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Abstract 

Prior studies have suggested close associations between miRNAs and diseases. Correct prediction 

of potential miRNA-disease pairs by computational methods is able to greatly accelerate the 

experimental process in biomedical research. However, many methods cannot effectively learn the 

complex information in the multi-source data, and limits the performance of the prediction model. A 

heterogeneous network prediction model MEAHNE is proposed to make full use of the complex 

information in multi-source data. We first constructed a heterogeneous network using miRNA-disease 

associations, miRNA-gene associations, disease-gene associations, and gene-gene associations. Because 

the rich semantic information in the heterogeneous network contains a lot of relational information of 

the network. To mine the relational information in heterogeneous network, we use neural networks to 

extract semantic information in metapath instances. We encode the obtained semantic information into 

weights using the attention mechanism, and use the weights to aggregate nodes in the network. At the 

same time, we also aggregate the semantic information in the metapath instances into the nodes 

associated with the instances, which can make the node embedding have excellent ability to represent 

the network. MEAHNE optimizes parameters through end-to-end training. MEAHNE is compared with 

other state-of-the-art heterogeneous graph neural network methods. The values of area under precision-

recall curve and receiver operating characteristic curve show the superiority of MEAHNE. Additionally, 

MEAHNE predicted 50 miRNAs for lung cancer and esophageal cancer each and verified 49 miRNAs 

associated with lung cancer and 44 miRNAs associated with esophageal cancer by consulting relevant 

databases. MEAHNE has good performance and interpretability by experimental verification.   

Keywords—heterogeneous network, miRNA-disease association, semantic information, attention 

aggregation, graph neural network 

 

INTRODUCTION 

MiRNA is a type of noncoding RNA that plays an important role in the regulation of gene expression 

in eukaryotes [1-3]. Through the continuous improvement of biological experiment technology, the 
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important roles of miRNAs in the occurrence and development of diseases have been revealed [4-6]. 

During the development of diseases, a miRNA can inhibit or promote disease by interacting with miRNA 

target [7-8]. Identifying the miRNAs related to a disease is of great help for prevention and diagnosis. 

Therefore, researchers have carried out a large number of experiments between miRNA and disease 

However, the number of elements in the existing miRNA set is much larger than the number of miRNAs 

associated with diseases, which brings great challenges to biological experiments. 

Computational methods can help researchers find miRNAs that are highly likely to be associated 

with disease. Computational methods have gradually begun to be applied to the study of the association 

between miRNA and disease [9-10]. Finding high-probability miRNA-disease pairs using computational 

methods and then conducting biological experiments to experimentally verify these pairs can greatly 

increase the hit rate of biological experiments and save costs. The computational research methods for 

predicting the association between miRNA and disease are mainly divided into three categories: 

prediction based on similarity measures, the relation-based representation learning method, and graph 

neural network method. Our method processed data from different sources into heterogeneous network 

and uses heterogeneous graph neural network methods to learn the representation of the network. 

Based on similarity measures method, the central idea of the method is miRNA with similar 

functions may be associated with the same disease. Jiang et al. [11] established a miRNA functional 

similarity matrix and a miRNA-disease adjacency matrix to form a network, and calculated the similarity 

score in the network. Chen et al. [12] designed a prediction model, which integrates miRNA functional 

similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity between disease 

and miRNA. Then calculate within-score and between-score between miRNA and disease to make 

prediction. 

The relationship-based representation learning method is used for learning the relationship structure 

between miRNAs and disease. The relationship between miRNAs and disease can be modeled as a 

relationship network or as a relationship matrix. During representation learning of the relationship 

network, the relationship between miRNAs and disease is first integrated into a network. Chen et al. [13] 

regarded disease-related miRNAs as seeds, and used these seeds as starting points to perform a restarting 

random walk on the miRNA functional similarity matrix. You et al. [14]in order to alleviate the problem 

of sparse connections in the similarity network, use Gaussian profile kernel similarity to supplement the 

functional similarity matrix of miRNA and disease. And based on the obtained similarity matrix and 

miRNA-disease adjacency matrix, a heterogeneous network is established. They used the Depth-First-

Search method to predict potential miRNA-disease associations as they traveled through the network. 

Another very popular approach is representation learning of the relationship matrix. This method builds 

the miRNA disease relationship into a matrix and decomposes the matrix. Wu et al. [15] completes and 

optimizes the miRNA-disease adjacency matrix. They use the miRNA functional similarity matrix and 

the disease semantic similarity matrix and the KNN method to complete the miRNA-disease adjacency 

matrix. And they used the collaborative matrix decomposition method to obtain the representation matrix 

of miRNA and disease. Chen et al. [16] combined miRNA functional similarity, disease semantic 

similarity, and Gaussian interaction profile kernel similarity calculations as the comprehensive similarity 

of miRNA and disease, add the similarity into the miRNA-disease adjacency matrix, and finally 

decompose the adjacency matrix 

In the graph neural network learning method, the miRNAs and disease are first built into a graph, 

then the graphs are learned using graph neural network (GNN) methods [17-20]. The node representation 

of the GNN method fuses the structural information and the attribute information of the network. At the 
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same time, the graph neural network end-to-end training method can also be used to optimize all the 

parameters in the model. Therefore, the learning ability of graph neural networks is very powerful. Li et 

al. [21] established a miRNA functional similarity matrix and disease semantic similarity matrix into a 

graph, and used GCN [17] to learn the structure information of the graph; they then used the structure 

information as the input for a multi-layer neural network to obtain a low-dimensional representation of 

miRNA and disease. To effectively integrate heterogenous miRNA and disease information, Li et al. [22] 

designed a graph encoder, which contains an aggregator function and a multi-layer perceptron that 

aggregates node neighborhood information to generate a low-dimensional embedding of miRNAs and 

diseases. 

Many methods learn on homogeneous data, and isomorphic graph neural networks cannot adapt 

well to the complex associations of heterogeneous networks obtained when using multi-source 

heterogeneous data. To learn the semantic information generated by the complex associations in the 

network, the heterogeneous neural network performs multi-modal information mining on the 

heterogeneous network by setting the metapath. Each metapath represents a semantic type. Multiple 

subgraphs are sampled from the heterogeneous network according to the set of multiple metapaths, and 

then the graph neural network method is used to learn a low-dimensional representation of the nodes on 

the subgraphs. The concept of metapath was first proposed by Metapath2vec Dong Y et al. [23]. 

Metapath2vec samples multiple sequences composed of nodes from heterogeneous networks through the 

metapath setting, and a word representation learning model processes the sequences into low-

dimensional vector representations. HAN [24], a representative heterogeneous graph neural network, 

processes the heterogeneous network into multiple sub-netwoks through metapath, and processes each 

subgraph into a graph composed of corresponding nodes of the same type. GAT [18] is then used to learn 

low-dimensional representations of isomorphic subgraphs, and semantic level attention is used to 

integrate the representations under multiple metapaths. HAN learns the semantic information in the 

network, and it can better represent the nodes in the network than the isomorphic neural network. 

However, this method processes the sub-graphs under the metapath into isomorphic graphs, ignoring all 

intermediate nodes, resulting in a large amount of information being ignored. This problem is also called 

the early-summarization problem [25]. MAGNN [26] is a heterogeneous neural network model based on 

HAN. To solve the problem of missing information in the intermediate nodes on the metapath subgraph, 

MAGNN rotates the intermediate nodes of each metapath instance of the subgraph. The low-dimensional 

embedding obtained by the rotation is regarded as the semantic information of the instance, and the 

semantic information is aggregated into the target nodes. In the MAGNN method, the information of all 

types of nodes is fused together, which leads to the loss of discrimination between the representations of 

different types of nodes. 

The traditional heterogeneous graph neural network aggregates nodes in the network 

indiscriminately, which wastes the semantic information in the network. In fact, semantic information in 

the network can help the network to aggregate nodes more efficiently. To overcome this problem, we 

propose a semantic-based attention aggregation heterogeneous graph neural network to predict miRNA-

disease potential association. Our main contributions are as follows: 

⚫ To fully utilize the semantic information in heterogeneous graph neural networks, we propose a 

semantic-based attention mechanism that utilizes the extracted semantic information to efficiently 

aggregate nodes in heterogeneous networks.  

⚫ In addition to aggregating neighbor node information, the semantic information extracted from 

metapath instances is also aggregated into nodes associated with instances. This enables nodes to 
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have rich semantic information and adequately express relationships in heterogeneous networks. 

⚫ We design a semantic-based heterogeneous graph neural network model. By utilizing the semantic 

information of multiple metapaths and the semantic information of metapath instances, the 

relationships in the mirna-disease-gene network are fully mined. Our model can be used for the 

mining of large-scale multi-source biological data. 

EXPERIMENTS 

In this section, we introduce several representative models of heterogeneity graph representation, 

compare and analyze them with our model in detail. We compare our method with other heterogeneous 

network embedding methods under two metrics, area under the receiver operating characteristic curve 

(AUC), and area under the precision-recall curve (AP), under fair conditions. And draw the Receiver 

Operating Characteristic(ROC) and Precision Recall(P-R) curves. Then the advantages of our model 

analyzed for miRNA-disease link prediction tasks in large-scale heterogeneous networks by observing 

and comparing experimental performances. The models we used for comparison are as follows: 

Metapath2vec [23]: A structural learning method for heterogeneous networks. The network is 

sampled according to the set metapath to obtain a sentence composed of nodes in the network, and the 

sentence is used as an input for the skipgram model to obtain the final node embedding. We experimented 

with multiple metapaths and obtained the best performance under the metapath(mirna-disease-gene-

mirna). 

GAT [18]: A type of isomorphic graph neural network. This model uses the attention mechanism to 

assign weights to the neighbors of nodes in the spatial domain. According to the calculated weights, the 

neighbors in the spatial domain are aggregated. GAT uses multi-head attention, which is used to 

comprehensively learn the network and generate the final node representation. 

HAN [24]: A heterogeneous graph neural network model that uses multiple metapaths to mine the 

network, separates the corresponding subgraphs, and processes the subgraphs into isomorphic graphs; 

GAT is then used to learn the processed graph to obtain the node representation under a single metapath, 

and then the attention mechanism is used to fuse the node representations under multiple metapaths. 

MAGNN [26]: A heterogeneous graph neural network model. This model first uses multiple 

metapaths to sample the network to obtain multiple subgraphs under different source paths. To preserve 

the instances of each subgraph, the semantic information of each instance is rotated, and different types 

of rotations are rotated into the same space as the semantic information of each instance. The attention 

mechanism is used to aggregate the semantic information of the instances into the nodes. The problem 

of premature integration is alleviated. Finally, semantic level attention is used to fuse the node 

representations under multiple source paths.  

HeCo [32]: A self-supervised heterogeneous graph neural network. The node representation of the 

heterogeneous network is learned from two perspectives, namely the network architecture perspective 

and the metapath perspective, which fully capture the information in the heterogeneous network. By 

using collaborative contrastive learning for node embedding from the two perspectives, network 

perspective and meta-path perspective are collaboratively supervised as two views. As training 

progresses, these two views will guide each other and co-optimize.GAEMDA [33]: An autoencoder 

model used on bipartite graphs. The model first projects the two types of nodes in the bipartite graph into 

the same space through the node transformation matrix, and aggregates the features of other types of 

nodes into the original embedding of the node through the encoder of the graph neural network. Finally, 

the prediction of potential links between nodes is done using a bilinear decoder. 

The parameter settings used for the models were as follows: 
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The window size of the Metapath2vec model was set to 5 and the walk length to 100; each node performed 

10 walks, and the number of negative samples was 5. In the GAT model, the hidden layer dimension was 

set to 64, the multi-head attention to 2, and the learning rate to 0.0001. HAN, MAGNN, and our method 

MEAHEN are heterogeneous neural networks, which are methods for metapath segmentation of the 

original heterogeneous network and learning of segmentation subgraphs, so we used the same parameters 

for all three models. Since both MAGNN and our model MEAHNE set a limit on the number of nodes in 

the node sampling stage, for fairness, we set the same limit for the HAN model: a maximum of 100 

neighbors for each node. The node dimensions of the three models were all set to 64, with a learning rate 

of 0.005 and an L2 penalty weight of 0.001. In the GAEMDA model, the number of node aggregation 

layers was set to 2, the learning rate to 0.001, and the weight decay to 0.001. In the HeCo model, the 

learning rate was set to 0.001, the number of neighbor samples in the network architecture perspective to 

10, and the dimension of the hidden layer to 64. Table 1 shows the experimental results of all models 

according to two indicators, AUC and AP, and Fig 1 shows the ROC curve and P-R curves for several 

linked prediction tasks.  

Table 1. Model evaluation  

Model AUC AP 

Metapath2vec 72.78 70.60 

GAT 91.96 92.30 

HAN 90.35 90.21 

GAEMDA 91.96 90.35 

MAGNN 92.93 93.06 

HeCo 93.00 92.87 

MEAHNE 94.39 94.87 

Analysis of experiments 

According to the table 1, our model results have good performance under both AUC and AP metrics. 

We use semantic information twice to make nodes fully aggregated. The first is to encode semantic 

information into weights to aggregate neighbor nodes, and the second is to fuse semantic information 

into connected nodes. In this way, our model achieves good performance. 

By comparing the experimental results, we can find that since the Metapath2vec model generation 

node embedding process and the downstream prediction task were performed separately, the downstream 

 

Fig 1 ROC and PR curves for all models  (a) ROC curves of all models  (b) P-R curves of all models 
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prediction task does not affect the generation of upstream nodes. At the same time, the upstream node 

embedding generation task can only learn the structural information of the node, making the node 

representation incomplete, which is also the reason why the performance of Metapath2vec was not as 

good as that of GNN models. The GAT model treats all nodes as being of the same type, which makes 

GAT unable to learn rich semantic information. It also aggregates all neighbors in the spatial domain, 

and the noise from the neighbors will also affect the final result. The HAN model only aggregates 

homogenous nodes connected to the target node through the metapath, which is equivalent to HAN 

giving semantic information for the meta-path instances and only paying attention to the semantic 

information at the metapath level. Lack of semantic information leads to the poor performance of HAN. 

In the GAEMDA model, nodes only aggregate information for connected nodes of different types. Since 

the auto-encoder continuously updates the node representation on the graph,the node can learn 

information of nodes that are multiple hops away from it , which helps GAEMDA achieve better results 

than HAN. 

The MAGNN model learns semantic information on the metapath instances and aggregates this 

information, which enables this model to better learn the complex information in the model; therefore, it 

yielded good results. The HeCo model learns node representations from two perspectives. Contrastive 

learning method makes the two perspectives constrain and complement each other in the learning process. 

The node representation obtained in this way is very complete. HeCo yields good results.  

Analysis of model parameters: 

We changed two parameters in our model, dimension of the node vector and the number of semantic 

information extraction layers, to evaluate their influence on performance of the model. In this section, 

we describe experiments used to evaluate the influence of these two parameters on the model. 

For the dimension of the node vector, we found that when the node vector was 64-dimensional, the 

model performance was better, but when the dimensions were 128 and 256, the model performance 

became worse (Fig 2). Thirty-two dimensions could not fully express the node information, resulting in 

loss of information, while 128 and 256 dimensions were too many and contained a lot of noise; 256 

dimensions contained the most noise and led to the worst performance. 

Our model uses non-linear fully connected layer to build when extracting semantic information on 

the instance of the metapath, and different number of connection layers affects the quality of information 

extraction. It can be seen in Fig 3 that the performance was best when the number of node fusion layer 

was one; the performance of two layers and three layers were similar, and four layers was the worst. 

Multiple non-linear fully connected layers cause over-fitting, resulting in insufficient semantic 

information learned. The poor performance of the four layers verifies this point of view. 

      

  Fig 2. AUC obtained by vector dimention         Fig 3. AUC obtained by different number of semantic extract layers 

 

 

Fig 3 Fig 2 
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Case studies 

To test the accuracy of our model, we performed miRNA predictions for lung cancer and 

nasopharyngeal carcinoma. The prediction method was as follows: all of the miRNAs were paired with 

these two diseases to obtain miRNA-disease pairs, and the trained model was used to score the pairs. We 

selected the top 50 miRNAs in the miRNA disease combination for evaluation. Among the potential 

miRNA prediction results for lung cancer, after dbDEMC [34] verification, there were a total of 49 

associations with lung cancer. The association of hsa-mir-1-1 was not verified using dbDEMC. Among 

the potential miRNAs associated with throat cancer, 44 miRNAs in the top 50 miRNAs were verified 

using the dbDEMC database. The miRNAs that were not verified were hsa-mir-210, hsa-mir-92-1, hsa-

mir-1-1, hsa-mir-9-3, hsa-mir-9-2, and hsa-mir-9-1. The prediction results are shown in Tables 2 and 3. 

 

Table 2.  The top 50 miRNAs associated with lung cancer in the prediction results 

miRNA evidence miRNA evidence 

hsa-mir-21 dbDEMC hsa-mir-142-3p dbDEMC 

hsa-mir-155 dbDEMC hsa-mir-125b-2 dbDEMC 

hsa-mir-210 dbDEMC hsa-mir-193b dbDEMC 

hsa-mir-16 dbDEMC hsa-mir-141 dbDEMC 

hsa-mir-15a dbDEMC hsa-mir-125a dbDEMC 

hsa-mir-132 dbDEMC hsa-mir-30 dbDEMC 

hsa-mir-17 dbDEMC hsa-mir-124 dbDEMC 

hsa-mir-221 dbDEMC hsa-mir-451 dbDEMC 

hsa-mir-140 dbDEMC hsa-mir-29c dbDEMC 

hsa-mir-126 dbDEMC hsa-mir-145 dbDEMC 

hsa-mir-122 dbDEMC hsa-mir-27a dbDEMC 

hsa-mir-146b dbDEMC hsa-mir-486 dbDEMC 

hsa-mir-150 dbDEMC hsa-mir-23a dbDEMC 

hsa-mir-222 dbDEMC hsa-mir-196a dbDEMC 

hsa-mir-223 dbDEMC hsa-mir-200b dbDEMC 

hsa-mir-137 dbDEMC hsa-mir-1-1 unfirmed 

hsa-mir-34a dbDEMC hsa-mir-139 dbDEMC 

hsa-mir-146a dbDEMC hsa-mir-143 dbDEMC 

hsa-mir-200a dbDEMC hsa-mir-214 dbDEMC 

hsa-mir-34b dbDEMC hsa-mir-206 dbDEMC 

hsa-mir-26b dbDEMC hsa-mir-30a dbDEMC 

hsa-mir-26a dbDEMC hsa-mir-29a dbDEMC 

hsa-mir-33a dbDEMC hsa-mir-205 dbDEMC 

hsa-mir-218 dbDEMC hsa-mir-20a dbDEMC 

hsa-mir-196b dbDEMC hsa-mir-33 dbDEMC 
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Conclusion 

Due to the relatively small number of verified relationships between miRNA and disease, we 

selected the third type of node gene and build a heterogeneous network to alleviate this problem. 

Meanwhile, we propose a semantic-based heterogeneous graph neural network model for link 

prediction, which aggregates nodes using semantic-based attention aggregation method. The model 

utilizes semantic information to aggregate nodes in heterogeneous networks twice, and nodes can fully 

express the relationships in the network. Traditional heterogeneous graph neural networks often ignore 

intermediate nodes[25] and cause information loss. We avoid this problem by extracting the information 

on metapath instances into semantic information. Compared with the heterogeneous graph neural 

network methods of the past few years, our method achieves the best performance in both AUC and AP. 

  But it is worth mentioning that our model still has room for improvement. First we randomly 

select a fixed number of metapath instances for each node. Other selection strategies may yield better 

performance. Second, semantic information has an important place in our model. Our model uses neural 

networks to extract semantic information. Whether other extraction methods can make the model perform 

better is worthy of our further experiments. 

Table 3.  Top 50 miRNAs associated with nasopharyngeal carcinoma in the prediction results 

miRNA evidence miRNA evidence 

hsa-mir-155 dbDEMC hsa-mir-1-1 unfirmed 

hsa-mir-15a dbDEMC hsa-mir-24-2 dbDEMC 

hsa-mir-132 dbDEMC hsa-mir-29c dbDEMC 

hsa-mir-16 dbDEMC hsa-mir-23b dbDEMC 

hsa-mir-21 dbDEMC hsa-mir-200a dbDEMC 

hsa-mir-223 dbDEMC hsa-mir-31 dbDEMC 

hsa-mir-17 dbDEMC hsa-mir-15b dbDEMC 

hsa-mir-221 dbDEMC hsa-mir-486-3p dbDEMC 

hsa-mir-23a dbDEMC hsa-mir-532 dbDEMC 

hsa-mir-18a dbDEMC hsa-mir-9-3 unfirmed 

hsa-mir-29a dbDEMC hsa-mir-18b dbDEMC 

hsa-mir-29b dbDEMC hsa-mir-27b dbDEMC 

hsa-mir-25 dbDEMC hsa-mir-485-5p dbDEMC 

hsa-mir-126 dbDEMC hsa-mir-16-1-3p dbDEMC 

hsa-mir-218 dbDEMC hsa-mir-9-2 unfirmed 

hsa-mir-1307 dbDEMC hsa-mir-30c dbDEMC 

hsa-mir-30a dbDEMC hsa-mir-9-1 unfirmed 

hsa-mir-122 dbDEMC hsa-mir-29b dbDEMC 

hsa-mir-375 dbDEMC hsa-mir-133a dbDEMC 

hsa-mir-210 unfirmed hsa-mir-133b dbDEMC 

hsa-mir-30a dbDEMC hsa-mir-30b dbDEMC 

hsa-mir-182 dbDEMC hsa-mir-9 dbDEMC 

hsa-mir-222 dbDEMC hsa-mir-708 dbDEMC 

hsa-mir-92-1 unfirmed hsa-mir-206 dbDEMC 

hsa-mir-193b dbDEMC hsa-mir-137 dbDEMC 
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Materials 

This section introduces the data we used, which consist of three types of nodes, namely miRNA, 

disease, and gene, and types kinds of associations between the three types of nodes. The four types of 

associations are miRNA-disease association, miRNA-gene association, disease-gene association, and 

protein-protein interaction association. 

We collected related links between miRNAs and diseases from the HMDD3.2 [28] database. HMDD 

is a reliable database that specifically collects miRNA-disease associations. We collected 17,972 links 

between 1206 miRNA and 893 diseases and integrated miRNAs and diseases as nodes, and miRNA-

disease associations as instances into the heterogeneous network. We collected related links between 

miRNAs and target genes from the Circ2disease [39] database. We selected 4676 links between 202 

miRNAs and 1713 genes and integrated miRNAs and target gene as nodes and the associations between 

them as instances into the heterogeneous network. We collected the related links between diseases and 

genes from DisGeNET [30]. We selected 84,038 links between 11,181 diseases and 9703 genes and 

integrated diseases and genes as nodes and the associations between then as instances into the 

heterogenous network. 

The protein-protein interaction network was obtained from the STRING [31] database, which is a 

reliable database that specifically collects protein interactions. We select genes associated with our 

chosen miRNAs and diseases and integrate these genes into our heterogeneous network The 105,171 

associations between these genes were integrated into the heterogeneous network as instances. Finally, 

we established a heterogeneous network with 1296 miRNAs, 11,783 diseases, 10,116 genes, and 211,857 

instances (Tables 4 and 5). 

Table 4. Nodes in the network 

 

Table 5. Associations in the network 

 

Methods 

Definition of metapath. Heterogeneous networks have many types of nodes and many types of 

relationships. The paths composed of different types of nodes and different types of instances contain 

rich semantic information, which is not available in homogeneous graphs. To learn the semantic 

information in heterogeneous networks, the concept of metapath is proposed. For example: 

𝓅1=a1
r1

→
a2

r3

→
a3

r5

→
a1 is a metapath, and 𝓅2=a2

r3

→
a3

r4

→
a2 is another metapath, in which 𝓅i(𝓅i ∈ 𝒫) 

represents a specific metapath, 𝒫 represents all types of metapaths in the heterogeneous network. ai ∈

Node Nuimber Source Dataset 

miRNA 1296 HMDD3.2/Circ2disease 

disease 11783 DisGeNET/HMDD3.2 

gene 10116 Circ2disease/DisGeNET 

association number Source  

miRNA-disease 17972 HMDD3.2 

miRNA-gene 4676 Circ2disease 

disease-gene 84038 DisGeNET 

gene-gene 105171 STRING 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491444doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491444
http://creativecommons.org/licenses/by/4.0/


𝒜, in which ai represents the i-th type of nodes in the heterogeneous network and 𝒜 represents the 

collection of all node types in the heterogeneous network.  ri ∈ ℛ,  ri  represents the i-th type of 

relationship between nodes and ℛ represents the collection of all relationship types in the heterogeneous 

network. 

Definition of metapath instance [26]. Under each metapath type 𝓅i, there are a large number of 

paths following 𝓅i in the heterogeneous network. We call these paths metapath instances. For example, 

va1
1 → va2

5 → va3
3 → va5

2  is a metapath instance under 𝓅1, in which vai
i  represents the i-th node of type 

ai. 

Definition of metapath neighbors. The two endpoints of a metapath instance are metapath neighbors 

to each other, and they are connected by the metapath instance. For example, va1
1 → va2

5 → va3
3 → va5

2  is 

a metapath instance in which va1
1  and va5

2  are metapath neighbor to each other. 

This section introduces the main methods, ideas, and specific implementation details of the 

MEAHNE model. The MEAHNE model is mainly divided into five parts: node conversion, subgraph 

extraction, metapath instance semantic information extraction, node aggregation method based on 

metapath instance semantic attention, multi-semantic information fusion, and link prediction. Fig 4 

shows the overall framework of MEAHNE. 

 

 

Fig 4. MEAHNE framework. First, nodes of different types are projected into the same space. We use neural networks to extract 

semantic information in metapath instances. We encoded the semantic information into values as weights to aggregate nodes. The 

semantic information on metapath instances was aggregated to obtain a more powerful node representation. Finally, representations 

under all metapaths were fused to obtain the final node embedding. 
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A. Node space conversion 

If we want to learn representations of heterogeneous networks, we need to perform interactive 

calculations on the nodes of the graph. However, heterogeneous network have multiple types of nodes, 

and different types of nodes are located in different spaces. If the nodes are not processed, the interactive 

calculation between nodes becomes too difficult, so we first converted all types of nodes into the same 

space to facilitate calculations between nodes as follows. 

A trainable linear transformation matrix was set for each type of node, and original nodes of different 

types were projected into the same space, as shown in formula (1): 

                                 ℎ𝑎𝑖
= 𝑀𝑎𝑖

∙ 𝑥𝑎𝑖
                                  (1) 

Where xai
 represents the original feature vector of the node type ai, and Mai

∈ ℝd′×dai , in which 

d′  represents the feature space dimension after space conversion and  dai
  represents the original 

feature dimension of ai type node. 

B. Extract the metapath subgraph and the metapath instances  

To mine heterogeneous network in multiple metapaths, the first step is to separate the corresponding 

sub-networks based on specific metapaths.  

We separated the sub-network 𝒢𝓅i
  according to the metapath 𝓅i , and 𝒢𝓅i

  represents the sub-

network mined in the 𝓅i mode. In sub-network 𝒢𝓅i
, the metapth instances corresponding to the 𝓅i 

was sampled and denoted as P(v, u), which connects the target node v and its metapath neighbor u.  

C. Extract the semantic information contained in the metapath instances 

When mining the information from the corresponding subgraph 𝒢𝓅i
 under a single metapath, 𝓅i, 

different types of nodes are transformed into the same space through space, which allows different types 

of nodes to represent each other. The metapath instance is composed of different types of nodes connected 

to each other and contains rich semantic information. Therefore, to learn the semantic information on the 

metapath instance when learning the subgraph, we first integrated the information on the metapath 

instance. Each metapath instance was represented as a vector that represents the semantic information on 

the instance. All the nodes on the metapath instance were concatenated according to the order of the 

metapath, as shown in formula (2):  

ℎ𝑃(𝑣,𝑢) =∥ (𝑃(𝑣, 𝑢)) =∥∀𝑡∈{𝑚𝑃(𝑣,𝑢)} (ℎ𝑡)                      

(2) 

in which 𝑚𝑃(𝑣,𝑢)  represents the set of nodes on the metapath instance and 𝑃(𝑣, 𝑢),  ℎ𝑃(𝑣,𝑢) 

represents the vector obtained by concatenating the vectors of the nodes on the metapath instance 

𝑃(𝑣, 𝑢). 

The nonlinear neural network was used to learn the vector ℎ , and ℎ  represents the semantic 

information of the metapath instance. The nonlinear neural network, which has strong information 

extraction capabilities, is a network composed of multiple fully connected layers and nonlinear activation 

functions, as shown in formula (3): 

𝜙𝓅
𝑙 = 𝑟𝑒𝑙𝑢(𝑊𝓅

(𝑙)
𝑟𝑒𝑙𝑢(⋯ 𝑟𝑒𝑙𝑢(𝑊𝓅

(1)
𝑋 + 𝑏𝓅

1 ) ⋯ ) + 𝑏𝓅
𝑙 )                  (3) 

Where W𝓅
i  represents the weight matrix of the ith fully connected layer of the neural network under 

metapath 𝓅, b𝓅
i  represents the bias value of the ith layer of the neural network under metapath 𝓅, 𝑋 

represents the input feature, and 𝜙𝓅
𝑙  represents the vector representation of the input vector 𝑋 learned 

through 𝑙 connection layers in the neural network under metapath 𝓅. We used the vector ℎ𝑃(𝑣,𝑢) as the 

input of the nonlinear neural network to get the semantic information of metapath instance, as shown in 
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formula (4): 

ℎ𝑃(𝑣,𝑢)
′ =𝜙𝓅

𝑙 (ℎ𝑃(𝑣,𝑢))                                  (4) 

D. Semantic-based attention aggregation method 

After obtaining the semantic information from the metapath instances, we can aggregate the 

semantic information into the target nodes connected to these metapath instances, but the semantic 

information is obtained by the fusion of different types of nodes. If the target node only aggregates 

semantic information, each type of node contains information about other types of nodes, causing 

different types of nodes to lose their distinction. To maintain the discrimination between nodes of 

different types, we first aggregate only neighbor nodes of the same type. For aggregating nodes of the 

same type, we designed a method to encode semantic information into attention weights and used the 

obtained attention coefficient to aggregate metapath neighbors. Then, we fused the information obtained 

by the aggregation of nodes of the same type and semantic information from metapath instances as the 

final node representation. 

We encoded the semantic information on the metapath instance using the attention mechanism as a 

weight value—the correlation strength coefficient between the target node and the metapath neighbor, as 

shown in Fig 5 and Equations (5) and (6). 

𝑒𝑣𝑢
𝓅

= 𝐿𝑒𝑎𝑘𝑦_𝑟𝑒𝑙𝑢(𝑎𝓅 ∙ ℎ𝑃(𝑣,𝑢)
′ )                        (5)  

𝑎𝑣𝑢
𝓅

= 𝑠𝑜𝑓𝑡_𝑚𝑎𝑥(𝑒𝑣𝑢
𝓅

) =
    𝑒𝑥𝑝(𝑒𝑣𝑢

𝓅
)

∑ 𝑒𝑥𝑝(𝑒𝑣𝑠
𝓅

)
𝑠∈𝑁𝑣

𝓅
   

                        (6) 

 

Fig 5. encoding semantic information on the metapth instances into attention weights 

 

Where evu
𝒫   represents the value encoded by the attention mechanism, Leaky_relu  (∙）is a nonlinear 

activation function, a𝓅 represents the attention weight matrix under metapath 𝓅, Nv
𝓅

 represents the set 

of metapath neighbors connected to the target node v on the subgraph under metapath 𝓅 , and avu
𝓅

 

represents the weight value obtained by normalizing evu
𝓅

.  

Next, the metapath neighbors were aggregated according to the weight 𝑎  and the semantic 

information was also integrated to ensure the integrity of the node embedding. 

To reasonably integrate semantic information during the node aggregation stage, we performed 

secondary learning on semantic information. We designed a trainable matrix to optimize semantic 

information and added nonlinear activation operations to the optimization results as shown in formula 

(7).  
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                       ℎ𝑃(𝑣,𝑢)
′′ = 𝑟𝑒𝑙𝑢(𝑏𝓅 ∙ ℎ𝑃(𝑣,𝑢)

′ )                              (7) 

Where 𝑏𝓅 represents a learnable weight matrix under metapath 𝓅, and the content of semantic 

information is continuously adjusted through end-to-end learning. 

Next, the node information was aggregated. We used the learned metapath semantic weight to 

aggregate the metapath neighbors and added the semantic information learned twice, as shown in formula 

(8): 

                           ℎ𝑣
𝓅

= ℎ𝑃(𝑣,𝑢)
′′ + ∑ (𝑎𝑣𝑢

𝓅
∙ ℎ𝑢)𝑢∈𝑁𝑣

𝓅                           (8) 

E. Fuse embedding of multiple metapaths  

In the above steps, we only learned the heterogeneous network under a single metapath. In fact, our 

model learns the heterogeneous network in multiple metapath modes and generates the representation of 

the target node in multiple metapath modes. We used neural network methods to integrate node 

representations under multiple metapaths, as shown by formula (9): 

ℎ𝑣 = ∥∀𝓅𝑖∈𝒫 (ℎ𝑣
𝓅𝑖)                              (9) 

Where hv
𝓅i represents the embedding obtained by aggregating the target node v under metapath 𝓅i 

andℎ𝑣 represents the result of concatenating the representation of the target node v under all metapaths. 

Then the embedding ℎ𝑣  was input into the nonlinear neural network to learn a low-dimensional 

embedding that fuses the target node representation under multiple metapaths as shown in formula (10): 

                                             𝐻𝑣 = 𝜙(ℎ𝑣)                                                    (10) 

After learning using a nonlinear neural network, 𝐻𝑣  represents a low-dimensional embedding that 

fuses multiple metapath representation results as the final representation of the target node. 

F. Link prediction and optimization goals 

The vector inner product is used as the score of the link strength of the two nodes. If the two vectors 

are highly correlated, then the score of the node inner product will be higher. We used this as the basis 

for link prediction as shown in formula (11): 

 scoremd = σ(< ℋm, ℋd >)                     (11) 

Our link prediction was between miRNA and disease. The higher the prediction score, the stronger 

the correlation, and the lower the prediction score, the weaker the correlation. In theory this is a two-

classification problem, so we used two-class cross-entropy as the optimization target. Our optimization 

goal is shown in formula (12): 

Loss = − ∑ log(σ(< ℋm, ℋd >) )(m,d)∈Φ − ∑ log(σ(−< ℋm, ℋd >) )(m,d)∈Φ−     (12) 

Where Φ represents the set of miRNA and disease pairs that have been verified to be associated, 

and Φ− represents the set of all miRNA-disease pairs that have not been experimentally verified. The 

goal of the optimization is to make the score between verified node pair higher and the unverified node 

pair lower. Because our model is an end-to-end training model, the parameters in the model are 

continuously optimized during the training process, and the continuously optimized parameters enable 

us to achieve the optimization goal. 
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Key Points 

 

⚫ An attention aggregation method based on metapath instances in heterogeneous networks was 

developed for miRNA-disease association prediction. 

⚫ This model innovatively encodes the semantic information on the metapath instance into weights 

and uses the obtained weights as the attention for aggregating nodes.  

⚫ Heterogeneous neural networks often ignore semantic information on metapath instances. This 

model fuses the information on the instances to the nodes, which gives the nodes in the network 

more comprehensive information, and finally calculates the similarity of the nodes in the network 

to predict the association between miRNAs and disease. 
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