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Fig. 5. Baseline control of optimal memory capacity. A) Two representative trajectories in baseline (u, o) space
(left: green and orange lines) allow to reach a phase transition where the LLE crosses zero (top panels) and memory
capacity is optimized (bottom panels). B) In a transition between bistable phases, memory capacity is optimized
by a baseline trajectory whose branch exhibits an LLE that crosses zero at the phase boundary (orange curve); the
branch with positive LLE (blue curve) does not maximize memory capacity. Network parameters: Panel A, same

as Fig. 1A; panel B, same as Fig. 3D.

the relevance of neural hysteresis for controlling the network performance in a memory task.

Baseline control of optimal memory capacity

A classic result in the theory of random neural networks is that, by fine tuning the recurrent couplings at the ‘edge
of chaos’, one can achieve optimal performance in a memory task, where the network activity maintains for a very
long time a memory of stimuli presented sequentially [23]. This was achieved by fine tuning the network recurrent
couplings to values close to the transition between fixed point and chaos, which is a metabolically costly and
slow procedure typically requiring synaptic plasticity. Is it possible to achieve optimal memory capacity without
changing the recurrent couplings? We found that baseline control can achieve optimal memory capacity by simply
adjusting the mean and variance of the baseline input distribution, without requiring any change in the recurrent

couplings, (Fig. 5).
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175 We first derived an analytical formula for the memory capacity in the vicinity of a second-order phase transition
176 boundary
M . M)
= (g"7)

177 where a, 3 are replica indices. Optimal memory capacity is achieved close to a phase boundary, and its features
17s  are qualitatively different depending on whether the phases separated by the boundary are monostable or bistable.
179 At a boundary between two monostable phases, where the activity transitions between a fixed point and chaotic
180 phase, optimal memory capacity is achieved at the edge of chaos. For fixed values of the recurrent couplings
11 (Fig. 5A), one can easily achieve optimal memory capacity by adiabatically changing either the mean or the
1.2 variance of the baseline. This external modulation thus sets the network at the edge of chaos, in the region where
183 memory capacity is maximized, via baseline control, without any change in the recurrent couplings. Around a
18a  phase boundary involving a bistable phase, the optimal performance region can be reached by making use of the
185 neural hysteresis phenomenon. We illustrate this intriguing scenario in the case of the transition from a bistable
18s  fixed point/chaos branch to a bistable double chaos branch (Fig. 5B). Optimal performance is achieved only on the
157 branch of the bistable phase transition which undergoes a second-order phase transition (i.e., the branch whose LLE
188 crosses zero). In this specific case, then, we can reach optimal performance on the lower branch of the LLE curve,
189 describing the transition between the weak chaotic branch of the double chaos phase to the fixed point branch of
190 the fixed point/chaos phase. Because of the neural hysteresis, achieving the optimal performance region requires
191 first initializing the network on the lower LLE branch (on either side of the transition), and then adiabatically
1.2 controlling the baseline to reach the desired point. The phase boundaries where only first-order phase transitions
193 occur (i.e., no branch exhibits an LLE that crosses zero) do not lead to optimal memory capacity. For example, in
e« Fig. 3B, neither the upper nor lower branch of the transition between a monostable fixed point phase to a bistable
165 fixed point/chaos phase lead to large memory capacity, since no LLE on either branch of the intermediate bistable
196 phase crosses zero. Nevertheless, it is always possible to reach a different second-order phase boundary from
197 any point in (4, o) space by following an appropriate adiabatic trajectory in the baseline, where optimal memory

18 capacity can be achieved (see Fig. 5A). Therefore, one can achieve baseline control of optimal performance via
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199 neural hysteresis.

20 Discussion

201 We presented a new brain-inspired framework for reservoir computing where we controlled the dynamical phase
202 of a recurrent neural network by modulating the mean and quenched variance of its baseline inputs. Baseline mod-
203 ulations revealed a host of new phenomena. First, we found that they can set the operating point of the network
204 activity by controlling whether synaptic inputs overlap with the high gain region of the transfer function. A man-
205 ifestation of this effect is a novel noise-induced enhancement of chaos. Second, baseline modulations unlocked
206 access to a large repertoire of network phases. On top of the known fixed point and chaotic ones, we uncovered a
207 new zoo of bistable phases, where the network activity breaks ergodicity and exhibits the simultaneous coexistence
208 of a fixed point and chaos, of two different fixed points, and weak and strong chaos. By driving the network with
200 adiabatic changes in the baseline statistics one can toggle between the different phases, charting a trajectory in
210 phase space. These trajectories exhibited the new phenomenon of neural hysteresis, whereby adiabatic transitions
211 across a phase boundary retain the memory of the adiabatic trajectory. Finally, we showed that baseline control
212 can achieve optimal performance in a memory task at a second-order phase boundary without any fine tuning of
213 the network recurrent couplings.

214 Noise-induced enhancement of chaos. Previous theoretical work found a noise-induced suppression of chaos in
215 random neural networks driven by time-varying inputs both in discrete time [28] and continuous time [27, 29, 24,
26 22,30, 24]. In previous cases, featuring a mean synaptic input centered in the middle of the high-gain region of the
217 transfer function, suppression of chaos occurs because an increase in the variance drives the network away from
218 the chaotic regime. In contrast, we found that, when the baseline statistics sets the mean synaptic input away from
219 the center of the high gain region, one can induce a transition from fixed point to chaos at intermediate values of the
220 variance (Fig. 2). Larger values of the variance eventually suppress chaos, such that a non-monotonic dependence
221 of the Lyapunov exponent on the baseline variance or mean can be realized. To our knowledge this is the first

222 example of noise-induced chaos in a recurrent neural network (although for the logistic map see [31]). We believe
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223 that noise-induced modulation of chaos in discrete time networks is similar for both quenched and dynamical noise
224 [24], since the LLE and the edge of chaos are the same for both cases. We speculate that introducing a leak term
225 and generalizing our results to a continuous time system may induce a dynamical suppression of chaos on general
226 grounds, based on the memory effect. Another interesting direction is to drive the network with dynamical noise
227 at different values of the baseline input and investigate its effect on the different monostable and bistable phases
228 we uncovered via baseline modulation.

229 Optimal sequential memory. Previous studies showed that optimal performance in random networks can be
230 achieved by either tuning the recurrent couplings at the edge of chaos [23], by driving the network with noisy
231 input tuned to a particular amplitude [24]. The former method represents a metabolically costly and slow pro-
232 cess requiring synaptic plasticity. The latter method may lack biological plausibility, since in a spiking circuit the
233 dynamical input noise statistics are self-consistently determined by the spiking dynamics and are not a tunable pa-
23 rameter. We found that optimal sequential memory performance can be achieved by simple regulation of the mean
235 and variance of the baseline current. Achieving optimal performance by changing the across-neuron variance of
23 baseline currents is a simple and biologically plausible mechanism.

27 Information processing capabilities and bistability. Bistable phases in recurrent networks with random couplings
238 were previously reported in [32]. We generalized this to a new set of bistable phases featuring the coexistence of
239 two fixed points and, remarkably, two chaotic attractors with slow and fast chaos, respectively. To our knowledge,
200 this is the first report of a doubly chaotic phase in recurrent neural networks. Are there any information processing
241 benefits of the double chaos phase? Neural activity unfolding within the weakly chaotic branch of this bistable
22 phase has large sequential memory capacity, as the Fisher information diverges at the edge of chaos. On the other
243 hand, the strongly chaotic branch erases memory fast. In this doubly chaotic phase, the network’s information
244 processing ability can be changed drastically by switching between the two branches, for example via an external
25 pulse. It would be tantalizing to explore the computational capabilities of these new bistable phases unlocked by
26 baseline modulation. Here, we only considered homogeneous inputs where the baseline statistics is the same for

247 all network neurons. Although, one may consider a more general set up with heterogeneous inputs, where different
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28 neural populations receive baseline modulations with different statistics. The simplest such possibility would be
249 the ability to perform different tasks by gating in and out specific subpopulations, driving them with negative input.
250 This is a promising new direction for multitasking and we leave it for future work.

251 Evidence for baseline modulations in brain circuits. In biologically plausible models of cortical circuits based on
252 spiking networks, it was previously shown that increasing the baseline quenched variance leads to improved per-
253 formance. This mechanism was shown to explain the improvement of sensory processing observed in visual during
254 locomotion [11] and in gustatory cortex with general expectation [2]. In these studies, the effect of locomotion
255 Or expectation was modeled as a change in the constant baseline input to each neuron realizing an increase in the
26 input quenched variance. This model was consistent with the physiological observation of the heterogeneous neu-
257 ronal responses to changes in behavioral state, comprising a mix of enhanced and suppressed firing rate responses
28 (during locomotion [3, 11, 25], movements [4, 6, 5], or expectation [33, 34]. Intracellular recordings showed that
259 these modulations are mediated by a change of baseline synaptic currents, likely originating from subcortical areas
20 [8, 9]. Because the effects of these changes in behavioral state on neural activity unfolded over a slower timescale
261 (a few seconds) compared to the typical information processing speed in neural circuits (sub-second), we mod-
262 eled them as constant baseline changes, captured by changes in the mean and variance of the distribution of input
263 currents. Our results provide a new interpretation of these phenomena, leading to the hypothesis that they could
264 enable cortical circuits to adapt their operating regimes to changing demands.

265 Neural hysteresis. A new prediction of our model is that baseline modulations may induce neural hysteresis when
266 crossing a bistable phase boundary. Hysteresis is a universal phenomenon observed in many domains of physics.
267 Our results suggest a potential way to examine the existence of hysteresis in brain circuits, within the assump-
263 tion that increasing baseline variance represents increasing values of a continuous behavioral modulation such as
269 arousal (e.g., measure by pupil size [17]). A potential signature of hysteresis could be detected if the autocorre-
270 lation time of neural activity at a specific arousal level exhibited a strong dependence on whether arousal levels
271 decreased from very high levels or increased from very low levels. We leave this interesting direction for future

222 work.
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= Methods

. Random neural network model

275 Our discrete time neural network model with top down control, illustrated in Fig. 1, is governed by the dynamical

276 equation

N
Tit41 = Z Jijp(xje) + by +ny 2
=1

27 Here b; is quenched Gaussian noise with mean y and variance o2, 7; is a possible time-dependent external stimulus
278 (relevant for the sequential memory task below). The mean of the synaptic strength, Jo/N, is not zero and its
27s  variance is g?/N; the scaling 1/N guarantees the existence of the large N limit. We will assume x> 0 in
230 accordance with the fact that top-down modulation is directly conveyed by long-range pyramidal connections. The
21 activation function ¢(z) = 3 [tanh(z — 6) + 1] is positive definite and biologically plausible as it incorporates
222 both a soft rectification and thresholding. Indeed the activation function ¢ satisfies ¢(x) ~ 0 when < 6 and

283 ¢($> ~ 1 when z > 6.

2« Order parameters

The order parameters of the model are the population mean and variance at equilibrium of the single neuron activity
(x;4). A rigorous derivation of self-consistent equations for these two quantities requires Dynamical Mean Field
Theory (see Supplementary Material), a heuristic argument for them can be sketched as follows. Averaging Eq. 2

in the absence of external input yields

2

xz t+l E lj¢ xjt

Jj=1

25 Neglecting correlation between the random variables J;; and x;; on the right hand side, and using the statistical
286 invariance under permutation of neuron labels to drop cell indices, we obtain (z; 1) = J{¢(z;)). Focusing now
257 on the stationary regime, where the distribution of z;4; and z; are identical, and assumings them to be gaussian

e with mean M and variance C, leads to

M:J/\;l;’z/Qqﬁ(\forM) 3)

™
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Taking the second moment of Eq. 2, without neglecting the variance of the quenched disorder, term and deploying

once again the same assumptions yields

0:02+/%6712/Q¢ (@:HM)Q 4)

™

In supplement, the Dynamical Mean-Field Theory approach is rigorously developed to derive two dynamical equa-
tions for the mean-field momenta. The stationary limit of those equation is found to correspond to Egs. 4 and 3,

thus confirming the heuristic result.

Distance between replicas

Let us define the mean activity in the replica a (corresponding to some initial conditions z%(0)) as

1 T
(1) = = dt x ().
(0 =7 [ o)
We then define the distance between replicas as [35]
1N
@2,(T) =+ (@ (T) = 2T
i=1
as used in the visualization of Fig. 3C.
Memory capacity

Following [36, 37], we define the memory capacity of a dynamical system for an observer in possession of an
unbiased estimator for the mean, who can therefore remove the mean values from all the time series he records.
Moreover, we would like the resulting memory capacity to be zero when the linear readout is dominated by a con-
stant baseline value, because nothing can be learned from a readout independent on the input. Adopting therefore
the mean-removed formula, we find for the memory capacity M in the neighborhood of the second-order phase
transition boundary

1
M~ — 5)

(¢'>g'P)

The rigorous derivation of this formula is detailed in Supplement.
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w0« Largest Lyapunov exponent

s0s The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate of separation of infinites-
s imally close trajectories. Quantitatively, two trajectories in phase space with an initial separation vector diverge
a7 (provided that the divergence can be treated within the linearized approximation) at an exponential rate given, and
ss the Lyapunov exponent governs this exponential growth. The LLE for a discrete-time dynamical system can be

309 Wwritten as

1 <‘x%+r _$%+r’2>

Amax = lim lim n (6)
7509 |z} ~a3]| 50 27 (lot - a?f)
a0 which indicates how the two orbits get to be far from each other.
311 Going back to the IV body picture, we have
1 & 2
N Z (le,t - ‘rzzt) — <|It — Ty | > t t + 022 - QCtl,% (N
i=1

s2 for N — oo. Around the stationary solution, we consider C! = C?? = Cy and C}2 = Cj + 4C/;°. Then, we

s13  have the LLE as follows;

1 C T, t4+7
Amax = lim —— In — 0T
T—o00 2T 5Ctt

Cflf2:CO

— m In t+s+1 t+s+1 g

T—00 27’2 Ct—i—s t+s o1z —C ( )
t4s,t+s  ~0

1 5012

— = ln— UL (t>1).
2 0C}

Ct=Co
s12  and the LLE is estimated as [38]
1 / 2 1 / 2
ALLE = 3 In(¢’(z¢)*) = 3 In [ ¢ (\@zt + M) Dz 9)

ais Here C' and M are the stationary solutions M; and C5* to the dynamical mean-field equation in the Supplemental,
stie  which are easy to find numerically by iterating substitution. To detect a state of the system (2), what we have to
a7 do is just solving Eq. 3 and 4 and check the sign of the LLE (9) for each state. Conceptually, the consequences

sis  of Eq. 9 are described in the cartoon of Figure 2. The top-down control can use two levers — mean and variance
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a9 of its modulation, and depending on the mean, the variance can have the opposite effects of tuning the controlled

a0 network into chaos or out of it.
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414

«s Supplementary Notes

«s S1 Dynamical Mean Field Theory

417 We study the model

N
Tirgr = 3 Jid(xia) + G+ me s (10)

Jj=1

s1s where, as stated in the main text, x; ; is the individual neuronal activity at time ¢, ¢(«) is the transfer function, ¢;
s9  is quenched Gaussian noise with mean y and variance o2, 7, is a possible time-dependent external stimulus. The
20  synaptic weights .J;; are randomly drawn from a Gaussian distribution of mean .Jo/N and variance g*/N.

For this model, the measure of the path integral is

N
Dx = HDa:i, Dx; = Z dzi.
i=1 tez
421 We apply dynamical mean field theory (DMFT) as described in Ref. [39]. The aim of DMFT is to obtain

w22 the single body density functional P;(z) or equivalently its moment generating functional, averaged over the

«23 randomness of the synaptic connections and the external noise in the infinite population limit N — oo. That is,

N
Pien) = [ (PuGes T[ Do
i=2
424 where Py (x)Dx is the N-body density functional. Calling X; ,[¢] the solution to the equations of motion (2)

4«25 for a given modulation (, we have

N N
(Pn(x)) = <H [5 (@it — Xi,t[C])DC .= <H {H5($i,t+1 — Ly —m— Ci)DC s
i=1 ’ i=1 t ’
426 where [; + = Zjvzl Jij¢(x;,+) and we changed variables in the path integral noticing that the relevant Jacobian
427 is equal to unity.
428 Let us now compute the generating functional Zy [I] over multiple trials or replicas «, written as a function of

429 a control field {:
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ZN [” _ /Ha,i,tdx?tezu'i’tilztw?’t <5<x?t+1 _ ]th _ 77;3‘ _ <z>>
; ; ; e
430 We express the delta function as a Fourier transform, perform the Gaussian integral over the modulation vectors

a1 (, proceed with standard path integral manipulations, and define

N
[0} 1 (e}
mt:N;(bj,ta té _NZ¢
432 Taking the saddle point in the limit N — oo, we thus obtain a single body generating functional Zx[l] —

@[], ZM¥[l;], where MF stands for “mean field”:

Z" ) = %Zzlﬂrl@ts +1 +Zzzlt+1 (mg (n) + ;")
op b

af 0
— oxp (‘Zzlt-ﬂ <Qté Qtsa( g +Qtsﬂ( )y +ts+a()( ) +Qts aﬂ( )n “nf+ Qt?;’ﬂ( )(T]f)2>lf+1

o,

+ZZZZ“< o +m8‘,a(0)n?+W(n?)2+n?>+0(773)>,

1D
w2 where the subscripts (, &) and (, a3) are respectively 9/n¢ and 92 /0ndn?; for instance, we have
«@ @ @ [e% o 1B
tsﬁ(o) =0’cs + (o7 0 ’>|n=0a Qtfa(o) = (¢ ¢E>|n=07 Qtfﬁ(o) = (¢4 ¢/s>|n=0a
(12)
mg(0) = J(67) =0 M (0) = J(¢'}) ly—o-
435 In terms of the generating functional, we finally obtain self-consistent equations for the parameters
(SZMF 62 ZMF
My = (a) = —i——| , O =(afal) = MPMP = ———%|  — MM, (13)
g |, 51901
=0 L =0
a6 which are explicitly written as follows,
Mgy = J(9@f), O e = 0% +(0(af)o(a))), (14)

w7 where the indices «a, § differentiate the individual replicas.
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438 The terms (¢(z:)) and (d(x+)P(xs)) are explicitly written as

(i) = [ o (Vs + 0 +4¢) D

N " N N Oo;ﬁ Oaacfsﬁ _ 0025 2
o) = [[ ¢(@x+Mt +nt)¢ T (G, 4 g 42 | DaDy,
tt tt

15)
s where Dz = exp(—2?/2)dx/+/27. This is because {x;}:cz is shown to be a Gaussian random variable whose
40 covariance and mean value is determined self-consistently by use of the generating functional method and by
4 taking mean-field limit N — oo.
442 From Egs. 14, we derive
M=1J \j;e—zz% (\/590 ¥ M) (16)

™

as  for the fixed point M = lim;_, oo M and
C =0+ / AT sty (\/5x T M)2 (17)
Vo

aas for C' = limy_, o CF{® . The inter-replica correlation C’tozﬁ can also be written from the above. Finally, the response

45 to the external force 7 can be computed systematically as

A ...xfn>
on;

5”+2Zi\/IF m

=i(—1) L 18
g )51%”“51?2"577? (19

1=0,7=0

46 in the infinite population limit.
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« S2 Heuristic derivation of conditions for stability

4s  For arbitrary functions ¢ and ¢, we define

(@97 )es = ($la)v(?)) =

aff aa BB _ aB 2 19
//¢<\/C§ﬁx+Mﬂ+T}?>¢ \/Cé%er\/Ctt Csscaa(cts ) y+MsB+77§ DDy, 19)
tt tt

. —x2/2
— €
w9 with Dz = NeTs dx
450 It is easy to see (through integration by parts) that the variation of this quantity under perturbations of M and

w1 C%« is (omitting time labels for brevity)

A6 9% = (¢ "GP AM + (69 ")aMP + L YO0 + g )dC 4 (e (20)

452 The single-replica stability is understood as follows. Using identity 20 for the quantity (¢1))o = (¢¥*)4, it
453 1s seen that the linearized version of the single-replica equation around the steady state Cy; = C*%, My = M*“,

44 becomes

( 5Mto—éi-1 ) =A <6M1ta) A= ( J<¢/>0 J<¢H>0/2 ) (21)
0G4 oCE*)’ 2(¢¢")o  (9")o + (¢"%)o

455 It follows that the steady state is stable if the eigenvalues of A are in the unit circle.

456 From the above it is also possible to check the stability within one replica, yielding equations for the phase

457 boundaries. The condition of the critical state, Cy; = C and M; = M, is indeed

J(@')o —1 J(9")o/2 _
et ( 2(¢¢")0 (D)o + (6”0 — 1) =0 (22)

458 This criticality found within single-replica is on the edge of the coexistence region, not at the edge of chaos
459 in general. In the systems dealt with in Refs. [40, 18, 23], this criticality appears on the edge of chaos due to the
40 symmetry and absence of random noise.

461 We next consider the stability against the inter-replica perturbation. Invoking once again identity 20, the
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42 linearized equation here is found to be

(03 / « / /! 6 e /! 60555
0 t—fl,s-i—l = <¢a¢ﬂ>5Mt + <¢o¢¢,@>5Msﬁ + <¢a¢6>% + <¢a¢/3>

+ (¢ ds)0CE; (23)

s  assuming that the system is stable against the intra-replica perturbations d M, §CH™ these perturbations converge

44 to O so that the linearized equation asymptotically is
OCE i1 = (9udp)0CE. (24)

465 Summarizing the above discussion, the steady state is stable if and only if the eigenvalues of the matrix A are
s in unit-circle and the inequality (¢, ¢%;) < 1 holds.

467 The single-replica stability is visualized for a range of model parameters in the lowest panels of Fig. 1.
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« S3 Field theoretical stability analysis

w9 The stability analysis can also be performed by checking the definiteness of the Hessian matrix around the saddle
40 point [18, 41], e.g. along the lines of Ref. [18]. We will use the abbreviation

Z Z <f(x?7xfamz7$g)> = Z <f(ma7mﬁvx’y7$6)>’ (25)

t,s,u,v o, 8,78 a,B,76

a7 that is, we do not write time parameters (¢, s, - - - ) explicitly unless it is necessary, and we only write explicitly the

a2 replica parameters as represented by Greek characters. In addition, we will abbreviate ¢(z§) by ¢©.
473 With this notation, the generating functional is

Zn[l] = / DQDQDmDmexp iN Y Q*'Q* +iN > m*m®
o, [+

N a
X H/Dﬂ)xexp iZia (Dx® — Jm® — ") — 2; %ﬁia:i’s fiZm“qs‘* fiE;QQ’BQSa(ﬁﬁ JriZl?xo‘
(26)

474 where Dl‘? = .’L‘?Jrl.

475 Let us expand it around the saddle point Qsp, Qsp, msp, msp with respect to the fluctuations ¢, g, i, u and
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476 take the 2nd-order variation.

/ D§DqDjiDpexp | iN» ( 1P Q%p + P q*” ) +iN Z Am® + i u®)
op

/Di”DxeXp ZZ :Ea(Dxa—ngp—nf‘)—ZQ—x z +ZZZD‘ @

alpha «a,

(1—zz(ja%a¢ﬂ Z—w T —ZZM"QSO‘—ZJZN“ *

a,B

2

ap
iY@+ Y Taa iy e il Y ptE )]
a,f a,p a o

/'DquD/ﬂ?uexp ZNZ( aﬂQaﬂ_,r saf aB) +iNZ(ﬂama+ﬂaua)
af «@

xexp(Nln(l—zZm‘ﬁ P~ ¢ﬁ>—22ﬂ ()
a,f3

1 - . -
-5 Z o P p7¢%) g — Zu (@)’ = > P (e ")
a,B,y a,By
i ~ (e~ ~a feY I~ - ~o) o
3 X R - N - 3 T 1 3 xmqﬁv)]
aByé af a,B,y a,B,y
(27
e It should be noted that i-dependence coming from 7; and ; is included in the average (o), which may otherwise

2
a7 seems to vanish in the last line of this equation. Using the expansion formula In(1+¢€) = € — & + O(€?), omitting
479 the 3rd order of fluctuations, and using the saddle point condition, we have the 2nd order variation around the

40 saddle point,

Zn|l] u/DquDﬂDuexp( > i (Bap +id (6%’ +i Y §” <5M555+ (p“pP 7% >>

a,B a,B,7,0
5 Y AN = Y P
o,B,y a,f,y
1 ((6°6°) — (6™)(6%)) i + B ((6°6° 9 8%) — (6°0%) (7 6%)) T°
2
a,B,7, 5

12 Z i ({07 ¢7) — (0™) (87 ¢7)) W)
o (28)

@ Let us now define the vectors, V = (1%, ¢%7)¢ s u.0.5,, and V= (1,357 ) .5 u.00.5,~- Moreover, let the matrix
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w2 Mbe

(6700 — (M)T))  (6%6P8Y) — (6°) (6067
M= <<¢a¢ﬂ¢7> — {5 dP) BTy (0P e) — <¢a¢>ﬁ><¢w5>> @9

ss and the matrix A be

_ (s +iT(0") e
! ( HOPO9T)  Ganas + 3(070P03%) ) o

44« By using them Eq. (28) can be written as
% Dt Lo vy Lot At pqt
= [dV | dVexp | VTAY — §V MV | = | dVexp —§V ATM™AY (31)
a5 The matrix M is obviously positive definite because it is a covariance matrix. The second variation around the

s saddle point is thus positive definite if and only if the operator .4 has no vanishing eigenvalue. We next derive

s7 the stability condition of the steady states by following Ref. [18]. Using the relation DO‘% = Jdup and

a dCP
D 207

488 = ba~085, €ach element of AV is written as

M N gMP ’
3" (Bap + i (6°F°)) pf = J 1Z(Daamﬂuﬁja<¢ >auﬁ> = JH DY = J(6*"))e",

5 OMP Ompb
o @y 908 O{d™) L J{6?")
_ g azfB ’Y E 5"/ — _ oo 1 aa
g 210" 8Cﬁv oQP 1 gcaa " / o Y

*¢P) OMY ; '
0 =~ T % OV 7 = (6 9)p" — (6767 )
v

_ pogespsT _ <¢a”¢ﬁ>q/ao¢ _ <¢a¢ﬁ”>\yﬁﬁ B <¢a'¢5/>‘1,a5
2 2 32)
a9 Where ® = g%z p® and U8 = ggzﬁ q®?, where the operator D* e DA acts as D“C’O‘ﬁDﬁT f‘fl s+1 and
w0 DM = Mg .
491 The steady state is stable if and only if the eigenvalue equation
Av = AU (33)

has no solution with the eigenvalue A = 0, where the five-dimensional vector ¢ stands for

s$8 7

= (Lpt 7\11;,)%&1905 \IIB,B \I/aﬁ)
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and the operator 2 in Eq. (33) is given by

D — J{g¢) — (82" 0 0 0
—2gter’) D™ e DT — ((677%) + (97 97")) 0 0 0
A= 0 0 D% — J(¢d) —3(¢2") 0
0 0 —2(¢80f") DD — ((6'¢") + (920")) 0

— (05762 —(0"98) —(6702") —L(orel”) D e D7 — (4 62")

w2 acting onto the vector (M2, 6C%™, §MFP 5CPP 5COPT,

493 We first examine the stability of a steady solution, C’f‘f = Cobts + Coo(1 — b4s), MY = M. We have to check

s if there exists a solution to the following equation when A = 0

/ (¢")
pry1 — J(@)pr — 2 Uy = Apy
(34
Uiit,e01 — 2(00 )1 — <<¢/2> + <¢¢N>) Wi = AUy

a5 Let the Z—transformation of o, and W, be respectively

P, = Z@tz_t7 \iIC = Z‘i]tg_t7 2], ¢ > 1. (35)

t t
496 In matrix form, the system of equations (34) can be written as
_ / _J@") 5 5

e 22, (%)A<%>. (36)

—2(¢8")  C—(¢"7) —(80") ) \¥¢ Pe
497 If the eigenvalue A = 0 exists, the equation

(2= T(@)(C — (&) = (90") = T(66) (¢") = 0 (37

e holds true for some z, ¢ satisfying |z|, |¢| > 1. Now ¢ satisfies (¢') > 0 and (¢/>) + (¢¢") > 0; consequently, the
a99  steady state is stable against the intra-replica perturbation if
2
(1= J(@")) (A —(¢7) = (¢6")) — J(d¢'}(¢") > 0. (38)

500 When the steady state is a fixed point (time independent, C, = Cy), the stability criterion within a single
sor  replica can be checked by use of Eq. (38). If the steady state is time-dependent C'r, < Cj, we have to consider
sz the stability against the perturbation U™, If the inequality (38) holds true, the possibile existence of a vanishing

sos  eigenvalue A = 0 can be brought about by

\I/t—i-l,s-&-l - <¢;¢;>qjts = A\Ilts- (39)
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504 As we saw, the matrix 2 appearing in Eq. 33 has the form
A0 0 Ay 0 0
0 A8 0 or 0 A 0 ; (40)
B, B, 2 (9%67) Bi, By, 21— (30

sos hence, once the stability against the perturbation (§ M, §C5*) is shown, the instability (possibility of the vanish-
sos ing eigenvalue) can come from only the terms z{ — (¢*‘¢? /> or 2{ — {¢:'ps’) respectively.
507 We next consider the stability against the perturbation \I/?f , that is, the vector (0,0, 0,0, \I/ff ). In this case, we

sos  have to look at the equation

U o — (o0l Wil = awpl @1

509 Taking the Z—transformation ¥, = Dot WP 2=1¢=1 which is defined when |z, |¢| > 1, we have
(¢ = (68762") = A) Fac = 0 42)
510 We conclude that The steady state is stable against the inter-replica perturbation 50595 , if and only if 1 —

st (' @P /> > (0; Hence we derive the stability condition

1 — (¢l dg) > 0. (43)
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s 94 Derivation of the Formula for the Critical Memory

s13 The meaning of information processing in dynamical systems has become the subject of a vast literature, well
s1a  summarized in references [36] and [37].

515 Within reference [36] two possible definitions are given of the memory capacity of a dynamical system. The
si6  first one (Eq. 6) does not include any preliminary shifting of mean levels, while the second one (Eq 2.1 of Supple-
57 mentary Material in Ref [36]) is equivalent to the definition of Ref. [37] and is more natural from the view point of
sis signal processing. An observer in possession of an unbiased estimator for the mean may remove the mean values
st from all the time series he records; what matters is the relationships between those mean-removed observations and
s20 the mean-removed version of the unobserved underlying process. Moreover, we would like the resulting memory
521 capacity to be zero when the linear readout is dominated by a constant baseline value, because nothing can be
s22  learned from a readout independent on the input. Adopting therefore the mean-removed formula, we find for the

s23  memory capacity M in the neighborhood of the second-order phase transition boundary

1
M~ — —— 44
(7" “
s+ as given in the main text.
525 To derive this formula, we proceed along the same lines as in Ref. [24], considering the input signal u; as

s U = + y, & and trying to re-construct the input u(t) with the sparse linear readout Zfil w;xj with O(K) <
sz O(vN). The memory curve C; and capacity Cy are given respectively by the determinant coefficient which

s2s  measures how well the readout neurons reconstruct the past input u(¢ — 7) correctly, and their sum [37]

Zf,(j=l COVt (Ut, SC,L‘JH_T)COVt (xi,h Z’jyt)ilcOVt (ut, Ij,t-i—‘r)

CT = 5
Var; (u) 45)
Cyu=)» Cr
528 The read out is sparse, so that the covariance Cov,(z;(t), z;(t)) becomes diagonal in the infinite population

s limit N — oo [23]. Moreover, we deal with the steady state so that this term is constant with respect to time.

sat We then have to compute Zfil ({zisue—7)7) ;- As shown in the Appendix in Ref. [24], when the input

7

s signal is a weighted sum of Gaussian random variables, the term <xi7tut_7> is given by the linear combination of
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s (@i &), Which is the zero-field susceptibility of the parameter (z; ;) = M;, x;,» = 851\{"
jit—7
1;=0
534 Let the signal be u; = j v;€;¢. Since we are interested in computing (z; sus, ), let’s proceed throughout

s the standard field-theoretical step of inserting an exponential source term for this quantity in side the general

s  functional, to then differentiate by the relevant parameter. The suitable source term is

exp (—i Z ky Z Uigi)t) . 46)
¢ i

537 Inserting it into the generating functional, we have
N
Zn[LE|(T) = // DxDz Hexp (z Z Tig (Tig — Ly — G — §i7t)> exp | —1 Z k¢ Z vi€it — ’LZ Lt
i=1 t t i git @b
538 where I}, = Zjvzl Jijé(x$,), and ¢; is quenched randomness whose mean and covariance are p and 0'd;;

s9  respectively. Taking average over the dynamical noisy input &; ; satisfying (£; +)e = 0 and (&; 1€, s)e = Oin0i;0ss

ss0  We have

N 2
(Zn (L, E|(]))e = // DJCD@HeXP <Z Z@yt (i — Lip — Gi) — Z %iit —o? Zktvifu + O(kz2)> :
=1 t t t

(48)
s« Thus, the term (z; ¢uy,) is found to be given by the weighted sum of the linear responses (x; +Z;¢,) as
2822yl K)(T) N .
(@ipury)e = (—1)* ————— = —io}, Zvj (i@, (). 49)
6l7, tékto X
’ I=k=0 Jj=1
542 The next quantity needed is (R, .10).0 = (] ,ui, 27 JuZ )e.¢)s. To compute this, we insert in the generating
sa3 functional the single source
exp | —o Z vV Z thjl-ytfit/ , (50)
JsJ t
544 This turns the the generating functional into
N
Z[l,r) = / / [[ pa"Dz* [[exp (Z > Ei (20 - I — G — @,t)) exp | —o* Y wvjup Yy mi it |,
a=1,2 i=1 t IRE t
(1)

s¢s  which makes additional perturbation to the inter-replica correlation (see Eq. (G11) in Ref. [24]).
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546 Let v; be ~ 1/N. The form of r; is assumed to be r; = 79d; 4,. Using it, h; 4 s ¢, is written as
h 0 19 _ 0 1,2 1 2 )
( i7t,s,to>J = 677nt<xi,txi,s>§7C,J = 57} ((xi,txi,s>57C7J - <<xi,t>€,C7J<xi7s>57CaJ) (52)
ro=0 ro=0

547 The last equality is brought about by d(x{',)¢ ¢,7/07¢|r,=0 = 0 (which is derived through Wick’s theorem [42]
ss due to z; ; being Gaussian random variables when we take the infinite population limit N — c0) and by use of the

s9  causality or normalization condition which gives (Z¢,) 7 = (:Ef‘tjf 7 =0.

550 Further, it should be noted that h; ; 5 +, i a perturbation brought about by the additional source term (50), so
s51 that
5 1 /(.1 /(.2 507513 /(.1 /(.2
5, (0 )o(ai)) s = (0'(2i )" (@70))ec.o 5, = (¢ (25,9 (@7 ))ec.alhitysto)- (53)
ro=0 ! ro=0
552 Let hfﬁ,to be
M
Wt = (hitsto)s (54)
i=1

ss3 for M = 1,2--- , N. What we desire is hft’to, which satisfies

K K
hzﬁl,tJrl,to = N((b'(sc%)(b'(a?%))‘]hi\fmo + ﬁaiéln(st,to’ (55)

s+ where the last term is coming from the random inputs

o (E)V7 645014y + 00ts + 0, v =1/N (56)
555 The term hi\fw , in the left hand side evolves as
N oY a2 N gt
ht+1,t+1,t0 = (¢ (x;) (It»Jht,t,to + ﬁfst,toa (57)

ss6 o that we have, in the steady state,

4
Oin T—
Rigriiri = 3 (@) o) (58)
ss7 and further, we have
K0i4n T—
Ry rtotrin = a0 (@) (59)

37


https://doi.org/10.1101/2022.05.11.491436

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491436; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

sss from Eq. (595).

559 The memory curve C; is proportional to hfg fritotrto SO that we conclude that the capacity C' = >,
se0  satisfies
- 1
C hp 60
M X Z totmtotmto X T _ (&' (V) (22)), (60)

=1
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