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Abstract 

Cancer is driven by both genetic and epigenetic changes that impact on gene expression 

profiles and the resulting tumourigenic phenotype. Enhancers are transcriptional regulatory 

elements that are key to our understanding of how this rewiring of gene expression is achieved 

in cancer cells. Here we have harnessed the power of RNA-seq data from hundreds of patients 

with oesophageal adenocarcinoma (OAC) or its precursor state Barrett’s oesophagus (BO) 

coupled with open chromatin maps to identify potential enhancer RNAs (eRNAs) and their 

associated enhancer regions in this cancer. We identify ~1000 OAC-specific enhancers and 

use this data to uncover new cellular pathways that are operational in OAC. Among these are 

enhancers for JUP, MYBL2 and CCNE1, and we show that their activity is required for cancer 

cell viability. We also demonstrate the clinical utility of our dataset for identifying disease stage 

and patient prognosis. Our data therefore identify an important set of regulatory elements that 

enhance our molecular understanding of OAC and point to potential new therapeutic 

directions.   
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Introduction 

Enhancers are distal regulatory elements that generally promote gene expression by 

engaging with the promoters of their target genes in cis (Andersson and Sandelin, 2020), 

although they have also been observed acting in trans (Hu et al, 2008; Spilianakis et al, 2005) 

and more recently, through hubs of activity on extra-chromosomal DNA species (Hung et al, 

2021). Active enhancers are characterised by the presence of histone marks such as H3K27ac 

and H3K4me1 (Creyghton et al, 2010; Heintzman et al, 2007). However, it has been shown 

that enhancers can be the site of production for small transcripts termed enhancer RNAs 

(eRNAs) (De Santa et al, 2010; Kim et al, 2010). Whilst the functionality of eRNAs is still under 

debate, there is a large body of evidence associating the production of eRNAs with enhancer 

activity, and subsequent target gene activation (Tyssowski et al, 2018; Andersson et al, 2014; 

Chen et al, 2018). This association with gene expression has allowed eRNA-defined enhancer 

activity to serve as a specific marker for developmental stage and tissue type (Yan et al, 2019; 

Huang et al, 2016). Furthermore, eRNAs provide molecular markers for disease, often with 

more sensitivity than the gene expression pattern itself (Zhang et al, 2019; Chen et al, 2018). 

During tumourigenesis, there are widespread changes to gene expression patterns 

that are associated with rewiring of the regulatory landscape in an enhancer-driven manner 

(Li et al, 2015; Hsieh et al, 2014). This can be accompanied by eRNA production. For example, 

production of an eRNA from the PSA gene enhancer is associated with increased PSA 

expression in castration-resistant prostate cancer (Zhao et al, 2016). This potentially makes 

the production of eRNAs a biomarker for cancer, but this is widely underappreciated. Indeed, 

a recent pan cancer study demonstrated that eRNAs can serve as prognostic markers across 

various cancer types and provide novel insights into cancer biology (Chen et al, 2018), leading 

to the identification of therapeutic opportunities.  

Oesophageal adenocarcinoma (OAC) has an overall 5-year survival rate of 

approximately 15%, making it a leading global cause of cancer-associated deaths (Coleman 

et al, 2018). OAC is believed to arise in a stepwise fashion from the pre-cancerous lesion 

Barrett’s oesophagus (BO) (Peters et al, 2019). A number of large-scale DNA sequencing 

studies have been performed into the pathogenesis of OAC from Barrett’s (Frankell et al, 2019; 

Ross-Innes et al, 2015; Stachler et al, 2015), however there is still uncertainty concerning the 

precise molecular mechanisms. In an effort to understand potential epigenetic contributors to 

OAC, we have previously demonstrated that changes in chromatin accessibility play a role in 

the transition to OAC (Britton et al, 2017; Rogerson et al, 2019; Rogerson et al, 2020). These 

chromatin changes are often associated with non-coding regions of the genome that may 

represent regulatory elements such as enhancers.   
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Here, we build on our previous work identifying chromatin changes during the BO to 

OAC transition (Britton et al, 2017; Rogerson et al, 2019; Rogerson et al, 2020). By integrating 

total RNA-seq data from BO and OAC patients generated by the Oesophageal Cancer Clinical 

and Molecular Stratification (OCCAMS) consortium dataset, with previously generated 

chromatin accessibility data on these tissues (Britton et al., 2017; Rogerson et al., 2019; 

Rogerson et al., 2020; Corces et al., 2018), we identify, and validate, pervasive eRNA 

production at regions of accessible chromatin, indicative of enhancer activity. Subsequent 

interrogation of genes associated with these enhancers identified deregulated pathways of 

importance and demonstrated the potential clinical utility of eRNA profiling in OAC.  
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Results 

Identification of potential intergenic eRNA transcripts in OAC patients.  

eRNAs are generally unstable and lowly abundant, making them hard to detect in 

RNAseq data sets. We therefore harnessed the sequencing power derived from combining 

hundreds of patient samples to discover potential eRNAs (Fig. 1A). To identify eRNAs that 

are relevant to OAC we interrogated RNA-seq data generated from 210 OAC patients and 

also from 108 Barrett’s patients to identify differentially upregulated eRNAs in OAC 

(Jammula et al., 2020). After mapping sequencing reads to the genome, we excluded all 

regions corresponding to gene bodies as well as sequences 2 kb upstream from the 

transcriptional start site (TSS) and 500 bp downstream from the annotated transcriptional 

termination site (TTS) (Supplementary Fig. 1A) to avoid interference from promoter 

sequences and read through transcription respectively. Next, we identified all of the 

accessible regions of chromatin in OAC and Barrett’s samples within this truncated 

genome by creating a union peak set from ATAC-seq performed on 14 OAC and 4 Barrett’s 

samples (Britton et al., 2017; Rogerson et al., 2019; Rogerson et al., 2020; Corces et al., 

2018) (resulting in 150,265 peaks). To focus on potential enhancer regions, we then took 

the RNA-seq data from both classes of patients and assessed raw reads wihtin these 

accessible chromatin regions. This identified 61,349 intergenic regions that contain RNA 

transcripts and represent potential eRNA regions. We then filtered these based on a read 

count ≥ 3 and FPM value ≥ 1.5, which resulted in a final high confidence set of 4600 

potential eRNA containing enhancer regions in OAC and Barrett’s patients (Supplementary 

Table S1).  

Next, we identified differentially transcribed eRNAs in each disease state (+/->0.5 log2

fold; P-valueadj <0.05; Fig. 1B; Supplementary Fig. S1A) and found 959 to be significantly 

upregulated in OAC (Supplementary Table S2) and 670 to be more active in Barrett’s patients 

(Supplementary Table S3). 2,498 eRNAs did not meet the stringent DESeq2 distribution 

threshold and were discarded. The remaining putative eRNAs exhibited low directionality 

score distributions consistent with the bi-directional transcription associated with eRNA 

production (Fig. 1C; Supplementary Fig. S1B).  

 To probe the clinical utility of eRNA region profiling, we analysed the expression levels 

found in the 4,600 eRNA regions across all of the OAC and Barrett’s samples. Hierarchical 

clustering showed a clear separation of Barrett’s and OAC patients (Fig. 1D). While clustering 

based on whole RNA-seq data gave broadly similar separation of OAC and Barrett’s samples, 

several more were misclassified compared to eRNA- based profiling (Supplementary Fig. 
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S1C; 37 versus 8 samples). Clustering of the expression of the same eRNA regions in a 

different RNA-seq dataset (Maag et al., 2017) also provided a good separation of the OAC 

and Barrett’s samples (Supplementary Fig. S1D), further demonstrating the relevance of this 

dataset. In summary therefore, we have identified a panel of potential eRNA generating 

regions that can be used for discriminating OAC samples from the pre-cancerous Barrett’s 

state.  

eRNA-associated regions show enhancer-like characteristics. 

 Having identified a group of accessible chromatin regions expressing potential eRNAs, 

we next sought further evidence to associate these with enhancer-like activity. First, we 

examined chromatin accessibility in OAC patients and found higher levels at eRNA expressing 

loci compared to a random set of open chromatin regions (Fig. 2A; left). Furthermore, these 

regions also exhibited higher levels of the H3K27ac chromatin mark in OE19 OAC-derived 

cells that is usually associated with active enhancers (Fig. 2A; right). This was not just a 

function of increased accessibility as a control group of more highly accessible regions did not 

exhibit increased levels of H3K27ac (Supplementary Fig. S2A). Indeed, chromatin 

accessibility levels are a weak indicator of eRNA transcription levels across patient samples, 

as even regions of greater accessibility contained much lower transcript levels (Fig. 2B; 

Supplementary Fig. S2B). Thus, eRNA regions are more accessible but the reciprocal is not 

true, as more accessible regions do not necessarily show higher levels of eRNA transcription. 

To provide further evidence for association with active enhancers in OAC cells, we 

used CUT&TAG (Kaya-Okur et al., 2020) to profile a range of histone marks and chromatin 

associated proteins in OE19 cells and correlated the levels of these across the eRNA 

expressing regions (Fig. 2C). There is clear co-association with a range of enhancer 

associated marks and proteins, including RNA polymerase II, BRD4 and the MED1 subunit of 

mediator. This is also evident when visualising the data as heat maps compared to random 

regions of accessible chromatin, where there are higher levels of the chromatin associated 

marks/proteins that categorise enhancers in the eRNA regions (Supplementary Fig. S2C). 

Conversely, there is a clear depletion of the promoter associated mark H3K4me3 

(Supplementary Fig. S2D). We also examined the distribution of the chromatin marks 

H3K4me1 (associated with active and poised enhancers) and H3K4me3 (associated with 

active promoters) found in gastric adenocarcinoma patients (GAC) which are molecularly 

similar to OAC patients (The Cancer Genome Atlas, 2017). Neither mark is enriched in the 

eRNA containing regions compared to random accessible regions (Supplementary Fig. S2E). 

However, there is a clear enrichment of H3K4me1 and depletion of H3K4me3 in eRNA 
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containing regions compared to promoters, consistent with their designation as potential 

enhancers (Supplementary Fig. S2F). Conversely, the CpG content of the eRNA regions was 

substantially lower than at promoter regions (Supplementary Fig. S2G). 

To further probe links between eRNA containing regions and enhancer activity, we 

partitioned the genome into a series of states via a Hidden Markov Model (HMM states) 

(Supplementary Fig. 2H). Positional information was used to mark these HMM states as 

promoter proximal or distal (Supplementary Fig. S2I). Re-evaluation of the eRNA expressing 

regions showed that 43% were associated with regions designated as enhancers (Fig. 2D), 

with very few regions designated as quiescent or repressed (13% compared to 26% in 

randomly selected open chromatin regions; Supplementary Fig. S2J).  

 The co-association of eRNA expressing regions with genomic elements associated 

with active chromatin marks is strongly suggestive of enhancer-like activity. However, to 

provide further evidence for active ongoing transcription at these loci we performed KAS-seq 

(Wu et al., 2020) in OE19 cells to identify areas of DNA strand opening as observed in the 

transcription bubble. The three replicates showed good congruency (Supplementary Fig. 

S3A), and we merged all three to call peaks of DNA strand opening (Supplementary Table 

S4). These peaks show a highly significant overlap with the eRNA regions we identified from 

patient samples (Supplementary Fig. S3B), and higher levels of KAS-seq signal are 

associated with eRNA regions compared to random regions (Fig. 2E). This is exemplified by 

eRNAs associated with a putative enhancer region located upstream from JUP (Fig. 2F), 

CCNE1 and MYBL2 gene loci (Supplementary Fig. S3C and S3D). Furthermore, when we 

combined eRNA regions with regions showing KAS-seq peaks, higher levels of H3K27ac were 

observed compared to those lacking concomitant KAS-seq signal (Supplementary Fig. S3E), 

indicative of higher activity. 

 Finally, we focussed on potential super enhancers as these have been shown to play 

important roles in cancer-specific gene regulation (Hnisz et al., 2013) including 

gastroesophageal cancers (Ooi et al., 2016). We identified potential super enhancers in OE19 

cells using HOMER (Heinz et al., 2010; Whyte et al., 2013) from peak sets generated from 

H3K27ac ChIP-seq (for histone activation marks) and ATAC-seq (for open chromatin) 

(Supplementary Fig. S4A; Supplementary Table S5). We then overlapped these peak sets to 

generate a dataset with both indicators of super enhancer activity, excluding promoter regions 

from our analysis. This resulted in 221 high confidence super enhancers (Supplementary Fig. 

S4B). Next, the constituent enhancers within these super enhancers were overlapped with the 

eRNA regions we identified from OAC patients, producing a final list of 73 super enhancers 

showing evidence of eRNA activity, with a total of 216 eRNA regions residing in these super 
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enhancers (Fig. 2G). Multiple eRNA regions identified in patient samples are therefore 

associated with super enhancers as exemplified by the ELF3 super enhancer (Supplementary 

Fig. S4C). The genes associated with these super enhancers are enriched in several biological 

processes with direct relevance to OAC, such as MAPK signalling and cadherin binding 

(Supplementary Fig. S4D).  

Collectively, these data strongly indicate that the eRNA associated regions we 

discovered in patient samples represent areas of enhancer activity due to the presence of 

enhanced accessibility, enhancer associated chromatin marks/proteins, and evidence for 

actively transcribing RNA polymerase in OAC cells.  

Association of eRNA regions to target genes and regulatory transcription factors. 

 Next, we asked whether we could identify upstream transcription factors that might 

control eRNA levels and provide insights into the regulatory landscape of OAC. First, we 

identified binding motifs for transcription factors that are over-represented in OAC or Barrett’s-

specific eRNA producing regions. This revealed enrichment for transcription factors previously 

identified as relevant for OAC including AP1, KLF5 and HNF1 (Britton et al., 2017; Rogerson 

et al., 2019; Rogerson et al., 2020; Chen et al., 2020) as well as CTCF, a factor implicated in 

enhancer activity (Ren et al., 2017) (Fig. 3A: Supplementary Table S6A). However, the 

frequency of motif occurrence differed between eRNA-defined and open chromatin-defined 

enhancers in OAC patients; HNF1 motifs were significantly more enriched in eRNA-defined 

enhancers whereas AP1 and KLF5 motifs were more enriched in enhancers defined by 

increased accessibility alone (Fig. 3B). AP1 motifs were again identified in Barrett’s-specific 

regions as well as a different set of motifs including p53 binding motifs (Fig. 3A; Supplementary 

Table S6B). Similarly, calculating differential binding scores revealed higher binding activity of 

AP1 and HNF1 in OAC-specific regions and conversely higher p53 binding activity in Barrett’s 

specific regions (Fig. 3C; Supplementary Table S7). Thus, eRNA-defined enhancers reveal 

the activity of disease stage-specific transcriptional regulators. To further explore this point, 

we sought evidence for enhancer occupancy by transcription factors in OAC cells and found 

substantially more binding signal of KLF5 derived from ChIP-seq in OE19 cells (Rogerson et 

al., 2020) for eRNA-defined regions with KLF5 motifs compared to regions lacking the motif, 

or control genomic regions (Fig. 3D). Furthermore, evidence for KLF5-mediated regulation 

was obtained by the significant overlap between the genes associated with the same eRNA 

regions (ie containing KLF5 motifs) and those genes downregulated upon KLF5 depletion in 

OE19 cells (Fig. 3E; Supplementary S5A-C). We also examined the effect of AP1 inhibition by 

expressing a dominant-negative FOS derivative (dnFOS; Olive et al., 1997) in OE19 cells and 
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compared the downregulated gene profile with the eRNA-associated genes containing AP1 

motifs that we have identified.  Again, we observed a significant overlap between the genes 

associated with eRNA regions containing AP1 motifs in OAC samples and those genes 

downregulated upon AP1 inhibition (Fig. 3F; Supplementary Fig. S5D-F). Thus, both motif 

discovery and functional dissection demonstrates that KLF5 and AP1 are likely major players 

in eRNA-defined enhancer activation in OAC patients. 

To understand the potential biological consequences of eRNA activation, we then 

linked the differentially active eRNA regions to putative target genes with the nearest gene 

model using HOMER (Heinz et al., 2010) resulting in 528 genes in OAC and 380 genes in 

Barrett’s. Gene ontology (GO) analysis identified several terms relevant to the OAC phenotype 

such as “Cell migration” and “MAPK signalling” whereas Barrett’s-specific regions identified 

genes associated with various metabolic processes and “epithelial differentiation” that would 

be expected for this intestinal metaplastic tissue (Fig. 4A). We also performed differential gene 

expression analysis on the whole RNA-seq datasets to identify genes preferentially expressed 

in OAC or Barrett’s and performed GO term analysis (Supplementary Tables S8 and S9). 

Similar GO terms were identified with “MAPK signalling” and “Hallmark EMT/ECM 

organisation” (terms associated with cell migration) resembling those identified through 

association with eRNA regions (Fig. 4A). Similarly, Barrett’s-specific genes returned GO terms 

such as “epithelial cell differentiation”, as identified from eRNA regions further emphasising 

the similarity in biological processes identified by eRNA regions and total RNAs. To determine 

whether these similar GO categories reflected similar genes being identified, we overlapped 

the differentially expressed genes (DEGs; Supplementary Tables S8 and S9) with genes 

associated with differentially expressed eRNAs (DEEs; Supplementary Tables S2 and S3), 

that are enriched in either Barrett’s or OAC samples. We found a significant overlap between 

these sets of genes although the majority of the genes were uniquely identified by investigating 

either by total RNA-seq or by eRNA profiling (Fig. 4B). Therefore, despite pinpointing similar 

biological processes, eRNA profiling reveals different candidate genes involved these 

processes. 

To further investigate whether the activities of enhancer regions are linked to nearby 

gene expression, we selected eRNA regions preferentially expressed in either OAC or 

Barrett’s and found that the nearest genes exhibited higher expression in the correct 

corresponding tissue type in two independent datasets (Fig. 4C; Supplementary Fig. S6A). 

This observation was further supported by comparing the expression of the genes closest to 

eRNA regions found in patient RNA-seq data to the expression of a random set of genes. This 

revealed significantly enhanced expression levels of eRNA-annotated genes in patients 

(Supplementary Fig. S6B). While the nearest gene model often correctly associates 
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enhancers with the closest gene, this is not always the case, so we considered all genes within 

a 200 kb bin around the eRNA region rather than just the nearest gene. We then determined 

the net eRNA expression change when comparing Barrett’s to OAC samples and created 9 

bins reflecting the magnitude of differential expression. We then calculated the associated 

gene expression changes within these genomic bins when comparing Barrett’s to OAC. There 

was a clear correlation between the directionality of eRNA expression with mRNA expression 

which changed in an analogous manner, with high eRNA levels in OAC associated with higher 

gene expression in OAC and vice versa in Barrett’s (Fig. 4D). 

In summary therefore, eRNA expression profiling can reveal specific upstream 

regulatory transcription factors and the eRNA generating regions can be used to uncover a 

set of biological processes and constituent genes that are relevant to specific disease states. 

Target genes of eRNA-defined enhancers are co-expressed in OAC. 

 We identified potential target genes of eRNA-defined enhancers by implementing the 

nearest gene model (Fig. 4B). However, the nearest gene is not always the enhancer target 

(Sanyal et al, 2012). We therefore examined the correlation between eRNA expression and 

the expression of their designated target genes for three candidate enhancers, localised in the 

vicinity of the JUP (Fig. 5A), MYBL2 and CCNE1 (Supplementary Fig. S7A and B) loci. Each 

of these putative enhancer regions contains more RNA signal in OAC compared to Barrett’s 

as well as evidence for chromatin accessibility in OAC patient material. We focussed on JUP

as this had not been implicated in OAC previously and is significantly co-amplified with 

ERBB2, a key oncogenic driver of OAC (The Cancer Genome Atlas, 2017; Frankell et al., 

2019; Supplementary Fig. S7C). Indeed, both JUP transcript and eRNA are upregulated 

compared to Barrett’s in OAC patients with high ERBB2 expression (Fig. 5B). We performed 

a similar analysis for CCNE1 and MYBL2 but instead examined their expression across all 

OAC samples. For both loci, the eRNA and gene transcript are both upregulated in OAC 

relative to Barrett’s (Supplementary Fig. S7D and E). Next, we examined the correlation of 

eRNA and transcript expression on a “sample by sample” basis. JUP eRNA expression 

showed strong correlation with JUP expression, irrespective of ERBB2 level sample status 

(Fig. 5C). Lower correlations were observed with the expression of the two adjacent genes 

(Supplementary Fig. S7F) consistent with JUP being the relevant target. Similarly, CCNE1

and MYBL2 eRNA expression is more strongly correlated with the expression of their 

designated targets than either of their immediately flanking genes (Supplementary Fig. S7G 

and H). We extended this analysis across all eRNAs and asked whether we could find 

significantly correlated mRNA expression of genes located in their vicinity (+/-100 
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kb)(Supplementary Table S10). Generally, highly correlated genes could be identified (see 

diagonal in Fig. 5D). Interestingly when we clustered the data according to the expression of 

the genes associated with each eRNA, then there was generally a good segregation of OAC-

specific and BO-specific eRNAs further emphasising the relevance of the correlations we 

observed (Fig. 5D).  Furthermore, when we split the RNAseq data into tissue types, there was 

a significantly higher correlation of BO-specific eRNA with nearby gene expression in BO 

datasets, compared to analysing the shared eRNAs (Fig. 5E, left). Similarly, the same trend 

was observed for OAC-specific eRNAs which were more highly correlated with nearby gene 

expression in OAC datasets (Fig. 5E, right).  

Together these results demonstrate that we are able to link eRNA expression to their 

putative targets in the relevant disease-specific datasets. 

Validation of enhancer activity of eRNA regions 

 To validate that the regions generating eRNAs have enhancer activity we again 

focussed on the JUP, MYBL2 and CCNE1 loci. First, we showed that all three putative 

enhancer regions have significantly higher levels of KAS-seq signal in OE19 cells relative to 

a control enhancer from the APOL4 gene that is not expressed in OE19 cells (Fig. 6A). This 

is reflective of ongoing transcription. Furthermore, all three eRNAs and their associated target 

genes exhibit higher expression in OE19 cells compared to the Barrett’s CP-A cell line (Fig. 

6B). To directly establish enhancer activity, we cloned the regions encompassing the eRNAs 

into two different enhancer reporter systems with either luciferase (Fig. 6C) or RNA (Fig. 6D) 

readouts. For all three regions, both assays demonstrated significant enhancer activity in 

OE19 cells (Fig. 6C and D). Finally, we used an inducible dCas9-KRAB synthetic repressor 

protein to silence the activities of each enhancer in their natural chromatin context in OE19 

cells (Supplementary Fig. S8A). In all cases, introduction of the relevant gRNA to target the 

dCas9-KRAB repressor to the putative enhancer, resulted in reduced eRNA transcription and 

reduced expression of the associated target gene (Fig. 6E). Importantly, no significant 

changes in expression were observed for any of the genes immediately flanking the target 

genes, demonstrating the fidelity of our enhancer-gene linkages (Supplementary Fig. S8B).  

 Together these results build on our correlative observations linking eRNA containing 

regions with enhancer like properties and provide definitive proof of enhancer activity and 

regulatory linkage to neighbouring genes. 

Biological and clinical relevance of eRNAs and their target genes. 
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 We have shown that the discovery of eRNAs in OAC patients reveals genes and 

processes which are operative in OAC and allows us to distinguish OAC from Barrett’s 

patients. To provide further biological insights, we asked whether any of the three eRNA target 

genes, JUP, MYBL2 and CCNE1 were uncovered in a cell line viability screen in the DepMap 

project (Tsherniak et al., 2017; Behan et al., 2019). We found that four of the top six cell lines 

showing a dependency on JUP expression are gastroesophageal in origin and these all 

contain ERBB2 amplifications (Fig. 7A, left). JUP is also the highest scoring gene for fitness 

dependency across OAC cell lines (Fig. 7A, right). However, MYBL2 and CCNE1 did not score 

highly in this screen. We therefore further probed the function of the eRNA-defined enhancers 

in the OE19 OAC cell line by using the dCas9-KRAB silencing system directed at these 

regions. In all cases, enhancer silencing led to significant reductions in cell viability and growth 

(Fig. 7B; Supplementary Fig. S9A). 

 To provide further clinical relevance, we used an RNA-seq dataset from the TCGA 

consortium (The Cancer Genome Atlas, 2017) that differed from our discovery cohort to ask 

whether any of the eRNA target genes informed on any particular clinical features. We found 

that the age of diagnosis was lower in patients expressing high levels of MYBL2 (Fig. 7C) and 

JUP (Supplementary Fig. S9B) suggesting earlier disease onset. Furthermore, in the case of 

MYBL2, high level expression was indicative of lower median survival times (Fig. 7D), although 

JUP and CCNE1 were not informative in that regard (Supplementary Fig. S9C). Altogether, 

32% of genes annotated to OAC-specific eRNAs displayed a significant prognostic value for 

patient survival (Supplementary Fig. S9D). Finally, we took an unbiased approach and asked 

whether we could identify a signature within the eRNA-associated genes which had clinical 

significance. This revealed a 6-gene signature that was highly predictive of OAC patient 

survival (Fig. 7E).  

 Collectively, these data demonstrate the functional importance of the eRNA-defined 

enhancers and their target genes for OAC cell growth and their potential utility for assessing 

patient prognosis. In the case of JUP, the broad OAC cell dependency suggests that this 

represents a target of potential therapeutic value, especially in ERBB2-positive patients. 
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Discussion 

  Cancer is driven by a combination of genetic and epigenetic changes (reviewed in 

Zhao et al., 2021). Both of these processes ultimately lead to alterations in the activity of gene 

regulatory elements, including transcriptional enhancers, that results in a change in cellular 

phenotype that defines the tumourigenic state. While profiling of histone marks and chromatin 

accessibility is useful in defining potential gene regulatory elements, this approach is limited 

for defining active enhancers. Here we used eRNA profiling to identify regions harbouring 

potentially active enhancers in oesophageal adenocarcinoma patient samples. We integrated 

these with a range of epigenetic datasets and experimentally validated several regions as 

bona fide enhancers. Importantly, our enhancer repertoire identified new pathways that are 

activated in OAC which were not apparent from either genome sequencing or mRNA profiling 

alone.  

 A previous pan-cancer analysis of RNA-seq data sets generated by the TCGA 

consortium to identify eRNAs defined a compendium of potential enhancers across human 

cancers and demonstrated how they could have clinical significance (Chen et al., 2018). 

However, while the authors examined oesophageal cancers, they mixed two distinct disease 

sub-types, squamous and adenocarcinoma, which limited any discoveries specific to OAC. 

Here we specifically interrogated OAC RNA-seq data (generated by the OCCAMs consortium) 

and to identify enhancers that are potentially relevant to OAC, we compared their associated 

eRNA levels to the pre-cancerous Barrett’s oesophagus state. Using this approach, we were 

able to identify ~1000 high confidence OAC-specific enhancers. These enhancer regions 

exhibited high accessibility in both patient samples and cell line models and using a variety of 

chromatin marks profiled in an OAC cell line model we provided further verification of the 

enhancer-like properties. The OAC-specific enhancers are associated with transcription 

factors which have been shown to be important for driving OAC-specific transcriptional events 

(eg KLF5, Rogerson et al., 2020; AP1, Britton et al., 2017). Reciprocally we also identify ~700 

Barrett’s specific enhancers which are associated with a different transcription factor 

repertoire, including the potential involvement of members of the TP53/TP63/TP73 family. 

While we have identified a large number of intergenic enhancers, the approach we have taken 

will miss intragenic enhancers, and other approaches using function-based assays (eg 

STARR-seq; Arnold et al., 2013) or computational imputation will be needed to identify these.  

 Our newly derived eRNA defined enhancer data sets also provide novel insights into 

pathways that are operational in OAC. This is apparent from the limited overlap in differentially 

expressed genes at the mRNA level versus the differential expression of genes associated 

with nearby enhancers defined by eRNA levels. Interestingly while the specific gene overlaps 
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are limited, the broad processes defined by GO terms such as MAPK signalling and cell 

migration/EMT remain the same. Part of this discrepancy might be explained by the OAC-

specific enhancers maintaining gene expression in the BO-OAC transition rather than de novo

gene activation in OAC. However, expression change cut offs we use may also contribute to 

this, as can the heterogeneity of the OAC samples. An enhancer associated with JUP was 

specifically revealed by eRNA profiling, alongside hundreds of other enhancers linked to 

genes involved in oncogenic processes such as cell migration, PI3K signalling and 

metabolism. We validated this JUP enhancer, and enhancers linked to MYBL2 and CCNE1, 

and their association with their proposed targets by CRISPRi. Furthermore, correlations 

between eRNA and mRNA expression across cancer samples suggest a causal link. 

Importantly both CCNE1 and MYBL2 play important roles in promoting cell proliferation, an 

important cancer cell trait. JUP (otherwise known as junction plakoglobin) had not previously 

been implicated in OAC but this was identified in a screen for gene dependencies in OAC cell 

lines (DepMap project: Tsherniak et al., 2017; Behan et al., 2019) and we validated its 

importance for OAC cell growth. In this context, the co-amplification with ERBB2 is intriguing 

as both genes are on the same chromosome and are ~2 Mb apart and the intervening region 

is not usually co-amplified. This may reflect a functional interdependency for these two 

oncogenic events. JUP has previously been implicated in multiple cancers although is 

generally found to be a tumour suppressor protein, rather than the oncogenic properties it has 

in the context of OAC (reviewed in Aktary et al., 2017). As JUP encodes a protein involved in 

cell-cell contacts, this might suggest a role for this process in OAC cancer cell survival and a 

potential route to therapy. Alternatively, JUP may be acting via the numerous other cellular 

processes in which it has been implicated, and further work is needed to understand the 

precise role it has in OAC cells.  

 In addition to pointing to potential actionable pathways, we also demonstrate that 

eRNA profiling is clinically relevant and is sufficient to differentiate between BO and OAC. A 

six gene signature derived from our OAC-specific enhancer associated genes is able to predict 

prognostic outcomes. Indeed, a large proportion of the eRNA associated genes show 

prognostic significance when analysed on an individual basis. Furthermore, by focussing in 

on a few examples, we found that one of the novel OAC-associated genes, JUP, was 

upregulated in ERBB2 overexpressing OAC samples which is reflected by their frequent co-

amplification. Coupled with the observation that JUP is required for the survival of a range of 

OAC cell lines harbouring ERBB2 amplifications, this further emphasises the potential utility 

of JUP as a therapeutic target in this subset of OAC patients. This would provide an alternative 

approach to the use of ERBB2 inhibitors which are routinely administered but have limited 

therapeutic benefit (Bang et al., 2010).  Further clinical insights are provided by other eRNA 
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defined enhancer regions, such as the enhancer associated with MYBL2 where high MYBL2

expression indicates a worse prognosis for patients and earlier disease onset.  

 In summary, we identify a cohort of OAC-specific enhancers, expanding our 

knowledge of the regulatory networks that are operational in OAC. This has led to novel 

insights into the pathways that are operational in this disease. The approach we have taken 

to identify cancer-specific enhancers should be broadly applicable to other tumour types or 

subtypes, where data are available for both the cancer and the originating normal or pre-

cancerous tissue. 
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Materials and methods 

Cell culture and treatments 
OE19 cells were cultured in RPMI 1640 (ThermoFisher Scientific, 52400) supplemented with 

10% foetal bovine serum (ThermoFisher Scientific, 10270). OE19-dCas9-KRAB stable cells 

were previously generated (Rogerson et. al, 2020) and cultured as above with the addition of 

500 ng/mL puromycin (Sigma P7255). The expression of dCas9-KRAB was induced using 

250 ng/mL doxycycline (Sigma-Aldrich, D3447. Cell lines were cultured at 37°C, 5% CO2 in a 

humidified incubator. 

Dominant negative FOS over-expression 
pINDUCER20-GFP-AFOS (ADS5006, Britton et al., 2017) was packaged into lentivirus and 

OE19 cells were transduced with lentivirus as previously described (Tiscornia et al., 2006). 

Briefly, 3x106 HEK293T cells were transfected with 2.25 μg psPAX2 (Addgene, 12260), 1.5 

μg pMD2.G (Addgene, 12259) and 3 μg pINDUCER20-GFP-AFOS using PolyFect (Qiagen, 

301107). Media was collected at 48 and 72 hours post-transfection and viral particles were 

precipitated using PEG-it™ Solution (System Biosciences, LV810A-1). To transduce, cells 

were treated with virus (MOI 0.5-1.0) and 5 μg/mL Polybrene (EMD Millipore, TR-1003). 

Polyclonal cells were selected for 2 weeks in 250 μg/mL G418 (ThermoFisher Scientific, 

10131027). Dominant negative FOS (dnFOS; Olive et al., 1997) was induced with 1 μg/mL 

doxycycline. 

sgRNA transfection 
2x105 cells were transfected with 10 pmol sgRNA pool using LipofectamineTM RNAiMAX 

transfection reagent (ThermoFisher Scientific, 13778150) according to the manufacturer’s 

instructions. Cells were seeded into 6-well plates. Modified full length sgRNAs were designed 

using E-CRISP (Heigwer et al., 2014) and off-target activity assessed using CCTop (Stemmer 

et al., 2015). sgRNAs were ordered from Synthego. sgRNA sequences are listed in 

Supplementary Table S11. 

Cell growth and cell viability assays
Cell growth and viability was assessed by crystal violet assay. Assays were performed by 

fixing cells in 4% paraformaldehyde for 10 minutes. Cells were stained with 0.1% crystal violet 

(Sigma-Aldrich, HT90132) for 30 minutes. Crystal violet dye was extracted using 10% acetic 

acid and absorbance readings taken at 570 nm on a SPECTROstar Nano Microplate Reader 
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(BMG LABTECH). Cell growth measurements were taken at 0, 24, 48 and 72 hours and cell 

viability measurements taken at 72 hours. 

RT-qPCR and eRNA qPCR 
Total RNA was extracted from cells using an RNeasy Plus RNA extraction kit (Qiagen, 74136) 

according to the manufacturer’s protocol. RT-qPCR reactions were run using the QuantiTect 

SYBR Green RT-qPCR kit (Qiagen, 204243) on a Qiagen Rotor-Gene Q. For eRNA-qPCR, 

RNA was extracted using an RNeasy Plus RNA extraction kit (Qiagen, 74136) with the on-

column DNAse digest, according to manufacturer’s instructions. 500ng of RNA was reverse-

transcribed using SuperScript™ VILO™ Master Mix (ThermoFisher Scientific, 11755250) 

according to manufacturer’s instructions. eRNA levels were assessed by qPCR using a Rotor-

Gene SYBR Green PCR Kit (Qiagen, 204074) on a Qiagen Rotor-Gene Q. Relative copy 

number of transcripts was determined by standard curve and normalised to the expression of 

RPLP0 control gene. Primers used are listed in Supplementary Table S11.   

Luciferase and STARR-qPCR reporter assays
Regions containing JUPe, MYBL2e or CCNE1e were amplified from OE19 genomic DNA 

using primers containing 20 bp overlap regions with the multiple cloning site of the pGL3 

Promoter vector (Promega, E1761) for luciferase assays, or between the InFusion arms of the 

hSTARR_ORI vector (Addgene, 99296) (Supplementary Table S11. Final vectors were 

assembled using HiFi assembly (NEB, E5520S) according to the manufacturer’s instructions 

to create plasmids containing JUPe, MYBL2e or CCNE1e enhancer regions in either 

hSTARR_ORI (pAS5008-pAS5010) or pGL3- vectors (pAS5011-pAS5013). Enhancer vectors 

were transfected using the Amaxa™ Nucleofector™ II (Lonza) with Cell Line NucleofectorTM 

Kit V (Lonza, VCA-1003) and program T-020, according to manufacturer’s instructions. For 

luciferase assays, 250ng of enhancer vector was co-transfected alongside 50ng of pCH110 

(Amersham). For STARR-qPCR, 800ng of vector was transfected. Enhancer activity was 

assessed using the Dual-Light™ Luciferase & β-Galactosidase Reporter System 

(ThermoFisher Scientific, T1003) according to the manufacturer’s instructions, or by RT-

qPCR. 

Western blots
Cells were lysed in RIPA buffer (1% IGEPAL CA-630, 150 mM NaCl, 0.1% SDS, 50 mM Tris 

pH 8.0, 1 mM EDTA, 0.5% sodium deoxycholate) and protease inhibitor cocktail supplement 

(Roche, 11836170001). Protein concentration was determined by bicinchoninic acid assay 

(Pierce, 23227). 5x SDS loading buffer (235 mM SDS, 10% β-mercaptoethanol, 0.005% 

bromophenol blue, 210 mM Tris-HCl pH 6.8, 50% glycerol) was added to lysates to a final 1x 
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concentration and incubated for 10 minutes at 90°C. Proteins were then resolved by SDS-

PAGE and transferred onto a nitrocellulose membrane. Membranes were blocked using 

Odyssey® Blocking Buffer (LI-COR Biosciences, P/N 927-40000). Antibodies used: anti-Cas9 

(Diagenode, C15200229, 1:10,000) and anti-ERK (Cell Signaling Technologies, 4695S, 

1:1,000). Secondary antibodies used: anti-rabbit (LI-COR Biosciences, 926-32213, 1:10,000) 

and anti-mouse (LI-COR Biosciences, 926-32210, 1:10,000). Membranes were visualized 

using a LI-COR Odyssey® CLx Infrared Imager 

eRNA and mRNA analysis
Patient tissue ATAC-seq data processing was performed as described previously (Britton et 

al., 2017). Reads were mapped to GRCh38 (hg38) using Bowtie2 v2.3.0 (Langmead and 

Salzberg, 2012) with the following options: -X 2000 -dovetail. Mapped reads (>q30) were 

retained using SAMtools (Li et al., 2009). Reads mapping to blacklisted regions were removed 

using BEDtools (Quinlan and Hall, 2010). Peaks were called using MACS2 v2.1.1 (Zhang et 

al., 2008) with the following parameters: -q 0.01, -nomodel-shift -75 -extsize 150 -B –SPMR. 

A custom union peakset was formed from all BO and OAC patient samples, using HOMER 

v4.9 mergePeaks.pl -d 250 (Heinz et al., 2010) as described previously (Rogerson et al., 2019) 

and filtered to retain only intergenic regions ≥2 kb upstream from a TSS or ≥500 bp 

downstream from a TTS.  

RNA-seq reads were mapped to the human genome GRCh38 (hg38) using STAR v2.3.0 

(Dobin et al., 2013). Expression threshold for eRNAs was determined using an adapted 

method from Zhang et al., 2019 (Zhang et al., 2019). Briefly, total RNA-seq reads were 

integrated into genomic regions from the intergenic patient ATAC-seq peakset. Putative eRNA 

and mRNA read counts were determined using featureCounts (Liao et al., 2014) and FPM 

values determined using DESeq2 (Love et al., 2014). Putative eRNA regions with average 

counts and FPM values of ≥3 and 1.5, respectively, were taken forward for further analysis. 

Differentially expressed eRNAs and mRNAs were determined using DESeq2 (Love et al., 

2014). For eRNAs, a log2-fold change of ±0.5 and P-valueadj < 0.05 defined differential 

expression. For BO and OAC mRNAs, a log2-fold change of ±0.9 and ±1.5, respectively, and 

P-valueadj < 0.05 defined differential expression. ERBB2-positive OAC samples (ERBB2AMP) 

were determined based on these samples having expression of ERBB2 greater than the 

median ERBB2 expression +2 SD. Morpheus (https://software.broadinstitute.org/morpheus/) 

was used to generate heatmaps and perform hierarchical clustering. 

HOMER v4.9 was used for de novo transcription factor motif enrichment analysis. To analyse 

footprinting signatures at putative eRNA regions, TOBIAS v0.5.1 was used (Bentsen et al., 

2020). eRNAs were annotated to genes by the nearest gene model and assessed for CpG 

content using HOMER v4.9. Super enhancers were identified using HOMER v4.9 findPeaks.pl 
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-style super. Net enhancer activity was calculated as in Bi et al., 2020 (Bi et al., 2020). Briefly, 

neighbouring genes of eRNA regions in both BO and OAC were identified and stratified into 

nine groups based on the net eRNA change within 200 kb of the TSS of each gene: + (or −1) 

stands for 1 net gained (or lost) eRNA from BO to OAC. Bidirectionality score was calculated 

using HOMER v4.9 analyzeRepeats.pl with the –strand option applied for each strand and 

score defined as log10((+strand expression score + 1)/(-strand expression score + 1)) + 1.  

DepMap data 
Batch-corrected genome-wide CRISPR–Cas9 knockout screen data (DepMap Public 21Q4 

CRISPR_gene_dependency.csv) was obtained from DepMap (https://depmap.org/portal/). 

ChIP-seq data analysis  
ChIP-seq analysis was carried out as described previously (Wiseman et al., 2015). OE19 

H3K27ac and GAC H3K4me1/3 ChIP-seq reads were mapped to the human genome GRCh38 

(hg38) using Bowtie2 v2.3.0 (Langmead and Salzberg, 2012). Biological replicates were 

checked for concordance (r > 0.80). Peaks were called using MACS2 v2.1.1, using input DNA 

as control (Zhang et al., 2008). Mapped reads (>q30) were retained using SAMtools (Li et al., 

2009). Reads mapping to blacklisted regions were removed using BEDtools (Quinlan and Hall, 

2010). 

dnFOS RNA-seq processing and data analysis
dnFOS was induced in OE19-dnFOS cells for 48 hours before RNA was isolated and 

sequenced. Three biological replicates were sequenced per condition. Total RNA was 

extracted from cells using an RNeasy Plus RNA extraction kit (Qiagen, 74136). The on-column 

DNase digest (Qiagen, 79254) was performed according to the manufacturer’s protocol. RNA-

seq libraries were generated using a TruSeq stranded mRNA library kit (Illumina, RS-122-

2001) and sequenced on an Illumina HiSeq 4000 System (University of Manchester Genomic 

Technologies Core Facility). 

Reads were mapped aligned to the human genome GRCh38 (hg38) using STAR v2.3.0 (Dobin 

et al., 2013). Gene expression counts were obtained using featureCounts (Liao et al., 2014) 

and differentially expressed genes were identified by DESeq2 using P-valueadj < 0.05 (Love et 

al., 2014). OE19 siKLF5 RNA-seq (Rogerson et al., 2020) data analysis was also performed 

as above.  

CUT&TAG processing and data analysis
CUT&TAG library generation was performed as described previously (Kaya-Okur et al., 2020) 

with an altered nuclear extraction step. For the nuclear extraction, OE19 cells were initially 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


20 

lysed in Nuclei EZ lysis buffer (Sigma-Aldrich, NUC-101) at 4°C for 10 mins followed by 

centrifugation at 500 g for 5 mins. The subsequent clean-up was performed in a buffer 

composed of 10 mM Tris-HCl pH 8.0, 10 mM NaCl and 0.2% NP40 followed by centrifugation 

at 1300 g for 5 mins. Nuclei were then lightly cross-linked in 0.1% formaldehyde for 2 mins 

followed by quenching with 75 mM glycine followed by centrifugation at 500 g for 5 mins. 

Cross-linked nuclei were resuspended in 20 mM HEPES pH 7.5, 150 mM NaCl and 0.5 M 

spermidine at a concentration of 4-8x103/ μL (2-4x104 total). Subsequent stages were as 

previously described (Kaya-Okur et al., 2020). For 2-4 x104 nuclei, 0.5 μg of primary and 

secondary antibody were used with 1 μL of pA-Tn5 (Epicypher, 15-1017). Antibodies used: 

anti-BRD4 (abcam, ab128874), anti-CTCF (Merck-Millipore, 07-729), anti-H3K27ac (abcam, 

ab4729), anti-H3K27me3 (Merck-Millipore, 07-449), anti-H3K4me1 (abcam, ab8895), anti-

H3K4me2 (Diagenode, pAb-035-010), anti-H3K4me3 (abcam, ab8580), anti-H3K36me3 

(Diagenode, pAb-058-010), anti-H4K20me1 (Diagenode, mAb-147-010), anti-PolII (abcam, 

ab817), anti-PolII-S2 (abcam, ab5095), anti-PolII-S5 (abcam, ab5131) and anti-Med1 

(AntibodyOnline, A98044/10UG). CUT&TAG libraries were pooled and sequenced on an 

Illumina HiSeq 4000 System (University of Manchester Genomic Technologies Core Facility). 

CUT&TAG data processing was performed as for ChIP-seq but with the MACS2 v2.1.1 (Zhang 

et al., 2008) but the --broad peak calling option was used for the H4K20me1, H3K27me3 and 

H3K36me3 marks. Fraction reads in peak (FRiP) scores for each mark were calculated using 

featureCounts and a stringent threshold of ≥2% was set to ensure quality of data for 

downstream analyses (Landt et al., 2012; FRiP scores are listed in Supplementary Table S12). 

ChromHMM (Ernst and Kellis., 2012) was used to train an eight-state Hidden Markov Model 

using the CUT&TAG data for all marks assayed. The number of states was determined by 

running the model with increasing numbers of states until state separation was observed. 

Emission states were annotated in accordance with Roadmap Epigenomics Consortium Data 

(Roadmap Epigenomics Consortium et al., 2015).  

KAS-seq processing and data analysis
KAS-seq library generation was performed as described previously (Wu et al., 2020) except 

with nuclear extraction and labelling reactions. Nuclei were extracted and washed as 

described for CUT&TAG. Nuclei were then resuspended in nuclease-free H2O at a 

concentration of 1x104/ μL. (2x105 total) Labelling reactions were carried out in DNA LoBind® 

tubes (Eppendorf, 0030108051) using 5 mM N3-kethoxal (a gift from Chuan He) in PBS to a 

final volume of 50 μL for 15 mins at 37°C with 1000 RPM mixing in a thermomixer. Labelled 

gDNA was isolated using the PureLink™ Genomic DNA Mini kit (ThermoFisher Scientific, 

K182001) and eluted twice with 21.5 μL 25 mM K3BO3 pH 7.0. Subsequent library preparation 

stages were as previously described (Wu et al., 2020). KAS-seq libraries were pooled and 
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sequenced on an Illumina HiSeq 4000 System (University of Manchester Genomic 

Technologies Core Facility). Three biological replicates were sequenced and checked for 

concordance (r > 0.80). KAS-seq data processing was performed as described previously (Wu 

et al., 2020), but with the MACS2 v2.1.1 --broad peak calling option.  

The Cancer Genome Atlas data 
Diagnosis age and overall survival between OAC patients with high or low JUP, CCNE1 and 

MYBL2 RNA expression (defined as ±1 SD from the median expression) in the TCGA 

PanCancer Atlas dataset (Liu et al., 2018) was downloaded from cBioPortal 

(https://www.cbioportal.org/study/summary?id=esca_tcga_pan_can_atlas_2018). Oncoprint 

plot of mutational co-occurrence between JUP and ERBB2 in OAC was generated using 

cBioPortal. 

To establish the prognostic model, Univariate Cox regression was performed using the 

survival package in R v3.6.0 to select genes associated with patient prognosis. A random 

forest algorithm was applied using the randomForestSRC package in R v3.6.0 for feature 

reduction to obtain a survival signature. Risk score (risk score = ∑�i x βi where �i is gene 

expression value; βi is coefficient index) was calculated using a Multivariate Cox regression 

model. Patients were grouped by the median value of risk score and Kaplan-Meier analysis 

performed to compare the survival difference between high and low risk score group. 

Visualisation was achieved using the survminer package in R v3.6.0.  

Bioinformatics 
Genome browser data was visualised using the UCSC Genome Browser (Kent et al., 2002). 

Heatmaps and tag density plots of epigenomic data were generated the using deepTools 

(Ramirez et al., 2016) computeMatrix, plotProfile, plotCorrelation and plotHeatmap functions. 

Metascape (Zhou et al., 2019) was used for gene ontology analysis of gene sets. The eulerr 

package in R v3.6.0 was used for generating Venn diagrams.  

Datasets 
All data was obtained from ArrayExpress, unless stated otherwise. Human tissue RNA-seq 

data was obtained from: OCCAMS consortium (European Genome-Phenome Archive, 

EGAD00001007496). Human tissue ATAC-seq data was obtained from: E-MTAB-5169 

(Britton et al., 2017), E-MTAB-6751 (Rogerson et al., 2019), E-MTAB-8447 (Rogerson et al., 

2020). The Cancer Genome Atlas OAC ATAC-seq data were obtained from the GDC data 

portal (portal.gdc.cancer.gov; Corces et al., 2018). OE19 H3K27ac ChIP-seq was obtained 

from: E-MTAB-10334 (Ogden et al., 2021). GAC H3K4me1 and H3K4me3 ChIP-seq was 

obtained from: Gene Expression Omnibus, GSE75898 (Ooi et al., 2016). OE19 siKLF5 RNA-
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seq and KLF5 ChIP-seq were obtained from: E-MTAB-8446 and E-MTAB-8568, respectively 

(Rogerson et al., 2020). 

Data access 
All data have been deposited at ArrayExpress; OE19 KAS-seq and CUT&TAG data (E-MTAB-

11357 and E-MTAB-11356, respectively) and OE19 dnFOS RNA-seq (E-MTAB-10334).

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


23 

Acknowledgements 

We thank Guanhua Yan for excellent technical assistance, and staff in the Bioinformatics, and 

Genomic Technologies core facilities. We also thank Nicoletta Bobola and Sankari Nagarajan, 

for critical appraisal of the manuscript. We thank all lab members, Hannah Reed and Connor 

Rogerson for experimental and analytical advice. We are grateful to Chuan He for providing 

N3-kethoxal. This work was funded by grants to ADS from the MRC (MR/V010263/1) and the 

Wellcome Trust (102171/B/13/Z).

Author contributions: I.A., S.O. and S-H.Y. performed the experiments and data analysis in 

this study; Y.L. and W.Z. performed data analysis; A.D.S. led the study. All authors contributed 

to manuscript preparation and/or critically appraised manuscript drafts. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


24 

References 

Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of 
tumorigenesis and metastasis. Oncotarget. 2017 8(19):32270-32291 

Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory 
elements. Nat Rev Genet. 2020 21(2):71-87 

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, 
Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje 
B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, 
Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, 
Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume 
DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, Forrest ARR, Carninci P, Rehli M, 
Sandelin A. An atlas of active enhancers across human cell types and tissues. Nature. 2014 
507(7493):455-461 

Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. Genome-wide quantitative 
enhancer activity maps identified by STARR-seq. Science. 2013 339(6123):1074-7. 

Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, 
Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Rüschoff J, Kang YK; ToGA Trial 
Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for 
treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): 
a phase 3, open-label, randomised controlled trial. Lancet. 2010 376:687-97. 

Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, 
Pinnelli M, Ansari R, Harper S, Jackson DA, McRae R, Pooley R, Wilkinson P, van der Meer 
D, Dow D, Buser-Doepner C, Bertotti A, Trusolino L, Stronach EA, Saez-Rodriguez J, Yusa 
K, Garnett MJ. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. 
Nature. 2019 568(7753):511-516 

Bentsen M, Goymann P, Schultheis H, Klee K, Petrova A, Wiegandt R, Fust A, Preussner J, 
Kuenne C, Braun T, Kim J, Looso M. ATAC-seq footprinting unravels kinetics of transcription 
factor binding during zygotic genome activation. Nat Commun. 2020 11(1):4267 

Bi M, Zhang Z, Jiang YZ, Xue P, Wang H, Lai Z, Fu X, De Angelis C, Gong Y, Gao Z, Ruan J, 
Jin VX, Marangoni E, Montaudon E, Glass CK, Li W, Huang TH, Shao ZM, Schiff R, Chen L, 
Liu Z. Enhancer reprogramming driven by high-order assemblies of transcription factors 
promotes phenotypic plasticity and breast cancer endocrine resistance. Nat Cell Biol. 2020 
22(6):701-715 

Britton, E., Rogerson, C., Mehta, S., Li, Y., Li, X., Fitzgerald, R.C., Ang, Y.S., and Sharrocks, 
A.D. Open chromatin profiling identifies AP1 as a transcriptional regulator in oesophageal 
adenocarcinoma. PLoS Genet. 2017 13:e1006879. 

Chen H, Li C, Peng X, Zhou Z, Weinstein JN; Cancer Genome Atlas Research Network, Liang 
H. A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell. 2018 
173(2):386-399 

Chen L, Huang M, Plummer J, Pan J, Jiang YY, Yang Q, Silva TC, Gull N, Chen S, Ding LW, 
An O, Yang H, Cheng Y, Said JW, Doan N, Dinjens WN, Waters KM, Tuli R, Gayther SA, 
Klempner SJ, Berman BP, Meltzer SJ, Lin DC, Koeffler HP. Master transcription factors form 
interconnected circuitry and orchestrate transcriptional networks in oesophageal 
adenocarcinoma. Gut. 2020 69(4):630-640.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


25 

Coleman, H.G., Xie, S.-H., Lagergren, J. The Epidemiology of Esophageal Adenocarcinoma. 
Gastroenterology 2018 154:390–405. 

Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, 
Wong CK, Cho SW, Satpathy AT, Mumbach MR, Hoadley KA, Robertson AG, Sheffield NC, 
Felau I, Castro MAA, Berman BP, Staudt LM, Zenklusen JC, Laird PW, Curtis C; Cancer 
Genome Atlas Analysis Network, Greenleaf WJ, Chang HY. The chromatin accessibility 
landscape of primary human cancers. Science. 2018 362:eaav1898.   

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato 
MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates 
active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 
2010 107(50):21931-6 

De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei 
CL, Natoli G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. 
PLoS Biol. 2010 8(5):e1000384 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, 
Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 29(1):15-21 

Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat 
Methods. 2012 9(3):215-6 

Frankell AM, Jammula S, Li X, Contino G, Killcoyne S, Abbas S, Perner J, Bower L, 
Devonshire G, Ococks E, Grehan N, Mok J, O'Donovan M, MacRae S, Eldridge MD, Tavaré 
S; Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium, 
Fitzgerald RC. The landscape of selection in 551 esophageal adenocarcinomas defines 
genomic biomarkers for the clinic. Nat Genet. 2019 51:506-516.  

Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nat Methods. 
2014 11(2):122-3 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., 
Singh, H., and Glass, C.K. (2010). Simple Combinations of Lineage-Determining Transcription 
Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. 
Cell. 2010, 38:576-89.  

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, 
Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B. Distinct and predictive 
chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat 
Genet. 2007 39(3):311-8 

Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA. Super-
enhancers in the control of cell identity and disease. Cell. 2013 155(4):934-47 

Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, Sun T, Sweeney CJ, Lee GS, Chen S, Balk 
SP, Liu XS, Brown M, Kantoff PW. Enhancer RNAs participate in androgen receptor-driven 
looping that selectively enhances gene activation. Proc Natl Acad Sci USA. 2014 
111(20):7319-24 

Hu Q, Kwon YS, Nunez E, Cardamone MD, Hutt KR, Ohgi KA, Garcia-Bassets I, Rose DW, 
Glass CK, Rosenfeld MG, Fu XD. Enhancing nuclear receptor-induced transcription requires 
nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl 
Acad Sci U S A. 2008 105(49):19199-204 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


26 

Huang J, Liu X, Li D, Shao Z, Cao H, Zhang Y, Trompouki E, Bowman TV, Zon LI, Yuan GC, 
Orkin SH, Xu J. Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific 
Transcription during Hematopoiesis. Dev Cell. 2016 36(1):9-23 

Hung KL, Yost KE, Xie L, Shi Q, Helmsauer K, Luebeck J, Schöpflin R, Lange JT, Chamorro 
González R, Weiser NE, Chen C, Valieva ME, Wong IT, Wu S, Dehkordi SR, Duffy CV, Kraft 
K, Tang J, Belk JA, Rose JC, Corces MR, Granja JM, Li R, Rajkumar U, Friedlein J, Bagchi 
A, Satpathy AT, Tjian R, Mundlos S, Bafna V, Henssen AG, Mischel PS, Liu Z, Chang HY. 
ecDNA hubs drive cooperative intermolecular oncogene expression. Nature. 2021 
600(7890):731-736 

Jammula S, Katz-Summercorn AC, Li X, Linossi C, Smyth E, Killcoyne S, Biasci D, Subash 
VV, Abbas S, Blasko A, Devonshire G, Grantham A, Wronowski F, O'Donovan M, Grehan N, 
Eldridge MD, Tavaré S; Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) 
consortium, Fitzgerald RC. Identification of Subtypes of Barrett's Esophagus and Esophageal 
Adenocarcinoma Based on DNA Methylation Profiles and Integration of Transcriptome and 
Genome Data. Gastroenterology. 2020 158(6):1682-1697 

Kaya-Okur H, Janssens DH, Henikoff JG, Ahmad K, Henikoff S. Efficient low-cost chromatin 
profiling with CUT&TAG. Nat Protoc. 2020 15:3264–3283 

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human 
genome browser at UCSC. Genome Res. 2002 12(6):996-1006 

Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-
Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, 
Greenberg ME. Widespread transcription at neuronal activity-regulated enhancers. Nature. 
2010 465(7295):182-7 

Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel 
P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, 
Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, 
Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, 
Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, 
Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, 
Snyder M. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. 
Genome Res. 2012 22(9):1813-31 

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 
9(4):357-9 

Li W, Hu Y, Oh S, Ma Q, Merkurjev D, Song X, Zhou X, Liu Z, Tanasa B, He X, Chen AY, Ohgi 
K, Zhang J, Liu W, Rosenfeld MG. Condensin I and II Complexes License Full Estrogen 
Receptor α-Dependent Enhancer Activation. Mol Cell. 2015 59(2):188-202 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin 
R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009 25:2078–2079 

Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz 
CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V; Cancer Genome Atlas 
Research Network, Hu H. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive 
High-Quality Survival Outcome Analytics. Cell. 2018 173(2):400-416 

Liao, Y., Smyth, G.K., and Shi, W. featureCounts: an efficient general purpose program for 
assigning sequence reads to genomic features. Bioinformatics 2014 30:923–930. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


27 

Love, M.I., Huber, W., and Anders, S. Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol. 2014 15:550. 

Maag JLV, Fisher OM, Levert-Mignon A, Kaczorowski DC, Thomas ML, Hussey DJ, Watson 
DI, Wettstein A, Bobryshev YV, Edwards M, Dinger ME, Lord RV. Novel Aberrations 
Uncovered in Barrett's Esophagus and Esophageal Adenocarcinoma Using Whole 
Transcriptome Sequencing. Mol Cancer Res. 2017 15:1558-1569.  

Ogden S, Carys K, Bruce J, OCCAMS Consortium, Sharrocks AD. Widespread reorganisation 
of the regulatory chromatin landscape facilitates resistance to inhibition of oncogenic ERBB2 
signalling. bioRxiv. 2021 doi: 10.1101/2021.04.29.441944. 

Olive M, Krylov D, Echlin DR, Gardner K, Taparowsky E, Vinson C. A dominant negative to 
activation protein-1 (AP1) that abolishes DNA binding and inhibits oncogenesis. J Biol Chem. 
1997 272:18586-94. 

Ooi WF, Xing M, Xu C, Yao X, Ramlee MK, Lim MC, Cao F, Lim K, Babu D, Poon LF, Lin 
Suling J, Qamra A, Irwanto A, Qu Zhengzhong J, Nandi T, Lee-Lim AP, Chan YS, Tay ST, 
Lee MH, Davies JO, Wong WK, Soo KC, Chan WH, Ong HS, Chow P, Wong CY, Rha SY, Liu 
J, Hillmer AM, Hughes JR, Rozen S, Teh BT, Fullwood MJ, Li S, Tan P. Epigenomic profiling 
of primary gastric adenocarcinoma reveals super-enhancer heterogeneity. Nat Commun. 
2016 7:12983 

Peters Y, Al-Kaabi A, Shaheen NJ, Chak A, Blum A, Souza RF, Di Pietro M, Iyer PG, Pech O, 
Fitzgerald RC, Siersema PD. Barrett oesophagus. Nat Rev Dis Primers. 2019 5(1):35 

Quinlan, A.R., and Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic 
features. Bioinformatics. 2010 26:841-842. 

Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., 
Dündar, F., and Manke, T. deepTools2: a next generation web server for deep-sequencing 
data analysis. Nucleic Acids Res. 2016 44:W160-5. 

Rogerson C, Britton E, Withey S, Hanley N, Ang YS, Sharrocks AD. Identification of a primitive 
intestinal transcription factor network shared between esophageal adenocarcinoma and its 
precancerous precursor state. Genome Res. 2019 29:723-736.  

Rogerson C, Ogden S, Britton E, OCCAMS Consortium, Ang Y, Sharrocks AD. Repurposing 
of KLF5 activates a cell cycle signature during the progression from a precursor state to 
oesophageal adenocarcinoma. Elife. 2020 9:e57189.   

Ross-Innes CS, Becq J, Warren A, Cheetham RK, Northen H, O'Donovan M, Malhotra S, di 
Pietro M, Ivakhno S, He M, Weaver JMJ, Lynch AG, Kingsbury Z, Ross M, Humphray S, 
Bentley D, Fitzgerald RC. Whole-genome sequencing provides new insights into the clonal 
architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat Genet. 2015 
47(9):1038-1046 

Ren G, Jin W, Cui K, Rodrigez J, Hu G, Zhang Z, Larson DR, Zhao K. CTCF-Mediated 
Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene 
Expression. Mol Cell. 2017 67(6):1049-1058 

Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, 
Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz 
MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, 
Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, 
Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, 
Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


28 

Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak 
P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, 
Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, 
Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, 
Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello 
JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, 
Kellis M. Integrative analysis of 111 reference human epigenomes. Nature. 2015 
518(7539):317-30 

Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene 
promoters. Nature. 2012 489(7414):109-13 

Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. Interchromosomal associations 
between alternatively expressed loci. Nature. 2005 435(7042):637-45 

Stachler MD, Taylor-Weiner A, Peng S, McKenna A, Agoston AT, Odze RD, Davison JM, 
Nason KS, Loda M, Leshchiner I, Stewart C, Stojanov P, Seepo S, Lawrence MS, Ferrer-
Torres D, Lin J, Chang AC, Gabriel SB, Lander ES, Beer DG, Getz G, Carter SL, Bass AJ. 
Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nat Genet. 2015 
47(9):1047-55 

Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: An Intuitive, 
Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PLoS One. 2015 10(4):e0124633 

The Cancer Genome Atlas Research Network, Kim, Jihun, Bowlby, R., Mungall, A.J., 
Robertson, A.G., Odze, R.D., Cherniack, A.D., Shih, J., Pedamallu, C.S., Cibulskis, C., 
Dunford, A., Meier, S.R., Kim, Jaegil, Raphael, B.J., Wu, H.-T., Wong, A.M., Willis, J.E., Bass, 
A.J., Derks, S., Garman, K., McCall, S.J., Wiznerowicz, M., Pantazi, A., Parfenov, M., 
Thorsson, V., Shmulevich, I., Dhankani, V., Miller, M., Sakai, R., Wang, K., Schultz, N., Shen, 
R., Arora, A., Weinhold, N., Sánchez-Vega, F., Kelsen, D.P., Zhang, Julia, Felau, I., Demchok, 
J., Rabkin, C.S., Camargo, M.C., Zenklusen, J.C., Bowen, J., Leraas, K., Lichtenberg, T.M., 
Curtis, C., Seoane, J.A., Ojesina, A.I., Beer, D.G., Gulley, M.L., Pennathur, A., Luketich, J.D., 
Zhou, Z., Weisenberger, D.J., Akbani, R., Lee, J.-S., Liu, W., Mills, G.B., Zhang, W., Reid, 
B.J., Hinoue, T., Laird, P.W., Shen, H., Piazuelo, M.B., Schneider, B.G., McLellan, M., Taylor-
Weiner, A., Cibulskis, C., Lawrence, M., Cibulskis, K., Stewart, C., Getz, G., Lander, E., 
Gabriel, S.B., Ding, L., McLellan, M.D., Miller, C.A., Appelbaum, E.L., Cordes, M.G., Fronick, 
C.C., Fulton, L.A., Mardis, E.R., Wilson, R.K., Schmidt, H.K., Fulton, R.S., Ally, A., 
Balasundaram, M., Bowlby, R., Carlsen, R., Chuah, E., Dhalla, N., Holt, R.A., Jones, S.J.M., 
Kasaian, K., Brooks, D., Li, H.I., Ma, Y., Marra, M.A., Mayo, M., Moore, R.A., Mungall, A.J., 
Mungall, K.L., Robertson, A.G., Schein, J.E., Sipahimalani, P., Tam, A., Thiessen, N., Wong, 
T., Cherniack, A.D., Shih, J., Pedamallu, C.S., Beroukhim, R., Bullman, S., Cibulskis, C., 
Murray, B.A., Saksena, G., Schumacher, S.E., Gabriel, S., Meyerson, M., Hadjipanayis, A., 
Kucherlapati, R., Pantazi, A., Parfenov, M., Ren, X., Park, P.J., Lee, S., Kucherlapati, M., 
Yang, Lixing, Baylin, S.B., Hoadley, K.A., Weisenberger, D.J., Bootwalla, M.S., Lai, P.H., Van 
Den Berg, D.J., Berrios, M., Holbrook, A., Akbani, R., Hwang, J.-E., Jang, H.-J., Liu, W., 
Weinstein, J.N., Lee, J.-S., Lu, Y., Sohn, B.H., Mills, G., Seth, S., Protopopov, A., Bristow, 
C.A., Mahadeshwar, H.S., Tang, J., Song, X., Zhang, Jianhua, Laird, P.W., Hinoue, T., Shen, 
H., Cho, J., Defrietas, T., Frazer, S., Gehlenborg, N., Heiman, D.I., Lawrence, M.S., Lin, P., 
Meier, S.R., Noble, M.S., Voet, D., Zhang, Hailei, Kim, Jaegil, Polak, P., Saksena, G., Chin, 
L., Getz, G., Wong, A.M., Raphael, B.J., Wu, H.-T., Lee, S., Park, P.J., Yang, Lixing, Thorsson, 
V., Bernard, B., Iype, L., Miller, M., Reynolds, S.M., Shmulevich, I., Dhankani, V., Abeshouse, 
A., Arora, A., Armenia, J., Kundra, R., Ladanyi, M., Lehmann, K.-V., Gao, J., Sander, C., 
Schultz, N., Sánchez-Vega, F., Shen, R., Weinhold, N., Chakravarty, D., Zhang, Hongxin, 
Radenbaugh, A., Hegde, A., Akbani, R., Liu, W., Weinstein, J.N., Chin, L., Bristow, C.A., Lu, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


29 

Y., Penny, R., Crain, D., Gardner, J., Curley, E., Mallery, D., Morris, S., Paulauskis, J., Shelton, 
T., Shelton, C., Bowen, J., Frick, J., Gastier-Foster, J.M., Gerken, M., Leraas, K.M., 
Lichtenberg, T.M., Ramirez, N.C., Wise, L., Zmuda, E., Tarvin, K., Saller, C., Park, Y.S., 
Button, M., Carvalho, A.L., Reis, R.M., Matsushita, M.M., Lucchesi, F., de Oliveira, A.T., Le, 
X., Paklina, O., Setdikova, G., Lee, J.-H., Bennett, J., Iacocca, M., Huelsenbeck-Dill, L., 
Potapova, O., Voronina, O., Liu, O., Fulidou, V., Cates, C., Sharp, A., Behera, M., Force, S., 
Khuri, F., Owonikoko, T., Pickens, A., Ramalingam, S., Sica, G., Dinjens, W., van Nistelrooij, 
A., Wijnhoven, B., Sandusky, G., Stepa, S., Crain, D., Paulauskis, J., Penny, R., Gardner, J., 
Mallery, D., Morris, S., Shelton, T., Shelton, C., Curley, E., Juhl, H., Zornig, C., Kwon, S.Y., 
Kelsen, D., Kim, H.K., Bartlett, J., Parfitt, J., Chetty, R., Darling, G., Knox, J., Wong, R., El-
Zimaity, H., Liu, G., Boussioutas, A., Park, D.Y., Kemp, R., Carlotti, C.G., da Cunha Tirapelli, 
D.P., Saggioro, F.P., Sankarankutty, A.K., Noushmehr, H., dos Santos, J.S., Trevisan, F.A., 
Eschbacher, J., Dubina, M., Mozgovoy, E., Carey, F., Chalmers, S., Forgie, I., Godwin, A., 
Reilly, C., Madan, R., Naima, Z., Ferrer-Torres, D., Vinco, M., Rathmell, W.K., Dhir, R., 
Luketich, J., Pennathur, A., Ajani, J.A., McCall, S.J., Janjigian, Y., Kelsen, D., Ladanyi, M., 
Tang, L., Camargo, M.C., Ajani, J.A., Cheong, J.-H., Chudamani, S., Liu, J., Lolla, L., Naresh, 
R., Pihl, T., Sun, Q., Wan, Y., Wu, Y., Demchok, J.A., Felau, I., Ferguson, M.L., Shaw, K.R.M., 
Sheth, M., Tarnuzzer, R., Wang, Z., Yang, Liming, Zenklusen, J.C., Hutter, C.M., Sofia, H.J., 
Zhang, Jiashan. Integrated genomic characterization of oesophageal carcinoma. Nature 2017 
541:169. 

Tiscornia, G., Singer, O., and Verma, I.M. Production and purification of lentiviral vectors. Nat. 
Protoc. 2006 1:141-245 

Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, Gill S, Harrington 
WF, Pantel S, Krill-Burger JM, Meyers RM, Ali L, Goodale A, Lee Y, Jiang G, Hsiao J, Gerath 
WFJ, Howell S, Merkel E, Ghandi M, Garraway LA, Root DE, Golub TR, Boehm JS, Hahn 
WC. Defining a Cancer Dependency Map. Cell. 2017 170(3):564-576 

Tyssowski KM, DeStefino NR, Cho JH, Dunn CJ, Poston RG, Carty CE, Jones RD, Chang 
SM, Romeo P, Wurzelmann MK, Ward JM, Andermann ML, Saha RN, Dudek SM, Gray JM. 
Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron. 
2018 98(3):530-546 

Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young 
RA. Master transcription factors and mediator establish super-enhancers at key cell identity 
genes. Cell. 2013 153(2):307-19 

Wiseman EF, Chen X, Han N, Webber A, Ji Z, Sharrocks AD, Ang YS. Deregulation of the 
FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma 
Mol Cancer. 2015 14:69 

Wu T, Lyu R, You Q, He C. Kethoxal-assisted single-stranded DNA sequencing captures 
global transcription dynamics and enhancer activity in situ. Nat Methods. 2020 17:515–523 

Yan W, Chen D, Schumacher J, Durantini D, Engelhorn J, Chen M, Carles CC, Kaufmann K. 
Dynamic control of enhancer activity drives stage-specific gene expression during flower 
morphogenesis. Nat Commun. 2019 10(1):1705 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, 
Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008 
9(9):R137 

Zhang Z, Lee JH, Ruan H, Ye Y, Krakowiak J, Hu Q, Xiang Y, Gong J, Zhou B, Wang L, Lin 
C, Diao L, Mills GB, Li W, Han L. Transcriptional landscape and clinical utility of enhancer 
RNAs for eRNA-targeted therapy in cancer. Nat Commun. 2019 10(1):4562 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


30 

Zhao Y, Wang L, Ren S, Wang L, Blackburn PR, McNulty MS, Gao X, Qiao M, Vessella RL, 
Kohli M, Zhang J, Karnes RJ, Tindall DJ, Kim Y, MacLeod R, Ekker SC, Kang T, Sun Y, Huang 
H. Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-
Resistant Prostate Cancer. Cell Rep. 2016 15(3):599-610 

Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat 
Rev Cancer. 2021 21(7):413-430.  

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., 
and Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of 
systems-level datasets. Nat. Commun. 2019 10:1523. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491502
http://creativecommons.org/licenses/by-nc/4.0/


31 

Figure legends 

Figure 1. Identification of enhancer transcription in OAC and Barrett�s patients. (A) 

eRNA identification strategy. The numbers of putative eRNAs identified at each stage are 

indicated. (B) Volcano plot displaying the differentially expressed (± Log2FC 0.5, < padj = 0.05) 

eRNAs (n = 2,102). (C) Directionality scores for BO- or OAC-specific eRNAs compared to 

promoters (D) Pearson’s correlation and hierarchical clustering of BO (n = 108) and OAC (n = 

210) patient tissue total RNA-seq samples according to row z-score normalised expression 

levels in the 4600 eRNA regions.  

Figure 2. Putative eRNAs are associated with enhancer-like genomic regions. (A) 

Metaplots of (top left) patient tissue chromatin accessibility and (bottom left) OE19 cell 

H3K27ac ChIP-seq signal at all 4,600 eRNA regions compared to 4,600 random regions of 

accessible chromatin. (B) Distribution of transcription at 4,600 eRNA regions compared to 

4,600 randomly selected regions of similar or greater chromatin accessibility (regions shown 

as peak centre ± 0.5 kb). (C) Pearson’s correlation and hierarchical clustering of CUT&TAG 

signal at 4,600 eRNA regions for various chromatin-associated factors. (D) Distribution of 

ChromHMM emission states for 4,600 eRNA regions. (E) Metaplots of KAS-seq signal in OE19 

cells at 4,600 eRNA regions compared to 4,600 random regions of accessible chromatin. (F) 

Genome browser view of OE19 KAS-seq, OE19 ATAC-seq data, and OE19 H3K27ac ChIP-

seq at the JUP locus with the JUPe eRNA highlighted. (G) Venn-diagram of overlap between 

221 high-confidence intergenic super enhancers and 1,432 eRNAs (specific to OAC or shared 

with BO eRNA ; p-value is shown; hypergeometric test).  

Figure 3. Association of eRNA regions with transcriptional regulators. (A) Transcription 

factor de novo motif enrichment using HOMER, at eRNAs differentially expressed in OAC (top; 

n = 959) and Barrett’s (bottom; n = 670) (p-values are shown). (B) Bar graphs displaying the 

frequency of motif prevalence of the top five enriched motifs at eRNA regions differentially 

expressed in OAC (top; n = 959) compared to differentially accessible intergenic chromatin 

(**** = p < 0.0001; ** = p < 0.01; * = p < 0.05; N-1 Chi-squared test). (C) Volcano plot showing 

differential TF binding (± 0.2 differential binding score or ≥ -log10 padj 70) at 4,600 eRNAs 

regions using TOBIAS (Bentsen et al., 2020). (D) Metaplots of KLF5 ChIP-seq signal from 

OE19 cells at eRNAs (specific to OAC or shared with BO eRNA) containing a KLF5 motif, 

lacking a KLF5 motif or randomly selected open chromatin regions. (E) Venn diagram 

displaying overlap between genes annotated to KLF5 motif containing eRNAs (specific to OAC 

or shared with BO eRNA) with genes downregulated upon siKLF5 treatment (Log2FC ≥1.0, < 
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padj = 0.05) in OE19 cells (p-value is shown; Fisher’s exact test). (F) Venn diagram displaying 

overlap between genes annotated to AP-1 motif containing eRNAs (specific to OAC or shared 

with BO eRNA) with genes downregulated upon dnFOS induction (Log2FC ≥0.5, < padj = 0.05) 

in OE19 cells (p-value is shown; Fisher’s exact test).  

Figure 4. Association of eRNA regions with transcriptional regulators and potential 
target genes (A) GO-term analysis of differentially expressed eRNA region-associated genes 

(top-left/right) and differentially expressed genes (bottom-left/right) in (left) Barrett’s (> Log2FC 

0.9, < padj = 0.05) and (right) OAC (> Log2FC 1.1, < padj = 0.05). eRNAs were annotated to 

genes by the nearest gene model using HOMER (Heinz et al., 2010). (B) Venn diagram 

displaying overlap between differentially expressed genes and unique protein-coding genes 

annotated to differentially expressed eRNAs in (top) BO and (bottom) OAC (p-value is shown; 

Fisher’s exact test). (C) Box plots comparing the expression of genes annotated to eRNAs 

differentially expressed in BO (left) or OAC (right) in BO and OAC patient tissue total RNA-

seq samples from the OCCAMS dataset. (p-value is shown; Welch’s t-test). (D) Genome-wide 

analysis of the effect of changing eRNA expression on gene expression within 200 kb 

chromosomal bins. Numbers above bars represent total genes associated with respective net-

enhancer change (p-value is shown; Kruskal-Wallis test).  

Figure 5. eRNA regions identify JUP as a candidate target gene. (A) Genome browser 

view of BO and OAC patient tissue ATAC- and total RNA-seq data, and H3K27ac ChIP-seq 

in OE19 cells, at the JUP locus with the JUPe eRNA highlighted. (B) Box plots comparing the 

expression of (left) JUP and (right) JUPe in BO (n = 108), ERBB2WT (n = 193) and ERBB2AMP

(n = 17) OAC patient tissue total RNA-seq samples (p-value is shown; Welch’s t-test). (C) 

Schematic displaying relative locations of putative eRNA region target genes and nearest 

neighbours (top) and correlation of JUPe with JUP expression across BO (n = 108), ERBB2WT

(n = 193) and ERBB2AMP (n = 17) OAC patient tissue total RNA-seq samples (Spearman’s r 

and p-value are shown; Spearman’s rank correlation test). (D and E) Global analysis of 

correlations of eRNA expression with the expression of the most correlated gene within a 200 

kb window flanking the eRNA region. eRNAs are defined as tissue-specific according to Fig. 

S1A, and the rest of the eRNAs are designated as shared. (D) Heatmap showing the 

correlation coefficients between all 4600 eRNAs and associated mRNAs in the RNA-seq 

datasets. Samples are clustered according to eRNA-associated gene expression values. 

OAC-specific eRNAs (red), BO-specific eRNAs (blue) and shared eRNAs (white) are indicated 

across the top. (E) Boxplots showing the correlations with BO gene expression datasets (left) 

or OAC gene expression datasets (right). Significance values (t-test) are shown between the 

indicated groups.  
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Figure 6. In vitro interrogation of eRNA regions confirms production and association 
with cancer-associated processes. (A) Bar graphs displaying KAS-seq signal at the 

APOL4e, JUPe, CCNE1e and MYBL2e regions in OE19 cells (** = p < 0.01; Welch’s t-test). 

(B) Bar graphs displaying difference in expression of JUP, CCNE1, MYBL2 and JUPe, 

CCNE1e, and MYBL2e between CP-A and OE19 cells using RT-qPCR (p-value is shown; 

Welch’s t-test). (C) (Left) Schematic of luciferase assay. Bar graph displaying the difference 

in luciferase reporter activity between JUPe, CCNE1e and MYBL2e, compared to vector only 

negative control (** = p < 0.01; * = p < 0.05; one-way ANOVA with Bonferroni’s correction). 

(D) (Left) Schematic of STARR-RT-qPCR assay. (Right) Bar graph displaying the difference 

in STARR reporter activity between JUPe, CCNE1e and MYBL2e, compared to U00930 tRNA 

negative control (**** = p < 0.0001; *** = p < 0.001; one-way ANOVA with Bonferroni’s 

correction). (E) Bar graphs displaying the expression of JUPe, CCNE1e, MYBL2e eRNAs (top) 

and JUP, CCNE1 and MYBL2 mRNAs (bottom) in OE19-dCas9-KRAB cells using real time 

RT-qPCR, upon treatment with the indicated targeting or non-targeting (NT) sgRNA (p-value 

is shown; Welch’s t-test). A schematic of dCas9-KRAB targeting of eRNA regions is shown. 

Figure 7. Biological and clinical relevance of eRNAs and their target genes. (A) Scatter 

plots displaying data from the Sanger DepMap Project Score (Tsherniak et al., 2017; Behan 

et al., 2019) highlighting (left) cell line dependency on JUP (gastroesophageal cell lines are 

marked in red) and (right) top genetic dependencies in OAC. (B) Bar graph displaying the 

difference in cell viability in OE19-dCas9-KRAB cells upon sgRNA treatment, assessed by 

crystal violet assay (p-value is shown; Welch’s t-test). (C) Box plots comparing diagnosis age 

for OAC patients with low and high MYBL2 expression in the TCGA PanCancer Atlas dataset 

(p-value is shown; Welch’s t-test). (D) Kaplan-Meier plot comparing overall survival between 

OAC patients with low and high MYBL2 expression in the TCGA PanCancer Atlas dataset 

(Log rank p-value is shown). (E) Kaplan-Meier plot comparing overall survival between OAC 

patients with low and high signature eRNA target expression in the TCGA PanCancer Atlas 

dataset (Log rank p-value is shown; signature genes are shown).  
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Figure 1. Identification of enhancer transcription in OAC and Barrett�s patients.
(A) eRNA identification strategy. The numbers of putative eRNAs identified at each stage are indicated. (B) Volcano plot displaying the
differentially expressed (± Log2FC 0.5, < padj = 0.05) eRNAs (n = 2,102). (C) Directionality scores for BO- or OAC-specific eRNAs
compared to promoters (D) Pearson’s correlation and hierarchical clustering of BO (n = 108) and OAC (n = 210) patient tissue total RNA-
seq samples according to row z-score normalised expression levels in the 4600 eRNA regions.
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Figure 2. Putative eRNAs are associated with enhancer-like genomic regions.
(A) Metaplots of (top left) patient tissue chromatin accessibility and (bottom left) OE19 cell H3K27ac ChIP-seq signal at all 4,600 eRNA
regions compared to 4,600 random regions of accessible chromatin. (B) Distribution of transcription at 4,600 eRNA regions compared
to 4,600 randomly selected regions of similar or greater chromatin accessibility (regions shown as peak centre ± 0.5 kb). (C) Pearson’s
correlation and hierarchical clustering of CUT&TAG signal at 4,600 eRNA regions for various chromatin-associated factors. (D)
Distribution of ChromHMM emission states for 4,600 eRNA regions. (E) Metaplots of KAS-seq signal in OE19 cells at 4,600 eRNA
regions compared to 4,600 random regions of accessible chromatin. (F) Genome browser view of OE19 KAS-seq, OE19 ATAC-seq
data, and OE19 H3K27ac ChIP-seq at the JUP locus with the JUPe eRNA highlighted. (G) Venn-diagram of overlap between 221 high-
confidence intergenic super enhancers and 1,432 eRNAs (specific to OAC or shared with BO eRNA ; p-value is shown; hypergeometric
test).
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Figure 3. Association of eRNA regions with transcriptional regulators. (A) Transcription factor de novo motif enrichment using
HOMER, at eRNAs differentially expressed in OAC (top; n = 959) and Barrett’s (bottom; n = 670) (p-values are shown). (B) Bar graphs
displaying the frequency of motif prevalence of the top five enriched motifs at eRNA regions differentially expressed in OAC (top; n = 959)
compared to differentially accessible intergenic chromatin (**** = p < 0.0001; ** = p < 0.01; * = p < 0.05; N-1 Chi-squared test). (C) Volcano
plot showing differential TF binding (± 0.2 differential binding score or ≥ -log10 padj 70) at 4,600 eRNAs regions using TOBIAS (Bentsen et
al., 2020). (D) Metaplots of KLF5 ChIP-seq signal from OE19 cells at eRNAs (specific to OAC or shared with BO eRNA) containing a KLF5
motif, lacking a KLF5 motif or randomly selected open chromatin regions. (E) Venn diagram displaying overlap between genes annotated to
KLF5 motif containing eRNAs (specific to OAC or shared with BO eRNA) with genes downregulated upon siKLF5 treatment (Log2FC ≥1.0,
< padj = 0.05) in OE19 cells (p-value is shown; Fisher’s exact test). (F) Venn diagram displaying overlap between genes annotated to AP-1
motif containing eRNAs (specific to OAC or shared with BO eRNA) with genes downregulated upon dnFOS induction (Log2FC ≥0.5, < padj
= 0.05) in OE19 cells (p-value is shown; Fisher’s exact test).
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Figure 4. Association of eRNA regions with transcriptional regulators and potential target genes (A) GO-term analysis of
differentially expressed eRNA region-associated genes (top-left/right) and differentially expressed genes (bottom-left/right) in (left)
Barrett’s (> Log2FC 0.9, < padj = 0.05) and (right) OAC (> Log2FC 1.1, < padj = 0.05). eRNAs were annotated to genes by the nearest
gene model using HOMER (Heinz et al., 2010). (B) Venn diagram displaying overlap between differentially expressed genes and unique
protein-coding genes annotated to differentially expressed eRNAs in (top) BO and (bottom) OAC (p-value is shown; Fisher’s exact test).
(C) Box plots comparing the expression of genes annotated to eRNAs differentially expressed in BO (left) or OAC (right) in BO and OAC
patient tissue total RNA-seq samples from the OCCAMS dataset. (p-value is shown; Welch’s t-test). (D) Genome-wide analysis of the
effect of changing eRNA expression on gene expression within 200 kb chromosomal bins. Numbers above bars represent total genes
associated with respective net-enhancer change (p-value is shown; Kruskal-Wallis test).
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Figure 5. eRNA regions identify JUP as a candidate target gene.
(A) Genome browser view of BO and OAC patient tissue ATAC- and total RNA-seq data, and H3K27ac ChIP-seq in OE19 cells, at the JUP
locus with the JUPe eRNA highlighted. (B) Box plots comparing the expression of (left) JUP and (right) JUPe in BO (n = 108), ERBB2WT (n
= 193) and ERBB2AMP (n = 17) OAC patient tissue total RNA-seq samples (p-value is shown; Welch’s t-test). (C) Schematic displaying
relative locations of putative eRNA region target genes and nearest neighbours (top) and correlation of JUPe with JUP expression across
BO (n = 108), ERBB2WT (n = 193) and ERBB2AMP (n = 17) OAC patient tissue total RNA-seq samples (Spearman’s r and p-value are
shown; Spearman’s rank correlation test). (D and E) Global analysis of correlations of eRNA expression with the expression of the most
correlated gene within a 200 kb window flanking the eRNA region. eRNAs are defined as tissue-specific according to Fig. S1A, and the rest
of the eRNAs are designated as shared. (D) Heatmap showing the correlation coefficients between all 4600 eRNAs and associated mRNAs
in the RNA-seq datasets. Samples are clustered according to eRNA-associated gene expression values. OAC-specific eRNAs (red), BO-
specific eRNAs (blue) and shared eRNAs (white) are indicated across the top. (E) Boxplots showing the correlations with BO gene
expression datasets (left) or OAC gene expression datasets (right). Significance values (t-test) are shown between the indicated groups.
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Figure 6. In vitro interrogation of eRNA regions confirms production and association with cancer-associated processes.
(A) Bar graphs displaying KAS-seq signal at the APOL4e, JUPe, CCNE1e and MYBL2e regions in OE19 cells (** = p < 0.01; Welch’s t-
test). (B) Bar graphs displaying difference in expression of JUP, CCNE1, MYBL2 and JUPe, CCNE1e, and MYBL2e between CP-A and
OE19 cells using RT-qPCR (p-value is shown; Welch’s t-test). (C) (Left) Schematic of luciferase assay. Bar graph displaying the difference
in luciferase reporter activity between JUPe, CCNE1e and MYBL2e, compared to vector only negative control (** = p < 0.01; * = p < 0.05;
one-way ANOVA with Bonferroni’s correction). (D) (Left) Schematic of STARR-RT-qPCR assay. (Right) Bar graph displaying the difference
in STARR reporter activity between JUPe, CCNE1e and MYBL2e, compared to U00930 tRNA negative control (**** = p < 0.0001; *** = p <
0.001; one-way ANOVA with Bonferroni’s correction). (E) Bar graphs displaying the expression of JUPe, CCNE1e, MYBL2e eRNAs (top)
and JUP, CCNE1 and MYBL2 mRNAs (bottom) in OE19-dCas9-KRAB cells using real time RT-qPCR, upon treatment with the indicated
targeting or non-targeting (NT) sgRNA (p-value is shown; Welch’s t-test). A schematic of dCas9-KRAB targeting of eRNA regions is
shown.
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Figure 7. Biological and clinical relevance of eRNAs and their target genes.
(A) Scatter plots displaying data from the Sanger DepMap Project Score (Tsherniak et al., 2017; Behan et al., 2019) highlighting (left)
cell line dependency on JUP (gastroesophageal cell lines are marked in red) and (right) top genetic dependencies in OAC. (B) Bar
graph displaying the difference in cell viability in OE19-dCas9-KRAB cells upon sgRNA treatment, assessed by crystal violet assay (p-
value is shown; Welch’s t-test). (C) Box plots comparing diagnosis age for OAC patients with low and high MYBL2 expression in the
TCGA PanCancer Atlas dataset (p-value is shown; Welch’s t-test). (D) Kaplan-Meier plot comparing overall survival between OAC
patients with low and high MYBL2 expression in the TCGA PanCancer Atlas dataset (Log rank p-value is shown). (E) Kaplan-Meier
plot comparing overall survival between OAC patients with low and high signature eRNA target expression in the TCGA PanCancer
Atlas dataset (Log rank p-value is shown; signature genes are shown).
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