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Abstract6

Phylogenetic trees are fundamental for understanding evolutionary history. However, finding maximum like-7

lihood trees is challenging due to the complexity of the likelihood landscape and the size of tree space. Based8

on the Billera-Holmes-Vogtmann (BHV) distance between trees, we describe a method to generate interme-9

diate trees on the shortest path between two trees, called pathtrees. These pathtrees give a structured way to10

generate and visualize treespace in an area of interest. They allow investigating intermediate regions between11

trees of interest, exploring locally optimal trees in topological clusters of treespace, and potentially finding12

trees of high likelihood unexplored by tree search algorithms. We compared our approach against other tree13

search tools (Paup*, RAxML, and RevBayes) in terms of generated highest likelihood trees, new topology14

proportions, and consistency of generated treespace. We assess our method using two datasets. The first15

consists of 23 primate species (CytB, 1141 bp), leading to well-resolved relationships. The second is a dataset16

of 182 milksnakes (CytB, 1117 bp), containing many similar sequences and complex relationships among17

individuals. Our method visualizes the treespace using log likelihood as a fitness function. It finds similarly18

optimal trees as heuristic methods and presents the likelihood landscape at different scales. It revealed that19

we could find trees that were not found with MCMC methods. The validation measures indicated that our20

method performed well mapping treespace into lower dimensions. Our method complements heuristic search21

analyses, and the visualization allows the inspection of likelihood terraces and exploration of treespace areas22

not visited by heuristic searches.23

Key words: Phylogenetic treespace; Billera-Holmes-Vogtmann treespace; likelihood; convex hull; pathtrees;24

optimal tree; multidimensional scaling; interpolation25
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Introduction26

Evolutionary trees, or phylogenetic trees, have been used extensively throughout systematic biology and other27

fields to represent the evolutionary history of species. How to compute the best tree and how to characterize28

the uncertainty of estimates of the branch lengths and the topology is an on-going challenge. Generally29

tree search methods seek a globally best tree under some optimization criteria (e.g. parsimony (Fitch 1971),30

distance methods (Fitch and Margoliash 1967; Saitou and Nei 1987), or maximum likelihood (Felsenstein31

1981)), but the number of potential trees grows exponentially relative to the number of leaves (Schröder32

1870). Furthermore, it is NP-hard to compute the maximum likelihood tree (Roch 2006; Chor and Tuller33

2005) or most parsimonious tree (Foulds and Graham 1982), so except for small numbers of taxa where34

exhaustive search is possible, heuristic methods must often be used to search the treespace. These methods35

explore locally best trees in the hope that the best local tree found is equivalent to the global best tree (e.g.36

maximum likelihood programs RAxML (Stamatakis et al. 2005), PhyML (Guindon and Gascuel 2003), and37

Paup* (Swofford 2003)). Similarly, Bayesian inference programs use tree rearrangement moves to generate38

proposals to estimate the posterior probability (e.g. Bayesian inference programs MrBayes (Huelsenbeck39

and Ronquist 2001), RevBayes (Höhna et al. 2016), and BEAST (Drummond and Rambaut 2007)).40

Initially, many optimality criteria to compare trees were developed, the most prominent being parsimony41

(Fitch 1971), distance methods (Fitch and Margoliash 1967; Saitou and Nei 1987), and maximum likeli-42

hood (Felsenstein 1981). Computational power has increased considerably since then, so computationally43

intense probabilistic methods such as maximum likelihood and Bayesian inference have supplanted faster44

but less accurate methods. Researchers now commonly use maximum likelihood programs, such as RAxML45

(Stamatakis et al. 2005), PhyML (Guindon and Gascuel 2003), and Paup* (Swofford 2003), or Bayesian46

inference programs, such as MrBayes (Huelsenbeck and Ronquist 2001), RevBayes (Höhna et al. 2016),47

and BEAST (Drummond and Rambaut 2007).48

Both Bayesian inference and maximum likelihood methods use random changes in the tree topology to49

search the treespace. Even when we record all visited trees in a maximum likelihood search or look at all50

collected trees in a Bayesian Markov chain Monte Carlo run, we can see a "gappy" space, where trees on the51

space were not evenly spaced: some regions are more concentrated and other regions are sampled sparsely52

or not at all. For example, an MCMC may not explore the space or posterior distribution efficiently due to53

revisiting trees topologies (Lakner et al. 2008) or due to low posterior nodes separating peaks (Whidden and54

Masten 2015). While in an ML tree search, Money and Whelan (2012) show that different rearrangement55

moves correspond to discretized treespaces with different numbers of local optima.56

While the concept of treespace is often used informally to mean the set of all possible phylogenetic57
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trees meeting some condition, such as having n leaves, a treespace can be formally defined as a discrete58

or continuous metric space (ie. a geometric space with a distance measure between points meeting certain59

conditions) where each point corresponds to a tree (see St. John (2017) for a comprehensive review of60

treespaces). In this paper, we use the Billera-Holmes-Vogtmann (BHV) treespace (Billera et al. 2001), which61

is a continuous, piece-wise Euclidean space containing all trees with branch lengths and n leaves. This space62

contains unique shortest paths, or geodesics, between any two points, with the lengths of these paths being63

the Billera-Holmes-Vogtmann (BHV) distance. Both the BHV distance and geodesics between trees can64

be computed in polynomial time (Owen and Provan 2011). The weighted Robinson-Foulds distance (wRF)65

(Robinson and Foulds 1979) corresponds to using an L1 metric instead of an L2 metric on the piecewise-66

Euclidean orthants of BHV treespace. The wRF distance does not have unique geodesics but is faster to67

compute than the BHV distance and is at most a multiplicative factor of
p
2 larger than the BHV distance68

(Amenta et al. 2007). The Robinson-Foulds (RF) distance (Robinson and Foulds 1981) is the same as the69

weighted Robinson-Foulds distance when all edge lengths are set to be 1.70

A landscape is a configuration space or a metric space of trees (with or without branch lengths) T and71

an associated real-valued cost or fitness function f : T ! R. Landscapes were first defined by Bastert et al.72

(2002) on trees without branch lengths, so the metric space T was a graph. A landscape on trees without73

branch lengths can be visualized as a colored graph, where the trees are the nodes, colored by the fitness74

function value, and edges represent a minimal rearrangement move between trees, such as Subtree-Prune and75

Regraft (SPR) (Whidden and Masten 2015). Alternatively, for trees with or without branch lengths, distances76

can be computed between the trees, and visualized in 2 or 3 dimensions using Multi-Dimensional Scaling77

(MDS). MDS approximates the pairwise distances between points by mapping them in a lower-dimensional78

Euclidean space (Kruskal 1964), and was first applied to sets of phylogenetic trees by Amenta and Klingner79

(2002) and popularized by Hillis et al. (2005). Most often, the trees in an MDS visualization have been80

colored to indicate some kind of clustering (e.g. Hillis et al. (2005); Kendall and Colijn (2016); Gori et al.81

(2016); Jombart et al. (2017)), but they can also be colored by the fitness function to visualize landscapes.82

For example, Hillis et al. (2005) included a Bayesian MCMC trace with RF distances colored by likelihood;83

Höhna and Drummond (2012) used the Nearest-Neighbor Interchange (NNI) distance colored by posterior84

probability with trees separated by a single NNI move joined by an edge; and Wright and Lloyd (2020)85

using RF distance colored by the minimum implied gap (MIG) score, a measure of congruence with the fossil86

record, and included an MDS visualization with interpolation of the MIG score across the MDS space.87

We use MDS to visualize landscapes where the fitness function is the log likelihood, but approach the88

visualization in a different way from previous work. For a given area of interest in treespace, we sample trees89

along geodesics crossing this area to get a representative set of trees ("pathtrees"). We then use MDS to map90
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these pathtrees into 2 dimensions, color them by their log likelihood, and use interpolation to estimate the91

likelihood landscape in the treespace area of interest. We also show the landscape function as a 3-D surface92

over the 2-D MDS plot and call this a likelihood surface. Thus, our visualizations try to illustrate the overall93

landscape tendency in the part of treespace of interest, instead of only point values of the fitness function,94

possibly unevenly distributed.95

There are several recent packages or programs for visualizing trees using MDS, but they focus on coloring96

the points by cluster rather than a fitness function. Treescaper (Huang et al. 2016) is a standalone GUI that97

allows different tree distance functions, cost functions for dimensionality reduction, and non-linear dimension98

reduction algorithms to be used. treespace (Jombart et al. 2017) is an R package that allows a wide99

variety of tree metrics and methods for clustering trees to be used. Smith (2022) evaluated the performance100

of multiple aspects of low-dimensional representations of sets of trees, and provides an R package TreeDist101

for users to do the same. Finally, R We There Yet (RWTY) (Warren et al. 2017), a package for analyzing102

Bayesian analyses convergence, can produce nonlinear MDS visualization of landscapes using the RF or path103

difference distance (Steel and Penny 1993) and colored by the likelihood. Some authors (Amenta et al.104

2015; Wilgenbusch et al. 2017; Smith 2022) have analyzed how well MDS visualizes treespace, and suggested105

validation measures. There are other ways to visualize sets of related trees beyond dimensionality reduction,106

such as super-imposing the trees on each other, as in DensiTree (Bouckaert 2010), or sophisticated tree107

comparison visualizers, like ADView (Liu et al. 2019).108

We will focus on likelihood as the optimality criterion for the rest of this paper. While there is a closed-109

form expression to compute the likelihood of a given tree, given sequence data, the likelihood function itself is110

very complex with multiple local optima (Steel 1994; Chor et al. 2000). Finding the best tree in the presence111

of multiple local and global optima and the presence of regions of trees with similar, high likelihood, such as112

islands (Maddison 1991; Salter 2001) and terraces (Sanderson et al. 2011; 2015) is difficult. Our method can113

deliver additional support for other heuristic methods by investigating the relationship among trees in the114

BHV space and visualizing the landscape at different scales in an area of interest in treespace using MDS.115

We apply our method to two datasets, and discover novel high likelihood tree topologies. We distribute our116

approach in the Python package Pathtrees.117

1 Materials and Methods118

We developed a method to generate and visualize the log-likelihood landscape in an area of interest in a119

treespace, and potentially find trees of high likelihood unexplored by tree search algorithms. We sample trees120

("pathtrees") along the shortest paths in BHV treespace between points on a convex hull enclosing the area121
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of interest, and also compute the optimized branch lengths for each tree topology found. We then use MDS122

to map all of these trees into two dimensions and use splines to interpolate the log-likelihood in the spaces123

between trees to visualize the relationship of the trees and their landscape. For the rest of this paper, we use124

"treespace" to refer to the Billera-Holmes-Vogtmann (BHV) treespace, unless otherwise specified.125

1.1 Billera-Holmes-Vogtmann (BHV) treespace and shortest paths126

The Billera-Holmes-Vogtmann (BHV) treespace models all phylogenetic trees with a fixed set of leaves. It127

is formed from a set of Euclidean regions, called orthants. Each orthant contains only trees with the same128

topology. Each tree topology consists of a unique set of splits (Buneman 1971), and each of these splits is129

assigned to one of the dimensions of the orthant. Each branch length in a tree becomes the coordinate in130

the orthant along the dimension corresponding to the branch’s split. Two orthants with corresponding tree131

topologies that share splits are adjacent in the treespace, and their shared boundary orthant contains all132

trees containing exactly the shared splits. All orthants contain the origin, which corresponds to the star tree,133

so the space is connected.134

The length of a path between two trees is computed by measuring the Euclidean length of the path in135

each orthant it passes through, and summing those lengths. There is a unique shortest path, or geodesic,136

connecting two phylogenetic trees T1 and T2 in BHV treespace (Billera et al. 2001), and it can be computed137

in polynomial time O(n4), where n is the number of leaves in the trees, by the Geodesic Treepath Problem138

(GTP) algorithm (Owen and Provan 2011).139

If trees T1 and T2 have no common splits, then the GTP algorithm starts with a simple initial path,140

called the cone path, which connects trees T1 and T2 to the origin (a star tree), and hence each other, by141

straight lines. Then, the cone path is transformed into a series of successively shorter paths until the geodesic142

is obtained. At each step, the algorithm identifies one new orthant that the current path can be modified143

to pass through to yield a shorter path. When trees T1 and T2 have splits in common, the algorithm first144

subdivides T1 and T2 along the common splits, and runs the GTP algorithm described above on each pair of145

subtrees. The shortest paths between the subtrees are then combined into the overall geodesic between T1146

and T2. Fig. 1 demonstrates an example of a geodesic between two trees, and the geometric representation of147

treespace. The top row shows a starting tree (T1), an ending tree (T2), and the two trees where the geodesic148

between T1 and T2 crosses orthant boundaries. The bottom row shows the geodesic, the cone path, parts of149

the three orthants that the geodesic passes through, and an example tree of each orthant. Moving along the150

geodesic from start tree T1 to end tree T2, the intermediate tree branches shrink to zero length at orthant151

boundaries, and new branches begin to grow.152
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Figure 1. Shortest path (geodesic) between two trees in the BHV treespace. First row: a start tree T1 and an end
tree T2 with two intermediate trees B1 and B2 on the boundaries of orthants, axis e3 and the quarter-plane formed by
axes e4 and e6, respectively. Bottom row: Black dots mark the trees in the top row; the cone path is the black dotted
line; the geodesic is the red dotted line; each colored region is part of a different orthant containing the geodesic; and
an example tree with arbitrary branch lengths is shown for each orthant.

1.2 Sampling trees on the shortest path between tree pairs153

Our method samples trees along the shortest paths (geodesics) between points on the boundary of our area154

of interest. The topologies and edge lengths for these sampled trees on the geodesic between trees T1 and155

T2 are given by Theorem 2.4 of Owen and Provan (2011) and Theorem 1.2 of Miller et al. (2015). First156

let (A1, A2, ..., Ak) be a partition of the splits in T1 that are not in T2, where Ai is the set of splits whose157

branches shrink to zero length at the i-th orthant boundary along the geodesic. Let (B1, B2, ..., Bk) be a158

partition of the splits of T2 that are not in T1, where Bi is the set of splits whose branches begin growing from159

zero length at the i-th orthant boundary. Let C be the set of splits common to T1 and T2, and parameterize160

the geodesic between T1 and T2 by 0  �  1. For split e in tree T , denote its branch length in T by |e|T and161

for the set of splits S in tree T , let ||S|| =
qP

e2S |e|2T . Then by Theorem 2.4 of Owen and Provan (2011)162

and Theorem 1.2 of Miller et al. (2015), a tree Ti on this geodesic at position � in the i-th orthant contains163

exactly the splits164

6



S = C [B1 [ ... [Bi [Ai+1 [ ... [Ak, (1)

such that split e 2 S has branch length165

|e|Ti =

8
>>>>>>>>><

>>>>>>>>>:

(1��)||Aj ||��||Bj ||
||Aj || |e|T1 e 2 Aj

�||Bj ||�(1��)||Aj ||
||Bj || |e|T2 e 2 Bj

(1� �)|e|T1 + �|e|T2 e 2 C

(2)

Thus, the trees along the geodesic between T1 and T2 can only contain splits from T1 and T2, and any split166

common to T1 and T2 appears in all trees along the geodesic between them. Additionally, as shown in Fig. 1167

where the geodesic passes through the quarter plane formed by the axes e3 and e4, a geodesic can non-trivially168

pass through lower-dimensional orthants, corresponding to trees with 0 length edges. Each tree Ti generated169

along the path is then stored in the standard Newick format. Some trees on the geodesic are not bifurcating170

trees.171

1.3 Finding the starting trees for PATHTREES172

Our method visualizes the landscape in an area of interest in treespace. The boundary of this area is defined173

by a set of trees. We compute the shortest path between each pair in this set of trees, and sample trees174

along these paths to get the pathtrees. Our package can generate random starting trees, but with a larger175

number of taxa, these random trees span a very large section of treespace. Instead of random starting trees,176

we use a large set of trees generated by another method, for example, by RevBayes using Markov chain177

Monte Carlo. We calculate the BHV distance between these trees and map them to two dimensions using178

MDS. The trees that are on the vertices of the convex hull, the smallest convex polygon enclosing all of the179

trees in the 2-D MDS plane, are then extracted and used as the starting trees for Pathtrees. For example,180

we collected 50,000 trees using the program RevBayes and the primate dataset (outlined in more detail in181

Section 1.7) and then extracted 1000 trees from the last 1/10 of the MCMC chain. Fig. 2 shows the space of182

1000 trees and the trees on the vertices of the corresponding convex hull. The Pathtrees will only depend183

on the trees on the convex hull. Ideally, we would want to calculate the hull in treespace and not the 2-D184

MDS space but currently, there is an algorithm to achieve that.185
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Figure 2. An example of sample treespace and its convex hull. Left: A log-likelihood contour plot of the first
two multidimensional scaling (MDS) coordinates of the sampled trees. The log-likelihood contour is a cubic spline
interpolation of the log likelihoods of all trees in the MDS plane; the MDS coordinates are computed from the BHV
distances between trees. Each dot is a tree; the lighter the dot, the higher the likelihood of the tree. Right: the convex
hull of the set of trees. The red dots are the vertices of the convex hull, displaying the sample trees on the boundary
of the treespace.

1.4 Visualizing treespace and generating pathtrees186

The largest orthants in the BHV treespace for n-leaf rooted trees have dimension 2n � 3, so landscapes on187

this treespace cannot be visualized directly. Instead, we follow precedent (Amenta and Klingner 2002) and188

we generate a distance matrix for all N trees we wish to visualize, and use this distance matrix as input189

into a multidimensional scaling (MDS) algorithm (Cox and Cox 2008) to compress the higher dimensional190

treespace into two dimensions. The BHV tree space is high dimensional and compressing this space using191

MDS to 2 dimension may bring unrelated trees close to each other. We evaluated this mapping by comparing192

the 2-D MDS coordinate distance matrix with the tree distanc matrix using correlation measures, such as193

Pearson’s r. Since we are interested not only in the relationship among the trees but also in how well they fit194

the data, we calculate the log-likelihood for each tree and add this dimension to the 2-D MDS visualization195

either as contours or a third coordinate axis. For a smooth representation of the likelihood surface, we196

interpolate the log-likelihood values between the N trees using an interpolation method. We used two197

different methods: the cubic spline interpolation method (De Boor 1978) and the radial basis function (RBF)198

thin-plate spline interpolation (Buhmann 2003). The differences between the two interpolation methods199

(cubic spline interpolation and the thin-plate spline interpolation) are discussed in Supplementary Section200

S3.201

The MDS procedure is time-consuming for large distance-matrices. We experimented with two different202

distance metrics for visualization: the BHV distance and the weighted Robinson-Foulds (wRF) distance203

(Robinson and Foulds 1979). The wRF distance is faster to compute than the BHV distance and is, at most,204

a multiplicative factor of
p
2 larger than the BHV distance.205
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The distribution of the sampled trees shown in Fig. 2 highlights that some areas of treespace were sampled206

less well than others. In contrast, choosing trees along geodesics allow us to visualize trees that are evenly207

spaced between two arbitrary end-point trees. We demonstrate these pathtrees in Fig. 3 where we selected208

three trees (colored triangles) from the 1000 sample trees visualized in Fig. 2 and generated 20 trees on209

the shortest path in the BHV treespace between each pair of them and then visualized the contour and the210

surface of all 1060 trees in 2-D MDS space. The selected three trees are provided in Supplementary Fig. S1.211

The pathtrees bridge the gaps between the sampled trees.212

Figure 3. An example of pathtrees between three arbitrary trees in the treespace. Cubic spline interpolation of the
log likelihood was used for the contour color (left) and the surface height (right) of the space inside the convex hull.
20 pathtrees (red dots) were generated on the shortest path between each pair of 3 trees (triangles).

1.5 Optimizing the branch-length of pathtrees213

The pathtrees lay on the shortest path between a start and end tree (anchor trees). This path is con-214

structed by refinement of the cone path as discussed in Section 1.1, so the resulting pathtrees will more215

commonly have short branches. To find the best tree and also find potential local likelihood maxima, we216

need to find pathtrees with the same topology and then optimize the branch lengths for that topology. We217

apply the unweighted Robinson-Foulds distance (Robinson and Foulds 1981) to detect the different topolo-218

gies; then we use Paup* to optimize the branch lengths of a tree in each topology cluster. Fig. 4 shows the219

locations of the pathtrees and their corresponding optimized trees. If the anchor trees have different topolo-220

gies, they are located in different orthants. The pathtrees can have different intermediate topologies that,221

when optimized, will be located away from the shortest path. Unoptimized trees that start in low likelihood222

areas of treespace may move particularly far away, whereas trees that start on a ridge may not move far.223
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Figure 4. An example of pathtrees and their corresponding optimized trees. Each pathtree is connected to its
corresponding optimized tree (black circles).

1.6 Software implementation224

Our method is implemented in the Python package Pathtrees. The method uses the Java package GTP225

(Owen and Provan 2011) to generate the geodesic between pairs of trees, the program Paup* (Swofford 2003)226

for likelihood optimization, the Python modules DendroPy (Sukumaran and Holder 2010) for the Robinson-227

Foulds metric, and several other standard Python modules, such as Scipy and Numpy (Virtanen et al. 2020;228

Harris et al. 2020).229

We summarize the tree searching strategy of our package Pathtrees in the algorithm:230

Input: Sequence data in PHYLIP format and N rooted, non-ultrametric trees in plain Newick format231

sampled in connection with the sequence data (e.g. from a MCMC Bayesian analysis chain of the sequence232

data).233

Output: Trees on the shortest paths through treespace between all pairs of starting trees; optimized branch234

lengths for each different pathtree topology; MDS visualization of treespace and likelihood landscape inside235

the convex hall of input trees.236

Algorithm:237

1. Compute all pairwise distances between N sample trees, and compute their MDS coordinates.238

2. Extract the trees on the vertices of the convex hull of the N sample trees in the 2-D MDS plane and239

consider them as starting trees.240

3. Generate m equally spaced trees on the geodesic between each pair of starting trees. Put all starting241

trees and generated pathtrees in the set current sample trees.242

4. Calculate the likelihood of all current sample trees.243

10



5. Select n trees with the highest likelihood among current sample trees and classify them with respect to244

their topologies. Let there be t topologies among them.245

6. For each topology cluster, optimize the branch lengths for that topology and add these t optimized246

trees to the current sample trees.247

7. Visualize the contour and surface of the current sample trees by creating a distance matrix using either248

the weighted Robinson-Foulds or the BHV distance metric, interpolating log-likelihood values, and249

recomputing the MDS coordinates.250

8. Return the current sample trees, the pathtrees, and the visualization; or continue with step 3 to zoom251

in the area of optimized trees of the current iteration.252

1.7 Application to real data253

We evaluate our approach Pathtrees using two datasets that were previously published: D1 is a dataset254

of primates used in the tutorial for the program RevBayes (Höhna et al. 2017). The dataset consists of255

1141 base pairs of the mitochondrial cytochrome b gene of 23 primate taxa. D2 is a larger mitochondrial256

cytochrome b dataset of 182 milksnakes (1117 bp) (Ruane et al. 2014; Chambers and Hillis 2019). We chose257

the two different datasets because they represent very different situations. D1 is a relatively small dataset258

but still too large to consider an exhaustive tree search. The species in the dataset are well defined, and the259

dataset contains enough variability to establish a phylogeny with branch lengths that are neither zero nor260

huge. In contrast, D2 has about eight times more individuals than D1; these individuals are only from a few261

species or subspecies, and many individuals share the same DNA sequence with others in the dataset. We262

deliberately did not attempt to consolidate the dataset into unique site patterns, anticipating that the many263

zero branch lengths would be a stress test for our method.264

For the first dataset D1, we collected 50,000 trees using the program RevBayes. We used the instructions265

from the tutorial of RevBayes (Höhna et al. 2017), which are shown in Supplementary Section S5. We266

selected every 38th tree from the last 3/4 of the total 50,000 sample trees (around 1000 sample trees) and267

then extracted the trees on the vertices of the convex hull of these sample trees (14 trees) as starting trees268

for Pathtrees. These trees were the starting trees for two experiments: (1) 1 pathtree between each pair269

of starting trees and (2) a higher number of 15 pathtrees between each pair of starting trees to show a more270

detailed treespace. We used the BHV distance between trees for MDS for the first experiment and the faster271

wRF distance for the second experiment to make the computations tractable.272

For the second dataset D2, we collected 10,000 trees using the program RevBayes. After removing the273

first 300 trees as burn-in, we selected every 20 trees and extracted 500 trees to be considered in convex hull274
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analysis. The 14 trees on the vertices of the convex hull were used as starting trees in Pathtrees. For the275

second dataset, considering that it is a complicated dataset with 182 individuals, we intentionally collected a276

smaller sample of 10000 trees from RevBayes, compared to the first dataset, and burned in a small portion277

of trees just to verify that it is not required to generate a very long chain of RevBayes trees and large278

burn-in to get a reasonable treespace to generate starting trees for PATHTREES. We computed 4 pathtrees279

along the shortest path between each starting tree pair and selected the 100 trees with the highest likelihood280

to classify by topology for branch length optimization. We then performed a second iteration of our method281

("zoomed in") by computing the convex hull of the 100 optimized trees of the first iteration. The vertices282

of this convex hull became the starting trees for our second iteration, and in this iteration we computed 5283

pathtrees along each shortest path between starting tree pairs. For both iterations, we used the wRF distance284

between trees as input for MDS, and used thin-plate spline interpolation to visualize the likelihood landscape.285

1.8 Comparison of PATHTREES with heuristic tree searches286

We compared the highest likelihood trees found by Pathtrees with those generated by the maximum287

likelihood software Paup* 4.0a (build 168) (Swofford 2003), RAxML 8.2.12 (Stamatakis et al. 2005), and288

the Bayesian inference software RevBayes 1.1.1 (Höhna et al. 2016). These programs perform heuristic289

searches. Paup* and RAxML search will swap on new tree topologies until a local maximum has been290

reached and no new tree topologies need further evaluations. These heuristics do not guarantee to recover291

the global maximum likelihood tree but usually deliver good results (Stamatakis et al. 2005). In contrast,292

RevBayes uses Markov chain Monte Carlo to evaluate the posterior probability of a tree while collecting293

trees along a Markov chain. The run time is user-determined and needs to be long enough to sample good294

candidate trees. These trees are then used to estimate the maximum a posteriori tree.295

We conducted several experiments to evaluate whether the number of intermediate pathtrees for each pair296

of anchor trees affects the accuracy of the MDS reconstruction of the likelihood surface and how well we can297

recover the best tree. We use the Jukes-Cantor mutation model for the likelihood calculation throughout all298

analyses. Using such a simple model reduces potential difficulties introduced by parameter fitting.299

We compared Pathtrees with Paup* and RevBayes for dataset D1 because we were confident that300

the RevBayes analysis converged. For dataset D2, we compared Pathtrees with Paup* and RAxML301

because even long runs of RevBayes did not deliver stable results. Both Paup* and RAxML were run302

without improving parameters that tune the heuristic search. All generated pathtrees were compared with303

all the evaluated trees in RevBayes to investigate whether our approach can find topologies that were not304

visited by RevBayes.305
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2 Results306

We use our methods for landscape generation and visualization and finding high likelihood trees to examine307

the two datasets D1 and D2 using our method. Fig. 5 shows the contour and surface plots of the visualized308

treespace landscape for dataset D1, generated with one pathtree per pair of starting trees (14 starting trees309

and 91 total pathtrees), and using the BHV distance for MDS input and thin-plate spline interpolation of the310

log-likelihood values of all plotted trees. The first row of Fig. 5 shows the 15 trees with the highest likelihood311

(small pink/purple colored disks) selected from the 91 pathtrees +14 starting trees. These 15 trees contained312

4 different topologies, and the branch lengths in each topology cluster were optimized (medium-size circles).313

The purple spectrum color bar shows the relationship between the likelihood values of the optimized trees314

for each topology; the lighter the color of the topology (medium-sized dots), the lower the likelihood value315

of the corresponding optimized tree in that topology. Among locally optimal trees associated with different316

topologies, we found the best tree with the log likelihood of �15795.1817 (red square). We find the same tree317

as Paup* (big white circle) as the optimal tree and also find the same tree as the maximum a posteriori tree318

(MAP) in RevBayes (big black circle) as a locally optimal tree. In the plots, we see higher likelihood areas319

near the outside of the convex hull and a lower likelihood region in the middle. The 15 highest likelihood trees320

selected for topology analysis and their optimized topology trees are also towards the edges of the convex321

hull.322

The second row in Fig. 5 shows the same 91 pathtrees and 14 starting trees as the first row, but optimized323

branch lengths have been computed for all their different topologies (30 topologies in total). Among all324

locally optimized trees (30 local optima corresponding to different topologies), we found again the best tree325

with the log likelihood of �15795.1817. In the plots, we still see a lower likelihood region in the middle of the326

convex hull, along with some points of higher likelihood corresponding to optimized trees. The orientation327

of the landscape is flipped from the first row, but this is an artifact of MDS.328

Fig. 6 shows the contour and surface plots of the visualized treespace landscape for dataset D1, generated329

with 15 pathtrees per starting tree pair, and using the wRF distance for MDS input and thin-plate spline330

interpolation of the log-likelihood values of all plotted trees. We generated a total of 1365 pathtrees with 43331

different topologies to show a detailed treespace with a high number of trees. After optimizing the branch332

lengths for all 43 topologies, Pathtrees found the same best tree as Paup*, as previously found, with the333

log likelihood of �15795.1817. With a higher number of pathtrees, we have a surface where trees are evenly334

spread out, and the gaps are filled. The best trees detected by Pathtrees, Paup*, and RevBayes were335

added to Supplementary Fig. S2. We still see a lower likelihood region in the middle of the plots. Pathtrees336

with the same topology are generally grouped together, and the sampling is dense enough that we can see337
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Figure 5. Contour and surface plots of Pathtrees for dataset D1 when generating one pathtree per starting tree pair
(91 pathtrees), using BHV distances for the MDS input, and thin-plate spline interpolation for the landscape. The
vertices of the convex hull of the selected 1000 sample trees are the starting trees (14 triangles). First row: 15 trees
with the highest likelihood were selected from the 91 + 14 trees and classified based on their topologies (4 topologies
with the relative likelihoods of their branch-length optimized trees given by the purple spectrum). Each medium-size
circle with a purple color shows one of these locally optimal trees. The red square shows the best likelihood tree
in the treespace found by Pathtrees. The large white disk shows the best tree of Paup*, which is identical to
Pathtrees’ optimal tree. One of Pathtrees’ locally optimal trees matches the MAP tree (big black circle). Second
row: all 91 + 14 trees were selected and classified based on their topologies (30 topologies). Medium-size disks on a
purple spectrum show the 30 locally optimal trees and their relative likelihoods. The big red square shows the best
likelihood tree of Pathtrees.

the path of the geodesics (curved lines of pathtrees) in some cases.338

For the second dataset D2, Fig. 7 shows the contour and surface plots of the likelihood landscape from339

two iterations of Pathtrees, with the second iteration zooming in on the top 100 optimized trees from the340

first iteration. The first row of Fig. 7 shows the first iteration plots, generated using 4 pathtrees per shortest341

path between starting trees (14 starting trees) and selecting the 100 trees with the highest likelihood to342

classify by topology. All selected trees have different topologies, giving 100 optimized trees. Pathtrees343

found a similar tree to the best tree from Paup*, both with the log likelihood �5225.5856. The second row344

of Fig. 7 shows the second iteration plots, zooming in on the convex hull of the 100 optimized trees from the345

first iteration. 11 trees on the vertices of this convex hull became the starting trees for the second iteration.346
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Figure 6. Contour and surface plots of Pathtrees for dataset D1 when generating 15 pathtree per starting tree pair,
using weighted Robinson-Foulds distances for the MDS input, and thin-plate spline interpolation for the landscape.
After optimizing branch lengths for the 43 different topologies (colored by relative likelihood of this optimized tree
using the purple spectrum), Pathtrees found the best tree (red square) with the log likelihood �15795.1817, which
is the same as the optimal tree of Paup* (white circle).

After generating 5 pathtrees between each starting tree pair and classifying the generated pathtrees based347

on topology, we found 154 different topologies, which we optimized. Despite additional topologies, we found348

the same tree with highest likelihood as in the first iteration. In the first row plots, we see only a small area349

of high likelihood trees, separated into two peaks, near the center. In the second row plots, zoomed in on350

this high likelihood section, we still see a lower likelihood chasm dividing the convex hull. The optimized351

topology trees are near the edges of the convex hull.352

A comparison of the three optimal trees, namely ours, the best Paup* tree, and the best RAxML tree,353

revealed that all trees are different from each other. Table 1 shows the weighted and unweighted Robinson-354

Foulds distances between the trees and their log likelihoods. Our tree and the Paup* tree are close and355

only differ by four splits, whereas the RAxML tree differs from both our tree and the Paup* tree by nine356

splits. The wRF distances between these three trees show similar relationships. The RAxML tree is different357

because its topology was found by applying a JC69 model with site rate variation (RAxML always uses site358

rate variation), but we then used Paup* to find the optimal branch lengths for that topology, and the plain359

JC69 model to compute the likelihoods. The log likelihoods for all these ’best’ trees are very similar, and360

comparing their location on the surface in Fig. 7 also shows that the best Pathtrees and Paup* trees are361

close, whereas the RAxML tree seems to be on a different local maximum on the surface. Supplementary362

Fig. S3 contains all three trees showing their topology differences.363

We used MDS to visualize the BHV treespace. This compression of the high dimensional space to 2364

dimensions may lead to artifacts. We validated the accuracy of our visualizations using correlation anal-365

yses between the distance matrix in BHV space and the MDS distance matrix using the first and second366

coordinates. For the first dataset D1 (Fig. 5, bottom row) the Pearson correlation was 0.9237 (additional367
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Table 1. Comparison of the best tree found by Pathtrees, Paup*, and RAxML using the data D2. Above the
diagonal is unweighted Robinson-Foulds (uRF) for all pairs and below the diagonal is the weighted Robinson-Foulds
distance (wRF). The last column is the log likelihood for each tree.

Tree uRF / wRF ln L
Pathtrees Paup* RAxML

Pathtrees - 4 9 -5225.5856
Paup* 0.0054 - 9 -5225.5856
RAxML 0.0343 0.0325 - -5225.8638

Figure 7. Contour and surface plots from Pathtrees for dataset D2, using weighted Robinson-Foulds distances for
the MDS input, and thin-plate spline interpolation for the landscape. First row: the vertices of the convex hull of
the selected 500 sample trees are the starting trees (14 triangles). Four trees were generated on the geodesic of each
pair of starting trees (364 pathtrees). Among them, 100 trees with the highest likelihood were selected to be classified
based on topology. All 100 selected trees have different topologies (small circles, colored from the purple spectrum by
the relative likelihood of their optimized tree). Each medium circle with a color from the purple spectrum shows the
optimized tree with the corresponding topology. Among optimized trees, the red square shows the highest likelihood
tree in the treespace, which is close but not identical to the best tree of Paup* (white circle). The RAxML tree (large
black circle) is different. Second row: Displays the treespace after zooming in on the optimized trees. The vertices of
the convex hull of 100 optimized trees from the first iteration are the starting trees (11 triangles). Five pathtrees were
generated between each starting tree pair (275 trees) and then all of them were selected to be classified by topology.

correlation measures and the Shepard diagram are shown in Supplementary Section S4.1). For dataset D2368

the Pearson correlation coefficient for Fig. 7 , top row (first iteration), was lower than for Fig. 7 , bottom369
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row (second iteration), 0.6856 and 0.9702 respectively, because the first figure covers a much larger area of370

trees than the second (more correlation measures and the Shepard diagrams are shown in Supplementary371

Section S4.2).372

Our pathtrees are only based on the trees on the convex boundary, and one may wonder whether this373

reduces the chance to find relevant new trees. For dataset D1, Fig. 5 (bottom row), Pathtrees starting out374

with 14 starting trees and generating 91 pathtrees found a total of 28 different topologies among 91 pathtrees,375

4 of which were different from all topologies found by 50,000 sampled RevBayes trees. A comparison with376

all 10,000 sampled RevBayes trees for dataset D2 revealed that our method found all 364 pathtrees with377

new topologies in Fig. 7 (first iteration), all of which were different from topologies found by RevBayes. In378

Fig. 7 (second iteration), Pathtrees found a total of 145 different topologies among 275 pathtrees, again all379

different from the total topologies found by 10,000 sampled RevBayes trees.380

3 Discussion381

Our approach uses the Billera-Holmes-Vogtmann treespace framework to generate and visualize treespace,382

including the likelihood landscape, in an area of interest, and to augment the search for the maximum383

likelihood tree by investigating global and local maxima found by our method in this area. While there are384

other programs and packages for MDS visualizations of treespace under various distance metrics, Pathtrees385

is the only recent tool to include comprehensive visualization of phylogenetic likelihood landscapes over an386

area of interest. Our method can be used at different scales (e.g., see Fig. 7) to better understand the spatial387

relationship between the highest likelihood trees. For example, in Fig. 7, the initial landscape shows the388

highest likelihood trees are close together within the MCMC searched area of treespace; zooming in allows us389

to see that these trees form two high likelihood ridges, with a lower-likelihood region between them. Secondly,390

our method can find trees with the same maximal likelihood as other tree search programs, including one391

with a different topology for dataset D2. These results suggest Pathtrees could potentially be used to392

understand treespace islands and terraces better.393

A limitation of our method is the need for starting trees, due to the enormity of treespace. For our two394

example datasets, treespace has 5.6⇥ 1026 orthants and 4.7⇥ 10384 orthants, respectively, so we cannot start395

with the full treespace and just zoom in. We decided to use a sample of trees from a Bayesian phylogenetic396

inference program, RevBayes. In principle, any set of reasonably close trees to the best tree may work397

as a starting point. Using the convex hull in MDS space to start our approach helped reduce the geodesic398

distance matrix size used to create the visualizations. In a way, we treat the convex hull in MDS space as an399

approximation of the convex hull in treespace (Lubiw et al. 2020; Lin et al. 2017). However, we believe that400
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the hull defined by MDS allows us to investigate good and best trees within its boundary. In our examples,401

the best tree, found by other procedures and ours, is within this MDS hull.402

A second limitation of our method is that tree topologies along geodesics can only contain splits that are in403

one of the two endpoints trees and contain all splits that are in both of the endpoint trees. However, we argue404

this constraint is not onerous - there can still be exponentially many topologies fitting this description - but405

means that the intermediate tree topologies explored are relevant. Additionally, trees on a geodesic between406

two starting trees are unlikely to be in the set of best trees because this geodesic defines their branch lengths407

and topology. Thus, our method takes these pathtrees as starting points and optimizes their branch lengths408

(once per topology). This procedure allows us to describe the tree landscape along the path and describe409

the maxima for specific topologies. Using many pathtrees that were optimized or not optimized will give a410

precise picture of the tree landscape (for example, Fig. 5, Fig. 6, and Fig. 7). Our method provides a simple411

framework for exploring landscapes of phylogenetic trees and visualizing their relationship in a continuous412

and low-dimensional projection facilitated by multidimensional scaling and an interpolation method, cubic413

spline or thin-plate spline interpolation, to reveal potential tree islands. The visualization gives a good414

impression of the likelihood landscape: general patterns can be shown with few trees, but details may need415

many more trees to create a more smooth surface. However, even with many trees, the visualization may416

contain artifacts in areas where there are no trees, for example, the spikes in Fig. 7.417

A Bayesian inference method evaluates trees according to the posterior probability, which is dominated418

by the likelihood of the tree when we assume vague prior distributions. It is fair to say that even a long419

inference run will not explore all possible topologies. Even our small dataset of 23 primate species has too420

many different topologies to explore all in a Bayesian context in a reasonable time. Of course, most of these421

topologies will have an inferior fit to the sequence data, but even those trees that fit the data relatively well422

are many. In contrast to Bayesian inference and heuristic search methods, our method does not depend on423

an optimality criterium to pick trees that lay on the shortest path between two arbitrarily chosen trees. This424

allows exploring topologies that were never visited with a good Bayesian run or any other heuristic search as425

we have shown.426

We picked the two datasets because they represent very different situations. The primate dataset D1 is427

relatively small. However, it is still too big to be solved exhaustively. It provides many mutational differences428

allowing good resolution of branch lengths and branching patterns. The second dataset D2 has eight times429

more individuals that are closely related. Many sequences are identical, leading to many multifurcations.430

Heuristic searches for D1 and D2 are fast, and even an MCMC run with RevBayes does not need a431

long time for D1. However, we had difficulties estimating a MAP tree for D2 because we had difficulty432

running to convergence. Pathtrees generates independent trees, evenly spaced along geodesics, to help433
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visualize treespace, find optimal trees, and explore the likelihood surface near these optimal trees. Pathtrees434

optimizes its pathtrees and finds local maxima for the evaluated topologies; these are the same as those found435

by Paup* and RevBayes for D1. Interestingly, the MAP tree and the Paup* tree differ by two splits but436

when the branch lengths are optimized deliver log likelihoods that are very similar. Even ten times longer437

runs in RevBayes deliver the same MAP tree. So while it may seem difficult for RevBayes to explore that438

particular topology with the highest likelihood, the difference is only 0.07 log units. We certainly would not439

exclude the MAP tree in a likelihood ratio test. The second dataset D2 reveals that many trees will be good440

candidates for the best likelihood tree. The Paup*, RAxML, and Pathtrees best trees have all different441

topologies but very similar log likelihoods. These trees are also very similar, with only 4 or 9 different splits442

between them. Pathtrees helps give insights about the likelihood surface, such that it is rather flat and443

therefore will have many potential trees with similar likelihoods.444

We believe that our method, implemented in Pathtrees, complements heuristic search phylogenetic445

analyses and allows visualization of the treespace and finding alternative trees with log likelihoods that are446

potentially better than those of heuristic searchers. For example, a new way to propose topologies for tree447

search could be by sampling pathtrees along a geodesic between two trees, or in a region, of interest. Alterna-448

tively, pathtrees could become starting trees themselves for a maximum likelihood search. The visualization449

of the likelihood surface also allows the discussion of local likelihood maxima, which we hope will lay the450

groundwork for improving search algorithms.451
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Supplementary data are available in a single separate PDF file.453
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The primate data is available from the Tutorial website of RevBayes: https://revbayes.github.io/461

tutorials/ctmc/#example-character-evolution-under-the-jukes-cantor-substitution-model (the462

dataset url is https://revbayes.github.io/tutorials/ctmc/data/primates_and_galeopterus_cytb.nex).463

The snake dataset is available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.464

7hs34mj.465
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