i.e., 454 

that conservation measures had a stronger effect on these species. Therefore, both 455 

amplitude and duration sensitivity had to be at least low (a sensitivity value of 0.2 or 456 

higher; Fig. S2). Again, we could have chosen a different (higher) category, but we 457 

were more concerned with making sure the distance measures exhibited some 458 

sensitivity to these properties than the exact degree of sensitivity. We did not filter 459 

for antiparallelism bias, as the high stochasticity in some of our time series (Fig. 3) 460 

would dilute the signal too much for it to matter.  461 

This selection process left us with two distance measures: the K-Divergence (KDiv) 462 

and the Kullback-Leibler distance (Kullback), both of which returned the same 463 

rankings that Jellesmark et al. (2021) obtained using percent improvement (Fig. 4). 464 

Only one of the 40 unselected distance measures returned the same rankings. 465 

Results from unselected distance measures are in supplementary materials S10 and 466 

S15. 467 

Another way of dealing with noisy time series is by applying a smoothing algorithm 468 

(Table 1). We applied a LOESS smoothing algorithm (span = 0.75) to all time series 469 

in the dataset to remove the noise and reveal the trends (Fig. 3). We then re-ran the 470 

selection process using the same settings, except that we did not filter for noise 471 

sensitivity, and we added a filter for antiparallelism bias. Antiparallelism bias is not 472 

very important when dealing with highly stochastic time series because the signals 473 

for slope and direction are muddied by noise; however, smoothing introduces strong 474 

positive autocorrelation, making the slope and direction signals clear. We selected 475 

neutral for antiparallelism bias (Fig. S3) because we were more interested in relative 476 

differences in the population indices than the direction of change.  477 

We were left with seven distance measures: ERP, the Euclidean distance, the 478 

Manhattan distance, the Gower distance, the Lorentzian distance (Lorentz), the 479 

Average distance (AVG), and the Squared Euclidean distance (Sq. Euclid). All seven 480 

selected distance measures agreed on the following order: Redshank, Snipe, 481 

Lapwing, Curlew, Yellow Wagtail (Fig. 4). Four of the 35 unselected distance 482 

measures returned the same results. See supplementary materials S10 and S15 for 483 

complete results from unselected distance measures. 484 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491333doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491333
http://creativecommons.org/licenses/by-nc/4.0/


 19 

 485 

Figure 4. Comparative rankings of conservation impact on five wading bird species. Values on the y-486 

axis represent the distance between unsmoothed (top) or LOESS smoothed (bottom) reserve and 487 

counterfactual trends for each species. Results are from the distance measures chosen by our selection 488 

process, as well as the percent improvement and t-test methods (top) used by Jellesmark et al. (2021). 489 

 490 
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 491 

Figure 5. Decision tree to aid in choosing a distance measure category. 492 
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 493 

Figure 6. Decision tree to aid in choosing a sub-category of shape-based distance measures. 494 
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Table 1. Solutions to potential issues in the data. Note that choice of invariance or sensitivity as a 496 

solution should depend on whether the difference in question is important. 497 

Problem Pre-processing solution Properties-based solution 

Missing data points Interpolate missing values. 
Choose an elastic distance. They handle 
gaps through one-to-none or one-to-
many point matching. 

Different starting values 
but similar value scales 

Apply a translation shift. 
Choose a distance measure invariant (or 
sensitive) to translation. 

Different value scales Normalize or standardize data.  

Zeroes or negative 
values 

Transform data to obtain positive values. 
Choose a distance with non-positive 
value handling. 

Noise Apply a smoothing algorithm.  
Choose a distance measure robust (or 
sensitive) to the type of noise that is of 
concern. 

Out of phase  
Choose a phase invariant (or phase 
sensitive) distance measure. 

Unequal lengths Cut all time series to the same length. 
Choose an elastic, model-based or 
compression-based distance measure. 

Different time scales  
Choose a distance measure invariant (or 
sensitive) to uniform time scaling. 

 498 

4. Discussion  499 

The aim of this study was to provide enough information to make informed, objective 500 

decisions about which distance measures to use. We tested 42 distance measures for 501 

16 properties and presented an objective method of selecting distance measures for 502 

any task based on those properties. We demonstrated the viability of the method on a 503 

real-world dataset by selecting distance measures to rank differences between pairs 504 

of wading bird population trends (within and outside of reserves) and showing that 505 

the distance measures we selected were fit-for-purpose and consistent in their 506 

rankings. The method is user-directed; therefore, success depends on an 507 

understanding of the dataset, the task to be performed, and the hoped-for outcome.  508 

Time series length and stationarity inform what category of distance measures the 509 

user should focus on (Fig. 5). Shape-based distances are best for short time series 510 

with differences that are easy to visualize, while longer, stationary time series may be 511 

better suited to feature-based, model-based, or compression-based distance 512 

measures (Esling and Agon, 2012).  513 
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The results of our properties tests showed a variation in strength of sensitivity to 514 

different properties in different distance measures (Fig. S2), although most distance 515 

measures were highly sensitive to outliers (Fig. S2). Invariances were uncommon 516 

among the distance measures we tested (Fig. S2 and S3), although several distance 517 

measures did demonstrate invariance to translation (Fig. S2). Some distance 518 

measures, such as the Edit Distance for Real Sequences (EDR) and ERP, have 519 

settings that may affect their behaviour. In the case of ERP, settings can determine 520 

whether and how sensitive it is to missing values, while in the case of EDR, the 521 

threshold setting determines how far apart values must be to be considered different, 522 

and therefore serves to toggle responses to multiple properties between invariance 523 

and sensitivity. 524 

When dealing with time series of unequal length or missing data points, distance 525 

measures that allow unequal matching (e.g., matching multiple points to one point), 526 

such as DTW, or that allow gaps, such as ERP, may be the solution. Alternatively, 527 

pre-processing of data may remove such concerns. For example, missing data points 528 

can be filled in by interpolation, or longer time series can be cut to the same length as 529 

shorter ones (only attempt such solutions if they make sense for the data). 530 

Elastic measures, such as DTW, EDR, and ERP, are the most versatile distance 531 

measures, able to handle many common complications of datasets with little or no 532 

pre-processing. For general tasks, they are often a good option (see our decision tree: 533 

Figs 5-6). However, for tasks involving large datasets containing thousands of time 534 

series, some elastic measures may be impractical due to processing speed. Much of 535 

the research into speeding up time series comparisons for large datasets has focused 536 

on a select few distance measures, especially the Euclidean Distance and DTW. While 537 

the Euclidean Distance is faster, better known, and still widely used in some fields, 538 

an extensive body of research has shown DTW to be more accurate (Zhu et al., 2012; 539 

Dau et al., 2019; Paparrizos et al., 2020) and it is considered the de facto standard 540 

for accuracy in classification (note that it is still important to consider the properties 541 

of DTW in relation to the data, as it does not perform well in every case). Despite 542 

this, it is rarely used in ecology (Hegg and Kennedy, 2021). Note, however, that DTW 543 

is computationally expensive and therefore can be slow for large datasets (for 544 

discussion on ways to speed up DTW, see supplementary materials S11). 545 
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For many analyses involving distance measures, researchers may first want to 546 

normalize or standardize their data or translate it along the y-axis. This may be an 547 

important step if the time series use different scales or have different starting values. 548 

For example, when performing classification or clustering tasks, it is common to 549 

apply z-normalization to rescale time series to a mean of zero and standard deviation 550 

of one (Rakthanmanon et al., 2013). Min-max normalization to a scale of [0,1] or [-551 

1,1] is also common for datasets that are not normally distributed. Be aware, 552 

however, that these transformations may affect the subsequent choice of distance 553 

measures, as some cannot handle zeros or negative values and some metrics are non-554 

metric when there are negative values present (see Fig. S1).  555 

Although we ignored the metric properties of distance measures for our real-world 556 

example, they are very important for some tasks. For example, many algorithms for 557 

classification and clustering are designed to work only in metric space and may 558 

return unexpected results for non-metric distances (Weinshall et al., 1999). 559 

Noise is a common aspect of ecological time series, as environmental and population 560 

dynamics are stochastic. There are several potential ways to deal with noisy time 561 

series. Some distance measures, such as EDR, have threshold settings; any difference 562 

between time series that falls below the threshold will be ignored. If the noise is 563 

relatively uniform in amplitude, this may be a simple solution if the distance measure 564 

in question meets all other requirements. Other distance measures, such as KDiv, are 565 

relatively robust against white noise although lacking a sensitivity setting, and may 566 

be more appropriate if the noise is less uniform. A more drastic solution is to apply a 567 

smoothing algorithm as a pre-processing step, though this should be approached 568 

with caution. Smoothing will remove noise and outliers but may distort the time 569 

series in the process. Therefore, it is important to avoid over-smoothing. Smoothing 570 

time series that have sudden and/or drastic value changes may also be problematic, 571 

particularly if these changes are an important aspect of differentiation between time 572 

series. 573 

Our demonstration using data from Jellesmark et al. (2021) served to illustrate both 574 

the potential benefits and complications introduced by smoothing. When we filtered 575 

by noise sensitivity, we were left with two distance measures; both returned the same 576 

results as the percentage difference calculations by Jellesmark et al. (2021). When we 577 

ran the method after applying a smoothing algorithm, we were left with a larger 578 
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choice of seven distance measures.  Although the ordering differed slightly from 579 

Jellesmark et al. (2021), all seven distance measures agreed. The slight difference in 580 

ordering (Snipe vs Lapwing, ambiguous from visual inspection of the trends; Figs 3-581 

4) is unsurprising given that the smoothing algorithm removed all noise from the 582 

trends, while the distance measures we selected using noise filtering, although 583 

demonstrating very low sensitivity to white noise, were not invariant to it. Smoothing 584 

in this case gave us more distance measures to choose from, but with the added 585 

complication of not knowing whether we had improved or distorted our results. 586 

While in both cases (smoothed and unsmoothed trends) there were distance 587 

measures that gave the same rankings as Jellesmark et al. (2021) despite not 588 

matching our selection criteria (see supplementary materials S10), the distance 589 

measures we selected were all in agreement. Had we been less specific when 590 

choosing important properties, we would have risked including measures that were 591 

not fit-for-purpose. A single suitable distance measure is better than any number of 592 

ill-suited measures. 593 

5. Conclusion 594 

Distance measures are widely used in ecology, but the selection of distance measures 595 

described in the ecological literature is limited and their use is often poorly 596 

understood, leading to misuse. In the wider literature, there are hundreds of distance 597 

measures, with new ones frequently described. This study introduces a selection of 598 

42 distance measures for the purpose of ecological time series analysis and describes 599 

an objective method for choosing an appropriate distance measure for any task 600 

involving time series. This should lead to an improved understanding of, and greater 601 

scope for, the use of distance measures for comparing time series within the field of 602 

ecology. Nonetheless, it is up to the user to think their way through the process. 603 

There are hundreds of potential cases for using distance measures to compare time 604 

series in ecology, and as many potential issues that may arise in the process. Most of 605 

them are beyond the scope of this study. However, we hope that we have covered the 606 

basics and provided enough data and theory on distance measures and their 607 

properties to help select one that is appropriate for the task. There is not always a 608 

right choice of distance measure, but there are wrong ones, and our main goal is to 609 

help avoid those. 610 
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