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Abstract 44 

  Plant responses to environmental change are mediated via changes in cellular 45 

metabolomes. However, <5% of signals obtained from tandem liquid chromatography 46 

mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how 47 

different metabolite classes change under biotic/abiotic stress. To address this challenge, 48 

we performed untargeted LC-MS/MS of leaves, roots and other organs of Brachypodium 49 

distachyon, a model Poaceae species, under 17 different organ-condition combinations, 50 

including copper deficiency, heat stress, low phosphate and arbuscular mycorrhizal 51 

symbiosis (AMS). We used a combination of information theory-based metrics and 52 

machine learning-based identification of metabolite structural classes to assess 53 

metabolomic changes. Both leaf and root metabolomes were significantly affected by the 54 

growth medium. Leaf metabolomes were more diverse than root metabolomes, but the 55 

latter were more specialized and more responsive to environmental change. We also 56 

found that one week of copper deficiency shielded the root metabolome, but not the leaf 57 

metabolome, from perturbation due to heat stress. Using a recently published deep 58 

learning based method for metabolite class predictions, we analyzed the responsiveness 59 

of each metabolite class to environmental change, which revealed significant 60 

perturbations of various lipid classes and phenylpropanoids such as cinnamic acids and 61 

flavonoids. Co-accumulation analysis further identified condition-specific metabolic 62 

biomarkers. Finally, to make these results publicly accessible, we developed a novel 63 

visualization platform on the Bioanalytical Resource website, where significantly 64 

perturbed metabolic classes can be readily visualized. Overall, our study illustrates how 65 

emerging chemoinformatic methods can be applied to reveal novel insights into the 66 

dynamic plant metabolome and plant stress adaptation.  67 

 68 

 69 

Introduction 70 

 71 

The central dogma of molecular biology extends from genes to transcripts to 72 

proteins. These proteins, however, exert an effect on the phenotype eventually through 73 

altering metabolites. Agronomically important traits such as yield, nutritional quality, flavor 74 

characteristics and stress response are all controlled by underlying metabolic pathways. 75 

A revolution in sequencing over the past decade has provided unparalleled insights into 76 

the transcriptomic and epigenomic perturbations due to genotypic and environmental 77 

changes, yet the global metabolome largely remains a black box, primarily due to our 78 

inability to identify compounds from metabolomics data (Chaleckis et al., 2019; Salem et 79 

al., 2020). It is estimated that over a million compounds are produced across the plant 80 

kingdom (Afendi et al., 2012), with individual plants producing thousands of metabolites 81 

(Fernie, 2007). However, <5% of these signals can be annotated using spectral matching 82 

(da Silva and Dorrestein, 2015). Thus, patterns of global metabolomic changes still 83 

remain unknown despite the importance metabolites have to plant fitness and human 84 

society. 85 
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To assess metabolomic changes due to genetic variation, developmental 86 

progression and environmental changes, gas chromatography mass spectrometry (GC-87 

MS) and liquid chromatography mass spectrometry (LC-MS) remain the workhorse 88 

approaches, with LC-MS typically detecting a much broader set of the metabolome. 89 

Although diverse algorithmic innovations have aided in metabolome assessments 90 

(Brouard et al., 2016; Tsugawa et al., 2016; Schymanski et al., 2017; Dührkop et al., 91 

2019), LC-MS peaks are primarily annotated using MS/MS spectral matching with entries 92 

from public databases (Horai et al., 2010; Wang et al., 2016; Guijas et al., 2018). While 93 

correct predictions are indeed obtained in this manner, plant-derived compounds are 94 

underrepresented in public databases (Fukushima and Kusano, 2013; Shahaf et al., 95 

2016), which potentially produces false positives in the limited numbers of compounds 96 

identified. Partly due to this limitation, many LC-MS based studies are targeted or semi-97 

targeted, and end up analyzing a small but identifiable portion of the metabolome (Itkin et 98 

al., 2013; Okazaki et al., 2013; Bromke et al., 2015; Tohge et al., 2016; Šimura et al., 99 

2018). This strategy produces robust insights, but global shifts in the metabolome and 100 

their genetic drivers cannot be assessed via targeted studies. Identifying such patterns 101 

can provide novel insights into metabolic plasticity and plant responses to stress 102 

conditions, which are important for addressing challenges of agricultural productivity due 103 

to climate change, overpopulation and degrading soil quality.    104 

In recent years, two important resources have emerged for the analysis of global 105 

untargeted tandem LC-MS (LC-MS/MS) data. Firstly, the machine learning (ML) based 106 

tool CANOPUS (Dührkop et al., 2021) enables prediction of metabolite structural classes 107 

based on the MS/MS spectrum, providing novel insights into the metabolome 108 

composition. For example, even if specific compounds are not identified, recognizing that 109 

“flavonoids” increase in abundance under UV stress provides significant biological 110 

insights into the plant’s stress response. Secondly, independent of compound annotation, 111 

approaches adapted from information theory can inform about the gross and/or specific 112 

shifts in plant metabolomes (Li et al., 2020; Zu et al., 2020). In this study, we combine 113 

these two approaches to illuminate global changes in plant metabolomes under different 114 

conditions.  115 

Specifically, we assessed the metabolome of Brachypodium distachyon 116 

(Brachypodium) under different conditions (Fig. 1). Brachypodium is a model C3 grass 117 

species in the Poaceae family that shared a common ancestor with rice (Oryza sativa) 118 

~50 million years ago and Triticeae (wheat, barley) ~35 million years ago (Charles et al., 119 

2009). The short stature of Brachypodium and its fast growth cycle make the species a 120 

convenient model for understanding not only Poaceae biology but also for biofuel 121 

research (Brkljacic et al., 2011; Douché et al., 2013; Marriott et al., 2014; Le Bris et al., 122 

2019). The main goals of this study were to: (i) assess Brachypodium metabolome 123 

reconfigurations across different organs and a breadth of environmental conditions, (ii) 124 

identify the metabolite classes most perturbed by different stresses, (iii) discover 125 
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condition-specific metabolites that may serve as stress biomarkers, and (iv) establish a 126 

platform for visualization of the global metabolome changes. Towards these goals, we 127 

first performed LC-MS/MS from 17 different organ-condition combinations, including 128 

agriculturally relevant conditions such as copper deficiency, heat stress, low phosphate, 129 

and arbuscular mycorrhizal symbiosis. We used CANOPUS and information theory 130 

derived metrics to compare control vs. test metabolomes across different organs, and 131 

characterize additional metabolome changes through co-accumulation modules and 132 

biomarker detection. Finally, these changes were visualized using a novel representation 133 

on the Bio-Analytic Resource for Plant Biology (BAR) website. Overall, our findings 134 

provide new insights on the global and more specific metabolic perturbations in 135 

Brachypodium under different conditions.  136 

 137 

  138 
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Results 139 

 140 

Experimental design and pre-processing of metabolome data 141 

 Brachypodium plants were grown to different ages and under different growth 142 

conditions in order to produce significant metabolome perturbations. Roots, leaves 143 

(young and mature combined), and in some cases, culms and spikelets were sampled. 144 

Overall, 17 organ-condition combinations were sampled, with plants grown across three 145 

major regimens: Hydroponics (Hydro), Symbiosis (Sym), and Tissue (Tis) (Fig. 1, Supp. 146 

Fig. 1). Hydro treatments consisted of regular Cu (Control), Cu deficiency (NoCopper), 147 

heat stress (Heat), and heat stress under Cu deficiency (HeatNoCopper). The Symbiosis 148 

treatments consisted of plants grown with regular amounts of phosphate fertilization 149 

(Control), low phosphate treated plants inoculated with a solution of Rhizophagus 150 

irregularis spore growth medium (SporeW, not containing any spores i.e. mock treatment) 151 

and low phosphate treated plants inoculated with R. irregularis spores (Spore). The 152 

Tissue regimen involved growing plants in regular soil until maturity. The effectiveness of 153 

the copper deficiency treatment and presence of colonization were verified through semi-154 

quantitative RT-PCR of copper deficiency and fungal symbiosis marker genes, 155 

respectively (Supp. Fig 2). All samples were analyzed via LC-MS/MS in both positive and 156 

negative mode to obtain a comprehensive, quantitative snapshot of their metabolome.  157 

 After peak deconvolution and alignment, metabolite values were filtered using a 158 

sequence of steps (Supp. Figs. 3,4). To enable comparisons between different LC-MS 159 

runs, we first tested five different data normalization approaches (Supp. File 1) and 160 

selected Variance Stabilized Normalization (VSN) as the most appropriate based on 161 

performance as well as availability of the algorithm (Supp. Table 1; Supp. File 1). Data 162 

imputation was also performed to fill in values lost due to Orbitrap LC-MS detection limits. 163 

To ensure that either step does not alter the overall underlying data structure, we first 164 

determined the effect of performing imputation before vs. after normalization using a 165 

dummy dataset where actual peak areas were randomly replaced by zeros. The degree 166 

of error in normalization-imputation and imputation-normalization was quantified. Overall, 167 

both normalization orders had almost identical errors (Supp. Fig. 5). Thus, given 168 

precedence (Mock et al., 2018; Chong et al., 2019), we first imputed peak areas using k-169 

Nearest Neighbor and normalized the imputed areas using VSN for further downstream 170 

analyses.  171 

VSN maximized correlations among replicates while maintaining low correlations 172 

between different treatment groups (Supp. File 2). The above ground tissues were found 173 

to have more peaks as well as a higher total peak abundance than the roots (Supp. Fig 174 

6; Supp. File 3). The largest number of metabolite signals in both organs were observed 175 

in Sym samples, indicating that growth media also influenced the Brachypodium 176 

metabolome. The high numbers of peaks seen in the Sym Spore root samples may 177 

include metabolites of fungal origin. Correlations between leaf vs. root, and between 178 

control vs. treatment, were respectively much or slightly lower than among replicates 179 

(Supp. File 2), putatively identifying two other axes of metabolomic divergence between 180 
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samples. To investigate these further, we first performed a global assessment of 181 

similarities and differences between the metabolomes under different conditions.   182 

 183 

The root metabolome is less diverse but more specialized and more stress-184 

inducible than the leaf metabolome 185 

 Using the normalized, imputed datasets, we quantified the impact of each stress 186 

on the root and leaf metabolomes. As expected, Principal Components Analysis (PCA) 187 

identified the organs and the growth media as stronger drivers of metabolic variation in 188 

our samples than the stresses. While PC1, explaining 46.88% and 45.6% of the metabolic 189 

variation between samples (in positive and negative mode, respectively) was indicative 190 

of organ-wise differences, PC2 (12.97%, 13.77%) revealed a substantial impact of the 191 

growth medium (soil type, hydroponics) on the root and leaf metabolomes (Supp. Fig. 7). 192 

PCA as well hierarchical clustering (Supp. Figs. 8,9) validated close clustering of 193 

replicate samples as well as highlighted set-wise impact of stresses. For the Hydro set, 194 

NoCopper (copper deficiency) was clustered with Control in both leaves and roots, while 195 

for the Sym set, SporeW was the more impactful condition for leaves and Spore for the 196 

roots. HeatNoCopper clustered closer to Heat than NoCopper in both roots and leaves, 197 

indicating that the majority of metabolomic differences in this combined stress was due 198 

to Heat. When PCAs were differentiated by organs (Supp. Fig. 7 B,C,E,F), the effect of 199 

different stresses could be observed. Overall, the leaf metabolomes were less impacted 200 

by the stresses than root metabolomes.  201 

To further quantify the impact of each stress on the overall sampled metabolome, 202 

we used three information-theory based measures – Diversity (H), Specialization (δ, 203 

measuring uniqueness/differentiation) and Relative Distance Plasticity Index (RDPI, 204 

measuring overall perturbation including up and down-accumulation). We first assessed 205 

the metabolome differences in non-stress conditions. More peaks as well as more 206 

uniformity in the peak areas can increase Diversity; thus, given leaves consistently have 207 

more peaks than roots, culms, and spikelets (Supp. Fig. 6), their Diversity is the highest 208 

(Fig. 2A,B; Supp. Fig. 10A,C). However, roots and spikelets are more metabolically 209 

specialized. The degree of specialization and to some extent, Diversity, were clearly 210 

dependent on the growth medium and stress (Fig. 2A,B; Supp. Fig. 10). Roots were 211 

more specialized in the hydroponic medium (except Sym Spore root) but leaf metabolome 212 

was more specialized in soil (Supp. Fig. 10B,D). Intriguingly, the observation of spikelets 213 

being metabolically specialized is congruent with a similar observation in the Nicotiana 214 

attenuata anthers (Li et al., 2016b), indicating that the metabolic uniqueness of the 215 

reproductive tissues may be a conserved trait across monocots and dicots.  216 

Although differences in specialization and diversity among leaf metabolomes were 217 

low, many stresses elicited statistically significant changes (Kolmogorov Smirnov [KS] 218 

test, Supp. Table 2). Overall, the stresses appeared to disrupt foliar metabolism far less 219 

than that of the roots – especially for leaves from hydroponically grown plants – as 220 

indicated by tight clustering of leaf stresses with their controls. In positive mode (Fig. 2A), 221 

specialization cleanly separated out leaf samples into their growth conditions, but this was 222 
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not seen in negative mode (Fig. 2B), and in both ionization modes, leaf samples had 223 

relatively low specialization. Taken together with the relatively low RDPI values observed 224 

for leaf samples (Fig. 2C,D), these results indicate that the leaf metabolome is more 225 

robust/less responsive to temporary environmental changes than the root metabolome.  226 

In contrast, the specialization and RDPI of roots were significantly influenced by 227 

stress. In both ionization modes, we found that roots had higher RDPI (i.e. greater 228 

metabolome perturbation) than leaves (except for SporeW, in which leaves had similar 229 

RDPIs to roots in negative mode) (Fig. 2C,D). Hydro roots had a higher baseline (Control) 230 

specialization than Sym (Supp. Fig. 10B,D), indicating the presence of hydroponics-231 

specific peaks. However, in both ionization modes, Heat roots and Spore roots had the 232 

highest specialization and RDPI. Specialization is a sum of the “degree of specificity” of 233 

each metabolite signal across the different conditions, thus, high specialization in Heat 234 

and Spore indicates a greater representation of metabolites that are uniquely changing 235 

under these conditions alone. Interestingly, specialization of the HeatNoCopper roots was 236 

similar to Control roots (Fig. 2A,B), while its RDPI was intermediate between NoCopper 237 

and Heat (Fig. 2C,D). These observations suggest that the impact of heat stress on the 238 

global root metabolome was less drastic under copper deficiency, which is contradictory 239 

to our expectation that HeatNoCopper roots would show a greater perturbation than Heat 240 

roots given a combination of two stresses. 241 

To obtain a more granular understanding of the overall induced metabolites, 242 

differentially accumulated peaks (DAPs) were estimated in each condition based on FDR-243 

corrected p-values and fold-change criteria (see Supplementary Methods; Supp. File 244 

4). The pattern of differential accumulation was similar between positive and negative 245 

modes (Fig. 2E,F). We found that HeatNoCopper and Heat had a high number of DAPs 246 

primarily in the roots (Fig. 2E,F; Supp. Figs. 11,12,13). Over 200 metabolites were also 247 

perturbed under AMS in positive as well as negative mode, however, many of these 248 

metabolites could be of fungal origin. Heat and Spore roots had both the highest numbers 249 

of DAPs, and unique DAPs, consistent with the finding that they have high RDPI and the 250 

highest specialization.  251 

 252 

Assessment of the deep learning-based tool CANOPUS for structural annotation of 253 

LC-MS peaks 254 

 The above analyses revealed global patterns of change in the Brachypodium 255 

metabolome under environmental change. We next sought to understand shifts in specific 256 

metabolite classes. While untargeted LC-MS is the method of choice for detecting a 257 

diverse range of metabolites, identifying these peaks is a major challenge. We employed 258 

two different approaches for annotating the peaks: 1) MS/MS spectral matching using 259 

public repositories, and 2) database-free prediction of structure-based metabolite classes 260 

using the deep-learning based CANOPUS package in the SIRIUS software (Dührkop et 261 

al., 2021). CANOPUS classifies compounds into the multilabel and hierarchical ChemOnt 262 

ontology (Djoumbou Feunang et al., 2016),  which is similar to the Gene Ontology (GO) 263 

for genes (The Gene Ontology Consortium, 2019). As ChemOnt is multilabel, peaks may 264 
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receive multiple annotations at each level, however, the classifications we report are of 265 

each peak’s largest substructure.  266 

Of the 3582 and 2996 singly charged fragmented peaks in positive and negative 267 

mode, 2931 (82%) and 2409 (80%) were annotated by CANOPUS at the Superclass level 268 

with posterior probability >0.5 (Supp. Fig. 14). Of the 26 Superclasses existing for 269 

Organic Compounds, 14 and 12 were represented in the positive and negative mode 270 

data, respectively (Supp. Files 5,6) with Lipids and lipid-like molecules having the most 271 

peaks in both ionization modes. To assess the accuracy of these annotations, we 272 

identified peaks via public database searches and compared their ChemOnt classes to 273 

CANOPUS’ predictions (Table 1, Supp. File 7). At each level, we calculated 274 

misannotations as the percent of peaks identified using spectral matches that were not 275 

given the same annotation by CANOPUS. At the Superclass level, we observed good 276 

correspondence between CANOPUS classifications and database identifications in both 277 

modes. The median CANOPUS misannotation rates at the Class level, when considering 278 

correct Classes as determined by ClassyFire, were 54.4% and 28.2% in positive and 279 

negative mode, respectively, indicating that overall CANOPUS predicted Classes well for 280 

negative mode only. In positive mode, the most frequently misannotated Classes were 281 

Glycerophospholipids (GPs, 65.57% of CANOPUS-predicted GPs were misannotated) 282 

and Phenols (73.68% misannotated), although most of the misannotations were within 283 

the same Superclass (70% and 50%, respectively). The decrease in agreement between 284 

positive mode Superclasses and Classes is largely due to the high misclassification rate 285 

of GPs and their high presence (24%) in the identified positive mode compounds.  286 

 We further observed that when discrepancies occurred, it was often due to 287 

CANOPUS labeling compounds based upon substructures that are not representative of 288 

the whole compound, e.g. labeling Flavonoids as Benzenoids/Hydroxycinnamic Acid and 289 

Derivatives, or 1-Palmitoylglycerol as a Fatty Acyl instead of a Glycerolipid. Most 290 

misannotated GPs were classified as Fatty Acyls (subclass: linoleic acid and derivates), 291 

Sphingolipids (subclass: phosphosphingolipids) or Organonitrogen Compounds 292 

(subclass: phosphocholines), suggesting that despite misclassification, CANOPUS was 293 

identifying common substructures from MS/MS data. It is important to also note, however, 294 

that in instances of disagreement, the specific compound identifications based on spectral 295 

matching may be incorrect, and despite that, both methods generally agree on the 296 

annotations of substructures of the detected peaks. 297 

Table 1: Correspondence between peaks identified using spectral matches and 298 

their class predictions using CANOPUS. 299 

 Positive Negative 

 Identified1 and 

Annotated2 Peaks 

% Match3 Identified1 and 

Annotated2 Peaks 

% Match3 

Superclass 253 77.87 153 77.78 

Class 245 54.69 152 70.39 

Subclass 215 53.49 143 71.33 

Level 5 123 56.10 120 73.33 
1 Identified using spectral matches with public repositories  300 
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2 Annotated using CANOPUS  301 
3 Percentage of the Identified and Annotated Peaks with matching annotations 302 

 303 

 In order to further assess the general accuracy of identifications and CANOPUS 304 

annotations, and the disagreements between them for GPs, we used MS/MS molecular 305 

networking as a complementary approach to cluster compounds with similar 306 

fragmentation patterns. We then mapped identifications and CANOPUS Superclasses 307 

onto this network (Fig 3, Supp. Files 8, 9). We found that some CANOPUS Superclasses 308 

tended to form tight sub-networks e.g. 236 out of the 240 CANOPUS-annotated GPs in 309 

the negative mode network were clustered together (Supp. File 9), along with all of the 310 

database-identified GPs. In the positive mode network, we observed two clusters for GPs 311 

-- one for peaks identified as Glycerophosphocholines/Glycerophosphoserines and 312 

another for peaks identified as Glycerophosphoethanolamines (Subnetworks 1 and 2, 313 

respectively, in Fig 3, Supp. File 8). For other sub-networks (3,4,5 Fig. 3), there was 314 

good agreement between CANOPUS and identified compound class predictions (Supp. 315 

File 7). These results suggest that while there is some disagreement between spectral 316 

matching and CANOPUS, both methods are reflective of actual molecular substructures. 317 

While Class level interpretation is appropriate for peaks in negative mode, Superclass 318 

level interpretation is appropriate for positive mode. Thus, while we conduct analyses 319 

below using the more specific Class-level annotations, we primarily interpret results from 320 

negative mode data.   321 

 322 

Compound class annotation reveals an important role of lipids in the induced 323 

stress response 324 

After validating CANOPUS annotations, we sought to determine how different 325 

chemical classes were perturbed under the applied stresses, and whether the relevance 326 

of a class to a stress or organ could be quantified. The RDPI metric summarizes both up 327 

and down regulation of all metabolites in a given class, and thus, is a useful metric to 328 

assess a class’ overall perturbation in a given stress (Supp. Figs. 15, 16; Supp. File 10). 329 

As expected, RDPI distributions of most Classes (e.g. Organooxygen compounds) were 330 

similar to those of the overall metabolome -- with roots appearing more inducible than 331 

leaves, and Heat, HeatNoCopper and Spore treatments eliciting the largest metabolome 332 

changes. However, some Classes – primarily lipids such as Fatty Acyls, Glycerolipids, 333 

Glycerophospholipids (GPs), sphingolipids and steroids – deviated from this overall trend.  334 

Although the RDPI is a useful metric for quantifying gross metabolomic changes, 335 

information on whether peaks are accumulated or depleted under stress conditions is lost. 336 

Another issue is that our criteria for calling DAPs is stringent, thus high RDPI does not 337 

necessarily translate to more DAPs. Lastly, the RDPI metric for a Class with 1000 338 

metabolites vs. 10 metabolites can appear the same, confounding the true extent of a 339 

metabolite Class’ importance in a condition. To address these issues, we identified 340 

Classes that were, on average, highly accumulated or depleted in a stress (see Methods), 341 

and plotted the abundance changes of individual peaks in those Classes (Fig. 4, and 342 

Supp. Fig. 17A). Many Classes had expected changes in abundance, which corroborates 343 
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this methodology. For example, in spore-treated samples, lipid Classes such as 344 

glycerolipids and GPs decreased (leaves) while prenol lipids and sphingolipids increased 345 

(roots) (Fig. 4), consistent with their importance in membrane remodeling and signaling 346 

during plant-AMF interactions (Wewer et al., 2014; Macabuhay et al., 2022). Interestingly, 347 

more sphingolipids showed a decrease in the leaves, but the pattern was reversed in the 348 

roots. Phenolic compounds (Phenols) are known to be induced in the leaves of multiple 349 

species under symbiosis (Schweiger and Müller, 2015), which was also observed. In both 350 

leaves and roots of Cu-deficient plants, GPs showed both up and down regulation, while 351 

sphingolipids were mostly upregulated in the roots. Increase in sphingolipids was also 352 

seen in Heat stress. A previous study showed that perturbation of sphingolipid 353 

biosynthesis in the roots influences the leaf ionome (Chao et al., 2011), and thus, 354 

sphingolipids may play consequential roles in both Cu-deficiency and heat stress.  Some 355 

lignans were also found to be downregulated in Cu-deficient and heat treated plants in 356 

both leaves and roots, consistent with previous observations of lignin biosynthesis 357 

affected under copper deficiency (Schulten and Krämer, 2018; Rahmati Ishka and 358 

Vatamaniuk, 2020).   359 

Other classes showed unexpected changes. Although flavonoids are antioxidants, 360 

they were, on average, depleted in the roots under multiple stresses (Fig. 4). Multiple 361 

classes possess outliers present on both sides of the distribution, e.g. Sphingolipids in 362 

Spore leaves, suggesting that peaks within the same structural class are not necessarily 363 

co-regulated. Finally, we identified classes that were strongly up- or down- accumulated 364 

(multiple peaks with area changes > 5 in magnitude) in response to multiple stresses, 365 

most of which were lipids e.g. GPs, Fatty Acyls, Sphingolipids and Prenol lipids (Fig. 4). 366 

These observations suggest that the lipidome is the most stress-responsive portion of the 367 

metabolome, possibly resulting from changes in cellular membranes and signaling 368 

pathways.   369 

 370 

Co-accumulated peaks have diverse structural classes, and peaks within a class 371 

rarely co-accumulate 372 

As many classes showed broad changes in response to a stress, we next 373 

assessed the diversity of structural classes among groups of correlated peaks as 374 

determined using Weighted Gene Coexpression Network Analysis (WGCNA) (Langfelder 375 

and Horvath, 2008) (Fig. 5A and Supp. Figs. 17,18,19). WGCNA provides a 376 

complimentary approach to assign functional hypotheses to metabolite classes under 377 

stresses, as it simultaneously assesses all conditions and classes. We found that most 378 

co-accumulation modules contained peaks with high abundance in roots and low in 379 

leaves, or vice versa, again highlighting organs as primary drivers for metabolic diversity. 380 

One module (“cyan”) identified peaks specifically accumulated in Sym.Spore roots (Supp. 381 

Fig. 19), a quarter of which were annotated as sphingolipids, again suggesting the 382 

importance of sphingolipids in AMS. Other modules contained peaks with more varied 383 

accumulation patterns. For example, the “turquoise” module identified peaks that were 384 

either specifically accumulated in hydroponics roots or excluded from them. The “gray60” 385 

module (Supp. Fig. 19) grouped peaks abundant in leaves but excluded from all roots 386 
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except those experiencing AMS. These may represent foliar metabolites that undergo 387 

transport to the roots and play a role in symbiosis. A more detailed analysis of these peaks 388 

can reveal novel insights into the biochemistry of Brachypodium abiotic and biotic 389 

responses.  390 

A majority of WGCNA modules contained multiple Classes, and 7/18 modules 391 

were enriched in 1 Class (Fisher’s exact test, FDR adjusted p < 0.05). Some metabolite 392 

classes, such as Flavonoids, were enriched in multiple modules with differing abundance 393 

patterns (Supp. Figs. 18, 19). Cinnamic acids and flavonoids were usually significantly 394 

overrepresented in modules with higher accumulation in leaves than roots. Interestingly, 395 

cinnamic acids were perturbed substantially in leaves only under heat stress, while they 396 

were highly perturbed in roots under all conditions (Supp. Fig. 16). Flavonoids, on the 397 

other hand, were significantly highly perturbed only in roots but not in leaves (Supp. Figs. 398 

16, 17). These results point to differing regulation of individual metabolite classes in roots 399 

vs. leaves. Also, of the ten Classes enriched across all modules, in either positive or 400 

negative mode, seven were lipids, further highlighting their functional relevance.  401 

To determine if “Class” is too broad a level for co-regulation, and if more evidence 402 

for co-regulation is found at the “Subclass” or “Level 5” level, the average pairwise 403 

Spearman correlation among peaks in the same Class, Subclass, or Level 5 category 404 

(Fig. 5B and Supp. Fig. 17C), was compared to the average correlation among randomly 405 

drawn peaks. At each hierarchy level, only a small number of classes had average 406 

correlation ≥0.5, and most classes had correlation close to random. Notably, at each level 407 

of the hierarchy, several classes were unusually large, with > 100 members, raising the 408 

possibility of low structural similarity within each class. Thus, we sought to determine 409 

whether class size and structural similarity within class contribute to average class 410 

correlation (see Supplementary Methods for calculation). Correlations between average 411 

class correlation and average class cosine score were consistently positive (Supp. Figs. 412 

20, 21) suggesting greater structural similarity within a class translates to greater 413 

accumulation correlation. Correlations between class size and correlation/cosine score 414 

were negative, highlighting the importance of more specific class definitions. We note that 415 

overall, these metrics explained only a very low proportion of variance.  416 

Taken together, these results indicate that while some classes (e.g. Flavonoids 417 

and their subclasses) may represent groups of co-regulated peaks, this is likely not the 418 

case for most classes at each level of the ontology. This may reflect the specificity of 419 

underlying metabolic and regulatory pathways, which may significantly increase 420 

concentrations of specific individual metabolites of a structural class. These results also 421 

suggest that utilizing the multi-label nature of the chemical ontology could be a better 422 

approach for finding peaks belonging to coordinated routes of metabolism rather than 423 

using single classes.  424 

 425 

Comparative analysis facilitates analysis of known metabolites and biomarker 426 

detection 427 

Our dataset provides a unique opportunity to analyze the accumulation patterns of 428 

known metabolites, as well as find biomarkers, i.e. peaks that accumulate highly (not 429 
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necessarily specifically; see Supplementary Methods) in one condition/organ. We 430 

selected salicylic acid (SA), abscisic acid (ABA), and naringenin for analysis as they were 431 

identified by GNPS with match scores ≥0.89 (ABA and naringenin were additionally 432 

correctly annotated by CANOPUS), and may be of relevance in the studied conditions. 433 

We further validated these identifications by uncovering their major fragments from the 434 

literature, and checking for matching fragments in our queries (Supp. Table 3). SA is 435 

known to accumulate in roots under AMS (Zhang et al., 2013) and, in some species, 436 

under heat (Hara et al., 2012). We found that SA accumulated (but not significantly 437 

increased) in AMS roots, and was mildly but significantly increased in Heat roots (t-test, 438 

p-value < 0.05) (Supp. Fig. 22). In contrast, ABA levels highly increased in AMS roots, 439 

and in Heat and HeatNoCopper leaves (t-test, p-values < 0.05). Finally, for naringenin, 440 

mean decreases were observed in roots for all conditions (significant decreases seen in 441 

Heat and AMS; t-test, p-values < 0.05) corroborating our observations of RDPI of the 442 

broader Flavonoid Class.  443 

We also found that the numbers of biomarkers detected in each condition 444 

resembled the overall RDPI distribution -- roots typically have more biomarkers than their 445 

foliar counterparts, and Spore roots and Heat roots have the highest numbers of 446 

biomarkers (Fig. 5C and Supp. Fig. 17D; Supp. File 11). We found 11-carboxyblumenol 447 

C glucoside to be a foliar biomarker for AMS, corroborating previously published data 448 

(Wang et al., 2018a) (Supp. Fig. 23A). We discovered other peaks that either share 449 

fragment peaks with the Blumenol C or exhibit fragment peaks of a Blumenol C core 450 

lacking a carboxyl group (Supp. Fig. 23B, D). We also detected a peak specific to Spore 451 

leaf and not present in AMS roots, which shares no fragment peaks with the Blumenol C 452 

and was classified by CANOPUS as a 5’-deoxyribonucleoside (Supp. Fig. 23C) -- 453 

suggesting that AMS induces other foliar-specific routes of metabolism.  454 

 455 

Visualizing metabolite class importance using the BAR platform 456 

 In order to make the data described herein more easily accessible to the scientific 457 

community, these data were integrated into the Bio-Analytic Resource for Plant Biology 458 

(BAR) website as a novel electronic Fluorescent Pictograph (eFP) browser (available for 459 

testing at: https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi). 460 

CANOPUS Classes with at least five members in both positive and negative modes were 461 

included in this eFP browser. This eFP browser has two viewing options: with the Relative 462 

viewing option, the changes of metabolite Class levels across conditions can be readily 463 

observed (Fig. 6) as the average change in normalized peak area under a condition. With 464 

the Absolute viewing option, the average normalized peak areas are plotted per organ 465 

and condition. Besides showing how the Class changes in abundance across conditions, 466 

the Absolute view option also provides information about which ionization mode best 467 

illustrates changes experienced in that Class. Notably, for some Classes (e.g. Furanoid 468 

lignans, Purine nucleotides) we observe different changes in abundance across ionization 469 

modes. While this may be due to CANOPUS peak misannotations, especially for Positive 470 

mode, it may also reflect different subclasses being detected in different ionization modes. 471 

This finding has implications for targeted comparative metabolomics studies, as results 472 
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obtained in one ionization mode may not necessarily hold in the other. By establishing 473 

our eFP browser, we seek to enable the community to draw further conclusions from our 474 

existing results, and facilitate the design of future comparative metabolomics and 475 

downstream validation studies.  476 

 477 

Discussion 478 

 479 

While recent improvements in LC-MS hardware have generated impressive 480 

advancements in metabolite detection, associating the thousands of metabolites detected 481 

in each species with biological processes remains an open challenge (Chaleckis et al., 482 

2019). In this study, using three complementary approaches – information theory, ML-483 

based analysis and co-accumulation clustering – of LC-MS data, we performed a more 484 

comprehensive analysis of metabolome perturbations of B. distachyon under different 485 

environmental conditions.  486 

When applying information theoretic measures to the global metabolome, we 487 

found that roots are, on the whole, more stress-responsive than leaves, despite leaves 488 

having a more expansive and complex metabolome. The finding that leaves have 489 

consistently more peaks than roots may be due to biological or technical/processing 490 

reasons, as root harvesting required a washing/drying step to remove the attached soil 491 

particles, which may have also removed epidermal metabolites. While the increased 492 

number of peaks in foliar samples directly contributes to their increased diversity, the 493 

finding that leaf metabolomes are less perturbed under stress than roots is intriguing.  494 

Previous studies have also found roots to be more impacted than leaves under a variety 495 

of stresses, including heat (Giri et al., 2017), and salinity (López-Cristoffanini et al., 2021). 496 

Notably, drought stress -- not included in our study -- appears to be an exception in which 497 

leaves are more impacted than roots (Gargallo-Garriga et al., 2014), indicating that the 498 

greater metabolic plasticity of the roots is not universal. These results may again be due 499 

to technical considerations, as peaks with m/z > 800 were not detected, thereby excluding 500 

cuticular waxes, which are stress-responsive (Baker, 1974; Wang et al., 2018b; Kan et 501 

al., 2022). Additionally, highly polar and highly non-polar compounds were excluded from 502 

our data. Both roots and leaves contain such compounds, and therefore it is unclear how 503 

results would differ with these compounds included. 504 

 Our analyses revealed that the combined HeatNoCopper stress was less 505 

disruptive to the root metabolome than the Heat stress alone -- suggesting that one week 506 

of Cu deficiency primed the roots for subsequent protection against heat stress response. 507 

Another interpretation is that critical heat response mechanisms were not activated in the 508 

roots after a week of Cu deficiency, which could therefore lead to decreased reproduction 509 

or long-term survival after heat. Since the recovery of these plants were not studied, it is 510 

not possible to ascertain which interpretation is correct. However, these results reveal an 511 

intriguing interplay between heat stress and Cu deficiency. In Arabidopsis, such an 512 

interplay is suggested through shared aspects of heat and Cu deficiency responses. For 513 

example, Cu deficiency triggers accumulation of ferric superoxide dismutase 1 to account 514 

for reduced activity of Cu/Zn superoxide dismutases (Abdel-Ghany and Pilon, 2008). This 515 
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shift may help protect the roots against reactive oxygen species produced during later 516 

heat shock. Recent evidence has also suggested that SPL7, a master regulator of Cu 517 

deficiency (Yamasaki et al., 2009), may upregulate miR156 under Cu deficiency (Perea-518 

García et al., 2021). In Arabidopsis, miR156 is induced after an initial heat stress event 519 

and provides heat shock memory, as plants lacking miR156 showed decreased growth 520 

and survival after subsequent heat events (Stief et al., 2014). As miR156 is also induced 521 

in wheat after heat stress (Xin et al., 2010), and as several miRNAs are known to have 522 

different induction patterns in different tissues (Sunkar et al., 2012), we hypothesize that 523 

miR156 upregulation under Cu deficiency helps prime Brachypodium roots for heat 524 

stress. Future molecular studies can help test these hypotheses.  525 

 In this study, we combined CANOPUS -- a tool for structurally annotating peaks -- 526 

with information theoretic and related measures to analyze more specific metabolome 527 

perturbations. Our study captured a multi-pronged, organ-differentiated metabolomic 528 

response of Brachypodium to environmental change comprising lipidomic perturbations 529 

and alterations of phenylpropanoid pathway products such as lignans, cinnamic acids, 530 

and flavonoids. Lipids, on the whole, are highly stress-responsive, with glycerolipids, GPs, 531 

sphingolipids and fatty acyls having high perturbations under several conditions. These 532 

perturbations may be a result of changes in membrane composition (known to occur 533 

under heat (Higashi and Saito, 2019) and low P stress (Nakamura, 2013)), and/or 534 

production of lipid signaling molecules, such as oxylipins (Ali and Baek, 2020) and 535 

sphingolipids (Berkey et al., 2012). Under AMS specifically, certain fatty acyls and GPs 536 

are known to be produced (Wewer et al., 2014; Bravo et al., 2017), and while this is indeed 537 

reflected in our data (Supp. File 10) we also found that other lipid Classes, such as 538 

Sphingolipids and Prenol lipids, were highly altered under AMS, suggesting that AMS has 539 

wide-reaching effects on the Brachypodium lipidome. We unexpectedly found that 540 

flavonoids are, on average, decreased in the roots in response to all conditions except 541 

low P – a finding corroborated by a focused assessment of naringenin. The training data 542 

for CANOPUS for flavonoids was also large (Dührkop et al., 2021) – given their high 543 

representation in public databases – thus, flavonoid class predictions are likely to be 544 

correct. This inference was also previously confirmed in sweet potato flavonoids and 545 

anthocyanins via comparison with MS/MS networking (Bennett et al., 2021). In general, 546 

flavonoids are known to be accumulated under several stresses (Ferdinando et al., 2012), 547 

yet the wholescale labelling of all flavonoids as antioxidants has been questioned (Agati 548 

et al., 2020). Several studies have additionally found disordered regulation of flavonoid 549 

biosynthesis, either at the level of individual flavonoids/flavonoid biosynthetic genes (Wu 550 

et al., 2020) or post-transcriptional regulation of flavonoid biosynthesis (Cui et al., 2019). 551 

These observations reveal a need for a deeper investigation of flavonoid roles and/or 552 

metabolic reprogramming under stress. We further found that WGCNA, a tool commonly 553 

used in RNA-seq studies, is effective at uncovering peaks with similar abundance 554 

patterns, which are potentially in the same routes of metabolism. Our study was also able 555 

to detect biomarkers, which can reveal novel insights into condition-specific activations of 556 

metabolic pathways. 557 
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 In conclusion, we found that information theory metrics and chemical class 558 

predictions are effective tools to analyze comparative metabolomics data. Our results 559 

reveal a very dynamic plant metabolome influenced by multiple environmental and 560 

developmental factors. As more untargeted LC-MS/MS studies are performed, 561 

comparative analyses of these datasets may reveal common patterns and the core stress 562 

response across groups of plant species. The overall workflow described here can enable 563 

a more streamlined analyses of such untargeted datasets. Particularly, visualizing 564 

metabolomic data using the eFP browser may reveal hidden spatial differences in 565 

metabolome perturbations not easily discernible otherwise, and guide the design of 566 

targeted studies. For example, this visualization can be a useful tool to identify a better 567 

mode of ionization for molecules of interest as well as reveal metabolite classes to be 568 

assessed via targeted analyses. Our study shows that data-intensive analytical methods 569 

are useful for gleaning novel biological insights from untargeted metabolomics studies. 570 

 571 

Materials and Methods 572 

 573 

Plant Growth Conditions and Harvesting 574 

Brachypodium distachyon Bd-21 seeds for plants used in the Symbiosis (Sym) and 575 

Tissue (Tis) experiments were sterilized in 10% (v/v) household bleach containing 576 

0.005% (v/v) Tween-20 for seven minutes, thoroughly washed 5x in sterile water and 577 

germinated in petri dishes on moist Whatman filter paper in dark at 4 C for seven days 578 

and three additional days at room temperature (RT). Germinated seedlings were 579 

incubated for additional 3-5 days under constant light while maintaining constant humidity. 580 

The germination protocol for plants used in the Hydro experiment was performed as 581 

outlined previously (Sheng et al., 2021). Additional details about plant growth conditions 582 

are described in Supplementary Methods. After the growth period, harvesting of all plant 583 

material took place between noon and 3pm to maintain circadian profiles of genes and 584 

metabolites. All samples were stored at -80 C until further processing. We verified that 585 

the Cu-deficiency and AMS conditions worked as expected using RT-PCR of previously 586 

known condition-specific genes (Rahmati Ishka and Vatamaniuk, 2020) (Supplementary 587 

Methods).  588 

 589 

Metabolite Extraction and Sample Preparation 590 

All plant material was rough ground over liquid nitrogen using scissors to enable 591 

equal and homogenous separation for RNA and metabolite extraction. All samples were 592 

further subjected to bead homogenization using a mixer mill (Retsch, Haan, Germany) at 593 

30 bpm with 1-minute intervals in 2 mL reaction tubes containing four 2.3 mm chrome 594 

steel beads. Ground samples were lyophilized overnight. Sample fresh weights (200 mg 595 

leaves, 550 mg roots, 150 mg spikelets and culms) were determined to ensure 50 mg of 596 

dry weight for all tissues. Samples were ground again in the bead homogenizer for 10 597 

minutes, and centrifuged at 14000 g for 10 minutes in order to collect all powdered sample 598 
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at the bottom of the tube. Metabolites were extracted using a mixture of acetonitrile, 599 

isopropanol, and water (ratio of 2:2:1) containing 0.1% (v/v) formic acid, and 30 uM of 600 

three internal standards (Telmisartan, Propyl-4-hydroxy-benzoate, and Kanamycin). After 601 

solvent addition, samples were vortexed several times over a period of 15 minutes to 602 

facilitate extraction. After centrifugation for 10 minutes at 16000 g to remove particulates, 603 

the samples were transferred into amber HPLC vials and stored at -80 °C until LC-MS 604 

analysis. Sample vials were shipped to the Joint Genome Institute on dry ice for LC-MS 605 

analysis, where LC-MS was performed using an Agilent 1290 Infinity LC system (Agilent, 606 

Santa Clara, CA) coupled to a Thermo QExactive HF orbitrap mass spectrometer 607 

(Thermo Scientific, San Jose, CA). Additional details are provided in the Supplementary 608 

Methods.  609 

 610 

Metabolomic data filtering, normalization, and imputation 611 

All RAW files were converted to mzML format using ProteoWizard v 3.0.7230. TICs 612 

were made for all files of a given polarity using XCMS (Mahieu et al., 2016)  (Supp. Fig. 613 

3). All files of a given mode (positive or negative) were then imported into MS-DIAL v4.48 614 

(Tsugawa et al., 2020) for peak deconvolution and alignment. Parameters files for positive 615 

and negative mode usage are supplied (Supp. File 12). The peak areas of the internal 616 

standards Telmisartan and Propyl-4-hydroxy-benzoate were manually checked to 617 

determine consistency across samples. For each polarity, MS-DIAL outputs a quantitative 618 

alignment file, displaying the peak areas of all metabolites in all samples, and a Mascot 619 

Generic Format (mgf) file of all fragmented metabolites. Detected metabolites were 620 

filtered, imputed, and normalized using a custom R script (developed in R v4.0.4) (R Core 621 

Team, 2020), available on GitHub (https://github.com/lizmahood/brachy_metabolomics) 622 

as described in Supp. Fig. 4.  Metabolites eluting out at 90 seconds or earlier were 623 

removed as the Total Ion Current observed at the beginning of runs was high enough that 624 

accurate quantification of metabolite values could not be assured (Supp. Fig. 3). 625 

Imputation was performed with the R package impute and VSN was performed with the 626 

R package vsn (Huber et al., 2002). Normalization was performed using NOREVA (Li et 627 

al., 2016a), followed by identification of differentially accumulated metabolites, both of 628 

which are described in more detail in Supplementary Methods. 629 

 630 

Peak annotation with CANOPUS 631 

The mgf format MS-DIAL output files were filtered to remove adducts and peaks 632 

detected in Blank samples using an in-house python script 633 

(https://github.com/lizmahood/brachy_metabolomics). The CANOPUS module (Dührkop 634 

et al., 2021), included in the SIRIUS4 v4.9.8 software suite (Dührkop et al., 2019) was 635 

used to annotate singly charged peaks with their probable structural classes, as defined 636 

in the multilabel ChemOnt ontology (Djoumbou Feunang et al., 2016). The Zodiac module 637 

(Ludwig et al., 2020) was additionally used to improve each peak’s predicted molecular 638 
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formula (which CANOPUS uses for annotation). For each compound, CANOPUS predicts 639 

the “Parent Class” – the class of the largest substructure in the molecule – and outputs 640 

the probability that the predicted Parent Class is correct, based upon its training data. 641 

Other predictions are made at different hierarchies of the ontology (Superclass, Subclass, 642 

etc). Any annotation with prediction probability < 0.5 was not considered in downstream 643 

analyses. Additionally, if a classification was discarded for not meeting this probability 644 

threshold, each subsequent prediction (at more specific hierarchies) was removed as 645 

well, regardless of their prediction probabilities.  646 

 647 

Peak Identification with GNPS and MSDIAL 648 

 The “All Public MS/MS” msp files provided by MSDIAL 649 

(http://prime.psc.riken.jp/compms/msdial/main.html#MSP) were used for identification. 650 

To remove false positive identifications, we imposed a threshold of >0.8 for both the Dot 651 

Product and Reverse Dot Product scores between the query and database match. 652 

Feature based molecular networking through GNPS (Nothias et al., 2020) workflow v28.2 653 

was additionally used for peak identification. Spectral database libraries included those 654 

publicly available in GNPS, as well as the NIST 17 library, which was kindly provided by 655 

JGI. All parameters for molecular networking were kept at default values excepting: 656 

Precursor ion mass tolerance - 0.01 Da, Library search min matched peaks - 3, Top 657 

results to report per query - 20, Score threshold - 0.4, Maximum analog search mass 658 

difference - 200. We again imposed a threshold of >0.8 for the match score between the 659 

query and database match, and only considered the top 1 match per query.  660 

 To compare annotations between peak identifications and CANOPUS, InChIs of 661 

identified compounds were converted to InChI-Keys through the chembl_ikey python 662 

module, and structural classifications were obtained with ClassyFire Batch 663 

(https://cfb.fiehnlab.ucdavis.edu/).  664 

 665 

MS/MS molecular networking 666 

 MS-FINDER v3.44 (Tsugawa et al., 2016) was used to perform molecular 667 

networking using the filtered mgf files, with the following parameters: Mass tolerance 0.01, 668 

Relative abundance cutoff 5%, MS/MS similarity cutoff 70%, RT tolerance 100. The 669 

Superclass of each peak, as well as the conditions each peak was identified as 670 

Differentially Abundant in, were added to the node file. The edge file and this augmented 671 

node file were imported into Cytoscape v.3.8.0 (Su et al., 2014) for figure generation using 672 

the Prefuse Force Directed Layout. 673 

 674 

Estimating information theoretic measures 675 

 The following information theoretic metrics were calculated for our dataset as 676 

described previously (Li et al., 2020): Hj (the Shannon entropy/Metabolomic profile 677 

diversity), Si (Metabolomic specificity), and δj (Metabolome specialization index). The 678 
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Relative Distance Plasticity Index (RDPI), as calculated for all peaks in each stress 679 

condition, was also determined as described previously (Valladares et al., 2006). The 680 

RDPI calculation was applied to the entire metabolome, and then applied separately to 681 

each compound class (for compound classes with at least five peaks classified into them).  682 

The RDPI formula was amended in order to determine if a class is up- or down-683 

accumulating under a stress. Briefly, for each condition-control pair of samples, a 684 

distribution of the abundance changes of all peaks was made, and the mean change in 685 

peak abundance was calculated per class. Let dij→i′j′ represent the peak area changes to 686 

all peaks i common to a condition-control pair (j→j′). The mean value of the peak area 687 

change for each compound class was computed as ∑(𝑑𝑖𝑗 → d𝑖′𝑗′) / 𝑛, where n is the 688 

number of peaks per class. For each condition, these per-class mean values were 689 

compared to the overall distribution of dij→i′j′ across all metabolite peaks to determine the 690 

percentile of the per-class value with respect to the peak area changes of all compared 691 

metabolites. For the purposes of plotting in Fig. 4, the classes with percentiles >70 (large 692 

average increase in abundance) or <30 (large average decrease in abundance) and at 693 

least five members were identified, and up to five classes with the highest/lowest 694 

percentiles were plotted. 695 

 696 

Weighted Correlation Network Analysis Construction and Module Analysis 697 

Using the Weighted Correlation Network Analysis (WGCNA) R package 698 

(Langfelder and Horvath, 2008), an unsigned adjacency network was made from the 699 

normalized area of all fragmented peaks. The soft powers were 129 and 131 in positive 700 

mode and negative mode, as these were the lowest values achieving a R2 of at least 0.8. 701 

Hierarchical clustering via the hclust function was performed using method =  “average”. 702 

The minimum module size was 10. All peaks that failed to be assigned to a module were 703 

discarded, and the remaining peaks were re-clustered into a dendrogram, and visualized 704 

alongside their Topography Overlap Matrix. The CANOPUS class of all peaks in each 705 

significant module was determined. Each class (except “None”) was analyzed for 706 

enrichment in a particular module if there were at least 5 members in the module. 707 

Enrichment was calculated using a Fisher’s exact test with all fragmented peaks as the 708 

background population. 709 

 710 

Visualizing CANOPUS Class Abundance on the BAR Platform 711 

Briefly, an input image was generated representing the experiments described in this 712 

paper. The eFP Browser code (Winter et al., 2007) was then modified in several ways to 713 

be able to display CANOPUS data. First, the color scheme was modified from the default 714 

yellow-red color scheme of the original eFP Browser, to make a visual distinction between 715 

the metabolite data being displayed in the modified version and transcript data displayed 716 

in the original browser. Second, because CANOPUS data have a lower dispersion, we 717 

introduced a possibility of setting a minimum value for the color scale other than zero. 718 

Last, CANOPUS classes with at least five members in both Positive and Negative 719 
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ionization modes were included in this eFP browser, and were databased in such a way 720 

that the data from the two modes could be retrieved separately. CANOPUS data may be 721 

freely explored at https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-722 

bin/efpWeb.cgi. 723 

 724 

Data availability 725 

The LC-MS/MS data is deposited on the GNPS website with the accession ID 726 

MSV000089340. All code developed for analyses is available on the GitHub repository 727 

(https://github.com/lizmahood/brachy_metabolomics) also forked on the moghelab 728 

GitHub page.  729 
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Figure 1: Timeline and Schematic of the Experimental Design. The number of sam-
ples, plants per replicate, and organs sampled for each set of growth conditions is shown, 
along with the timeline of important events such as treatment induction and harvesting. 
Divergent growth and stress conditions were chosen to induce variability in metabolic 
profiles. Days are counted post germination. Soil-1 and soil-2 refer to different soil mixes. 
The germination protocol for Hydroponics seeds was distinct from the germination protocol 
for the other growth conditions (see Supplemental Methods). 
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Figure 2: Comparison of metabolomic perturbations among conditions. (A), (B) Diversity vs. 
Specialization per condition, with organs depicted as different shapes and conditions as different 
colors. Annotations are added onto these plots for ease of interpretation. (C), (D) RDPI per stress 
condition. (E), (F) Upset plots of Differentially Abundant Peaks (DAP) per stress condition, inclu-
sive of up- and down-accumulated peaks. Intersections (vertical bars) depict the number of DAPs 
in common to sets of conditions. Only sets with at least 10 peaks are shown. (A), (C), (E) positive 
mode (B), (D), (F) negative mode.
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Figure 3

Figure 3: Molecular Networking of peaks in positive mode. Network nodes represent peaks 
detected in positive mode (in any condition/organ), and edges conntect nodes that have a pairwise 
cosine score of >70. Large nodes with a red border signify identified peaks. Nodes and identifica-
tions (text) are colored with their CANOPUS-annotated Superclass. The number of times each iden-
tification occurs in a sub-network is indicated in italics. Asterisks (*) denote an identification spanning 
multiple lines. The dashed line in subnetwork 2 separates the majority-Glycerolipid section of the 
subnetwork from the majority-Phosphoethanolamine section. PC = Phosphocholine, L = Lyso, DAG 
= Diacylglycerol, TAG = Triacylglycerol, PE = Phosphoethanolamine, MAG = Monoacylglycerol.
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Figure 4: Charting Stress-Induced Shifts of  Molecular Classes, Negative Mode. (A) 
Abundance changes of peaks in response to stress. Each stress depicts Classes that were 
the most accumulated (Class name in yellow) or diminished (Class name in purple), on 

-

metabolites are plotted as circles, outliers are shown as +.    
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Figure 5: Characterizing Metabolite Co-abundance, Negative Mode. (A) WGCNA Topography Overlap Matrix, 
depicting correlations among peaks placed into significant modules. Normalized abundance patterns and CANOPUS 
Class distributions are plotted for selected modules (Class ”None” not shown). An asterisk (*) denotes Classes that 
were significantly enriched in a module (Fisher’s exact test, FDR adjusted p-value < 0.05, count in module at least 5). 
Condition names in the abundance pattern plots (left) are abbreviated such that only the capital letters of the full names 
(seen in Figure 4) are shown. (B) Average pairwise Spearman correlation among peaks in the same CANOPUS Class, 
Subclass, or Level 5. The blue line shows average correlation among randomly selected peaks. (C) Counts of biomark-
ers found in each stress/tissue, colored by CANOPUS Class. Condition name abbreviations are as in (A).    
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Figure 6: Visualizing Stress-induced Changes in Class Abundance. In Relative mode of the eFP
browser (shown here for Flavonoids), the Log2 Fold Changes in average Class abundance are plotted 
between a condition and its control. The consistent decreases among stressed roots are again seen.

Figure 6
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