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Abstract1

The fitness landscape is a critical concept in evolutionary biology and genetics that depicts fitness in the genotype space and visualizes the
relationship between genotype and fitness. However, the fitness landscape is challenging to characterize because the quantitative relationships
between genotype and phenotype and their association to fitness has not been comprehensively well described. To address this challenge,
we adopted gene regulatory networks to determine gene expression dynamics. We analyzed how phenotype and fitness are shaped by the
genotype in two-gene networks. A two-by-two matrix provided the two-gene regulatory network in which a vector with two angle values (Θ) was
introduced to characterize the genotype. Mapping from this angle vector to phenotypes allowed for the classification of steady-state expression
patterns of genes into seven types. We then studied all possible fitness functions given by the Boolean output from the on/off expression of the
two genes. The possible fitness landscapes were obtained as a function of the genetic parameters Θ. Finally, the evolution of the population
distribution under sexual reproduction was investigated in the obtained landscape. We found that the distribution was restricted to a convex
region within the landscape, resulting in the branching of population distribution, including the speciation process.
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Introduction1

The fitness landscape in evolutionary biology describes fitness2

as the height of the genotype space and intuitively visu-3

alizes the relationship between the genotype and fitness. The4

fitness landscape provides a significantly simplified picture of5

evolutionary biology and genetics and is relevant to study evolv-6

ability, evolutionary pathways, the effects of multiple mutations,7

and speciation.8

However, it is difficult to obtain suitable fitness landscapes.9

In a fitness landscape, the genotype is represented by a set of10

parameters that can be mapped onto the fitness. According11

to the landscape, how fitness changes depends on the genetic12

parameters that are prescribed. However, there are two funda-13

mental problems with this approach. It is necessary to determine14

the genetic parameters that describe landscape axes. Genetic15

information can be written as the DNA sequence and how con-16

tinuous parameters are derived from this genetic sequence is17

not trivial because a slight change in the sequence could sig-18

nificantly change the phenotype. Therefore, the derivation of19

continuous and measurable genetic parameters that create the fit-20

ness landscape must be addressed. Second, fitness is a function21

of phenotype and is not computed from the genotype directly.22

Usually, the expression of RNAs and proteins is a complex and23

dynamic process that determines a resultant phenotype. In other24

words, the relationship between genotype and phenotype de-25

pends on complex gene expression dynamics. Fitness, then, is a26

function of dynamically regulated phenotype. 27

We adopted gene regulatory networks (GRN) that describe 28

gene expression dynamics to address these questions about the 29

fitness landscape. First, we showed that the degree of activa- 30

tion or inhibition in expression dynamics continuously defines 31

genotype parameters. Second, phenotypes, that is, protein ex- 32

pression levels, are determined by gene expression dynamics; 33

whereas, genomes provide the gene regulatory network. Thus, a 34

complex genotype–phenotype relationship was obtained. Then, 35

fitness was defined by the phenotypes, and thus, represented 36

as a function of the introduced genetic parameters. In fact, the 37

evolution of GRN has been studied(Glass and Kauffman (1973); 38

Mjolsness et al. (1991); Salazar-Ciudad et al. (2001, 2000); Kaneko 39

(2006)) extensively with respect to the robustness or the phe- 40

notypic plasticity(Martin and Wagner (2009); Wagner (2013); 41

Azevedo et al. (2006); Glass and Kauffman (1973); Mjolsness et al. 42

(1991); Salazar-Ciudad et al. (2001, 2000); Kaneko (2006); Okubo 43

and Kaneko (2021a,b); Kaneko (2007); Swain et al. (2002); Ou 44

et al. (2008); Furusawa et al. (2005); Ayroles et al. (2015); Cubillos 45

et al. (2014); Chapal et al. (2019); Miller et al. (2015); Kaneko and 46

Kikuchi (2020); Nagata and Kikuchi (2020)). 47

While there are extensive studies of evolution in the fitness 48

landscape(Soyer and Bonhoeffer (2006); Neyfakh et al. (2006); Ho 49

and Zhang (2016); Orlenko et al. (2016); Yubero et al. (2017); Fried- 50

lander et al. (2017); Cuypers et al. (2017); Orlenko et al. (2017); 51

Schiffman and Ralph (2022); Hether and Hohenlohe (2014)), 52

the relationship between the global fitness landscape and GRN 53
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Figure 1 A flow chart in this paper to obtain the genotype–
phenotype relationship and fitness landscape.

structures remains uncharacterized. In particular, Heather and1

Hohenlohe (Hether and Hohenlohe (2014)) classified GRN dy-2

namics into six cases. However, the global change in gene ex-3

pression dynamics due to GRN changes and the classification4

of the fitness landscape need to be further investigated by com-5

prehensively considering all classes of possible GRNs and their6

relationship to phenotypes and fitness.7

Generally, GRNs and their dynamic interactions with many8

regulatory genes are too complex to analyze. Here, we consider9

a GRN with two genes, which provides a straightforward and10

basic system to study comprehensively the dynamics that cre-11

ate a genotype–phenotype relationship. Here, two-node GRNs12

are represented by 2×2 matrices. By using on/off expression13

dynamics, we could evaluate all the possible GRN structures by14

introducing two-dimensional parameters specifying the matrix.15

Still, there can be many types of fitness functions for given16

expressions; in most theoretical studies, however, a specific fit-17

ness function is selected depending on the purpose of the study.18

Here, we studied all possible fitness functions that depended19

on the expression of the two genes (i.e., Boolean functions). The20

possible fitness functions were limited to 16 types, all of which21

were investigated to obtain the possible fitness landscape. Once22

the fitness landscape was obtained, the genome distribution23

of the GRN parameter was computed. The distribution was24

concentrated on a higher-fitness region; however, the robust-25

ness against recombination or sexual reproduction (Martin and26

Wagner (2009); Azevedo et al. (2006); Kim and Fernandes (2009);27

Okubo and Kaneko (2021a); Omholt et al. (2000)) will impose28

further restrictions on the genome distribution, as offspring from29

the parent selected from the high-fitness region could fall into30

a non-fitted region. Hence, it was crucial to determine how31

stability against recombination shaped the genome distribution32

depending on the fitness landscape.33

This paper consists of two parts. The first part analyzes34

the dynamics of the two-gene network and the second part35

discusses the convex regionalization of the population by sexual36

reproduction based on the fitness landscape. (See Fig.1 for the37

flow used in this study).38

In the first part, the phenotype and fitness are obtained from39

the genotype in a two-gene network. Because the two-gene40

network has only a few possible steady states, we classified these41

Figure 2 Regulatory network of two genes. The arrows rep-
resent the transcribed regions and the boxes represent the
promoter regions. The mRNA is transcribed from each of the
X- and Y-transcribed regions, from which proteins X and Y are
synthesized. These proteins bind to the promoter regions of
the two genes and regulate their transcription. The transla-
tion is assumed to occur very quickly and is therefore, omitted
from this figure. Because proteins X and Y regulate genes x
and y, there are four interactions. The magnitudes of these in-
teractions are indicated by Jxx, Jxy, Jyx, and Jyy

.

steady states by introducing the angle vector Θ = (θx, θy) from 42

the 2×2 gene regulation matrix. Θ provides the characteristic 43

parameters of the genotype. Next, we considered fitness as a 44

function of the on/off expression patterns to describe the fitness 45

landscape as a function of Θ. 46

The second part discusses the evolution of population distri- 47

bution by sexual reproduction within all possible fitness land- 48

scapes. In particular, when the high-fitness region consisted 49

of two disjointed parts, we found that the speciation of the 50

two groups occurred by sexual recombination, whereas con- 51

vex regionalization from the non-concave fitted region was also 52

demonstrated. Finally, we discuss the relationship between the 53

fitness landscape and the convex regionalization of epistasis, 54

sexual reproduction, and speciation. 55

Dynamics of the two-gene regulatory network and fitness 56

landscape 57

Two-gene regulatory network model 58

Our two-gene regulatory networks model assumed that there 59

were two genes X and Y. Let x and y be the concentrations of 60

proteins transcribed and translated from each gene, respectively 61

Fig.2. Proteins X and Y are produced from the transcription of 62

genes X and Y, respectively, and bind to the promoter regions of 63

X and Y (represented by the squares on the line in Fig.2. When 64

proteins X and Y bind to a gene promoter, they either promote or 65

inhibit transcription of that gene. When protein X regulates the 66

transcription of gene X, the degree of regulation is represented 67

by Jxx. Similarly, the regulation of gene X by Y is represented by 68

Jxy, regulation of gene Y by X by Jyx, and regulation of gene Y 69

by Y by Jyy. These are collectively denoted by Jij. The value of Jij 70

can take any real value; thus, when Jij is positive, transcription 71
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is promoted, and when Jij is negative, it is inhibited.1

When a protein binds to a promoter, gene transcription is2

promoted or inhibited. For simplicity, we assumed that a gene is3

transcribed when the sum of the effects of molecular regulation4

exceeds a threshold value. The activation function was given by5

the sigmoid function f [x] = 1
1+exp[−βx] . The degree by which6

gene m expression is regulated by protein N transcribed by gene7

are reported by n as Jmn, with the dynamics of the expression8

level and protein concentration of X and Y represented by9

ẋ = f [Jxx(x − ξ) + Jxy(y − ξ)]− x (1)

ẏ = f [Jyx(x − ξ) + Jyy(y − ξ)]− y (2)

−x and −y on the right-hand side of the second term represent10

protein X and Y degradation, respectively. Here, the expres-11

sion threshold was set at 0.5, to make the expression and non-12

expression states symmetric for later fitness function simplicity.13

β of the sigmoid function was set to 100 to make the Hill function14

( f [x] = xn

Kn+xn ) sharp.15

Attractors of gene-expression dynamics16

Considering the relationship between genotype and phenotype,17

we focused on where the expression levels x and y converged18

to a fixed point or cycle. We investigated how phenotype (x, y)19

was determined depending on the genotype, Jij(i, j = x, y).20

To investigate the fixed point, we first obtained the nullclines21

of x and y, respectively, which were curves that satisfied ẋ = 0 or22

ẏ = 0 in Eq.(2). The nullclines were represented by the equation:23

x = f [Jxx(x − ξ) + Jxy(y − ξ)] (3)

y = f [Jyx(x − ξ) + Jyy(y − ξ)], (4)

which are illustrated in Fig.3. Since β >> 1, f [x] approaches24

a step function, so that x = f [x] is satisfied either at x ≈ 1 or25

x ≈ 0, as well as x ≈ ζ = 0.5. In this paper, for simplicity, these26

x ≈ 1 and x ≈ 0 states are written as just x = 1 and x = 027

considering β >> 1.28

Classification of two-gene expression dynamics by at-29

tractors30

For given gene regulatory networks, phenotypes determined by31

attractors in gene expression dynamics can be organized into32

seven classes (Fig.4). The attractor types, their numbers, and33

their configurations are classified based on the value of Jij as34

follows:35

1. Equal expression level of x, y (S, symmetric or synchro-36

nized)37

x = 1, y = 1, or x = 0, y = 0 is the fixed-point attractor38

depending on the initial conditions. We referred to this as39

dynamics-type-S.40

2. Different expression level of x, y (A, antagonistic)41

x = 1, y = 0 or x = 1, y = 0 is the fixed-point attractor42

depending on the initial conditions. We referred to this43

dynamic as type-D.44

3. Same or different expression level of x, y (Q, quad)45

All possible four cases with x = 0 or 1, y = 0 or 1 give46

the fixed-point attractor depending on the initial conditions47

and were referred to as dynamics-type-Q.48

4. Intermediate expression level of x (Cx, continuous for x) 49

x = α, y = 0 or x = α, y = 1 is the fixed-point attractor, 50

where 0 < α < 1, depending on the initial conditions and 51

were defined as dynamics-type-Cx. 52

5. Intermediate expression level of x (Cy, intermediate for y) 53

x = 0, y = α or x = 1, y = α is the fixed-point attractor, 54

where 0 < α < 1, depending on the initial conditions. We 55

defined this a dynamics-type-Cy. 56

6. Half expression level for x, y (H, half) 57

x = 0.5 and y = 0.5 is the fixed-point attractors that were 58

observed all initial conditions were defined as dynamics- 59

type-H. 60

7. Periodic expression x, y (P, periodic) 61

When the limit cycle was obtained in all initial conditions, 62

we referred to this as dynamics-type-P. 63

Introduction of Θ 64

We were able to classify steady states that corresponded to phe- 65

notypes and introduced a vector that characterized the genotype. 66

Originally, the genotype in the model was represented by a Jij in 67

the 2×2 real matrix. However, the GRN that adopted a sigmoid 68

function only uses two states, 0, 1, beside 0.5, which reduced the 69

dimension of the genotype. This two-dimensional parameter 70

represented the genotype’s declination angle, Θ. 71

We then focused on the shape of the nullcline in Fig.3. The 72

shape was determined by the direction of the line segment that 73

passed through point (0.5,0.5), which determined the attractor. 74

Therefore, the change in the dynamics were due to the change 75

in Jij and could be specified in the direction of normal vectors 76

of the Jij row vectors. When examining the direction of this line 77

segment, one of the normal vectors of this line segment (Fig.3) 78

pointed in the same direction as the row vector of Jij, that is, 79

(Jxx, Jxy) or (Jyx, Jyy). Here, only the direction of the row vectors 80

mattered because the magnitude of the vectors was related to 81

the shape of the nullcline. Hence, the shape of the nullcline was 82

described by the angles of the Jij (Θ) row vectors. In other words, 83

as the angle between a line extended from the origin and the 84

row vector, (Jxx, Jxy) or (Jyx, Jyy), we could take advantage of 85

the symmetry between x and y to define the counterclockwise 86

angle between the positive part of the x-axis and (Jxx, Jxy) as θx, 87

and the counterclockwise angle between the positive part of the 88

y-axis and (Jyx, Jyy) as θy. They were defined by 89

θx = arctan[
Jxy

Jxx
] (5)

θy = arctan[
−Jyx

Jyy
]. (6)

The dynamics and attractors were determined by using Θ = 90

(θx, θy) 91

Θ torus and attractor classification 92

Using θx and θy, we could explicitly classify the attractors of the 93

teo-gene regulatory dynamics (Fig.4). This section introduces 94

the θ torus, which had a finite range of θx and θy and specified 95

each attractor type. 96

First, the behavior of the gene expression dynamics was de- 97

termined by the direction of the Jij, Θ row vector. Here, the 98

phenotype was visualized by introducing the Θ torus with θx 99

on the horizontal axis and θy on the vertical axis, where θx and 100
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Figure 3 Nullcline normal vector. First, the nullclines were
obtained from ẋ = ẏ = 0 in Eq.(1) and Eq.(2). The blue line
represents the nullcline for x and orange that for y. The inter-
section of these two null lines was a fixed point. The shape
of the nullcline was characterized by normal vectors that in-
dicate the directions of the nullclines around (0.5,0.5) and are
denoted as (Jxx, Jxy) or (Jyx, Jyy). Furthermore, the vector field
around the fixed point assisted in determining whether the
fixed point was a stable fixed point (i.e., when the vector field
around the fixed point was directed toward the fixed point
from any direction) or an unstable fixed point (i.e., when the
vector field around the fixed point is directed away from it). In
this figure, (0,0), (0.5,0.5), and (1,1) are nullcline intersections
that are fixed points, whereas only (0,0) and (1,1) are stable
fixed points and (0.5,0.5) is an unstable fixed point.

θy were cyclic with mod 2π, as in Fig.4. Therefore, Θ torus rep-1

resented the attractor types. Each of the types (S, D, Q, Cy, Cx,2

H, and P) was characterized by the nullclines shown in Fig.4A.3

Note that Θ determined the directions in the nullcline near point4

(0.5,0.5). The attractor determined by the two nullclines could5

change depending on the relative positions of θx and θy. Then,6

S, D, Q, Cy, Cx, H, and P were classified depending on (θx, θy)7

as presented in Fig.4B. For the derivation of the boundaries for8

each classification, see Supplementary Material S1. This diagram9

shows the relationship from Θ to the attractors in (x, y) and the10

one between genotype and phenotype.11

Defining the fitness function12

We obtained the fitness landscape for Θ torus by first defining the13

fitness. Here, the phenotype was determined by the stationary14

expression levels of x and y. Here, we consider the case that15

the fitness takas maximal either at each expression level 0 or16

1 (i.e., the fitness depends monotonically on the combination17

of each expression level, so that the fitness takes maximum at18

0 or 1). Hence we focused on the states with values of 0 or19

1; therefore, the fitness was described by a combination of the20

four-state input of (x, y) = (0, 0), (0, 1), (1, 0), (1, 1) and their21

two-state output. We assumed that binary fitness (fitted or non-22

fitted) was based on the binary phenotype. Hence, the fitness23

function was described by a Boolean (logical) function with two24

binary inputs and one binary output. In this case, 24 = 1625

possible fitness degree functions existed, which were reduced26

to five fitness functions using the symmetry of the model and27

identifying logical operations. (See Supplementary Material S2). 28

As for the fitness function w(x, y), we introduced a continu- 29

ous function to satisfy the Boolean function such that w(x, y) for 30

x, y = (0, 1) was either 0 or 1, and determined that the simplest 31

form for w(x, y) had intermediate values between 0 and 1. We 32

characterized four typical fitness functions here. Other cases 33

including NEUTRAL are described in Supplementary Material 34

S3. 35

AND: requires expression of both genes This function used a
maximum value of 1 when both x and y were set to 1.

w(x, y) = xy (7)

This corresponded to the case where x and y expression was 36

required for survival (e.g., the formation of complexes by the 37

proteins X and Y). 38

X ONLY: requires only X, whereas Y expression is neutral In
this function, fitness referred only to x and thus, if x was 1,
fitness returned a maximum value of 1.

w(x, y) = x (8)

This corresponded to the selection pressure affecting only the 39

expression level of x (e.g., protein X is functionally dominant or 40

protein Y had a neutral function). When the fitness depended 41

only on the expression of y, it presented similarly to that of 42

w(x, y) = y. 43

XOR: requires the expression of only X or Y When (x, y) was
(1, 0) or (0, 1), the fitness had a maximum value of 1. By contrast,
when (x, y) was (0, 0) or (1, 1), the fitness had a minimum value
of 0. As the simplest form,

w(x, y) = |x − y|. (9)

This function required that the expression of only one gene, x or 44

y, was necessary for survival, but fitness was lost if both genes 45

were expressed (e.g., switching the two pathways by the inputs). 46

OR: requires the expression of either one of the two genes If at
least one of x, y is 1, then the fitness had a maximum value of 1.

w(x, y) = 1 − (1 − x)(1 − y) = x + y − xy (10)

This corresponded to the case in which the expression of x or y 47

was needed for survival (e.g., both X and Y proteins have similar 48

functions). 49

Classification of the fitness landscape 50

We next explored the fitness landscape of genotype spaces that 51

depended on the fitness function represented by Θ torus. Here, 52

for a given Θ, we obtained the attractor of (x, y) for a fixed initial 53

expression (x0, y0) = (0.05, 0.5) ((x0, y0) = (0.18, 0.18) for the 54

XOR. Depending on the fitness function, we defined (AND, X 55

ONLY, XOR, etc.) to obtain the fitness landscape for Θ, as shown 56

in the diagram presented in Fig.4B, which contains information 57

about the complex genotype–phenotype relationship. 58

We defined four typical landscapes (ONE RECTANGLE, 59

TWO RECTANGLES, L-SHAPE, and ONE BAND in Fig.5), as 60

well as additional landscapes that are described in Supplemen- 61

tary Material S3. 62
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Figure 4 Fixed point classification of the Θ torus. (i)Each type of dynamics and nullclines in the two-gene regulatory network is
represented. The Θ values for each type in the figure are (− 3

8 π, 3
8 π) for (A), (− 1

8 π,− 1
8 π) for (Q), ( 3

8 π,− 5
8 π) for (S), (− 3

8 π, 7
8 π) for

(Cy), ( 7
8 π,− 3

8 π) for (Cx), ( 3
8 π, 3

8 π) for (P), and ( 7
8 π, 7

8 π) for (H). (ii) Classification of each dynamic category was based on (θx, θy).
The boundaries between the categories in the figure are θy = θx ± 3

2 π, θy = θx ± π
2 , θy = −θx ± π, θy = ± 3

4 π, θy = ± 1
4 π, θx = ± 3

4 π,
and θx = ± 1

4 π, respectively.

ONE RECTANGLE (seen in AND): Fig.5(i) presents an example of1

the "rectangle" landscape, where the region of maximum fitness2

is in a single rectangle. This landscape is mainly observed in the3

AND fitness function. The high-fitness region occurs only in the4

parts of classes S and Q of the AND fitness because the optimal5

fitness was achieved for only (x, y) = (1, 1). In the Θ space for6

S in Fig.5(i) the maximum fitness is determined by the initial7

expression (x0, y0).8

TWO RECTANGLES (seen in X ONLY): This fitness landscape9

was composed of two rectangular high-fitness regions (Fig.5(ii))10

where x = 1 and y values were y = 1 for one region and y = 011

for the other. The fitness maximum was X ONLY when a stable12

fixed point satisfied x = 1. The dynamics that satisfy this con-13

dition were either S or D and the Θ space for S and A in Fig.5(i)14

reached the maximum fitness, which was determined by the15

initial expression (x0, y0) = (0.05, 0.5). Q achieved maximum16

fitness, but all maximum fitness regions were connected.17

L-SHAPE (seen in XOR or OR): The region of maximum fitness18

was distributed in an L-shape, as shown in Fig.5(iii) with the19

XOR fitness function. The shape of this landscape was an in-20

verted L, which we collectively referred to as an L shape. This21

landscape was obtained when the fitness function was either an22

XOR or an OR. When using the XOR or OR fitness functions, the23

initial condition (x0, y0) existed in 0 ≤ x0 ≤ 1 and 0 ≤ y0 ≤ 1,24

except for the unstable fixed-point singularity. We found that25

the region of L-SHAPE had the maximum fitness for all initial26

conditions tested. Therefore, the fitness was always maximum27

in the dynamics-type-A region because the stable fixed points of28

dynamics-type-A were only (1, 0) and (0, 1), respectively. The L-29

shaped area was robust against noise in the expression or initial30

conditions with XOR or OR fitness.31

ONE BAND (seen in OR or X ONLY): The maximum fitness re-32

gion was extended to the entire range of θx or θy as a band for the33

OR fitness function, as shown in Fig.5(iv). This band extended34

over the boundary of the Θ torus in a single direction and there-35

fore, the expression level of one x, y was neutral in this band. In36

OR, fitness was maximized where x = 1 or y = 1, which was 37

when a stable fixed point was reached and the dynamic types S, 38

D, Q, Cy, and Cx were satisfied. In particular, in dynamics-type- 39

D, the fitness of the OR was always maximally independent of 40

the initial condition because only the stable fixed points were 41

(1,0) and (0,1), and there were no other steady states. In S, Q, Cy, 42

and Cx, the maximum fitness regions were determined by the 43

initial expression (x0, y0). Depending on the initial expression, 44

this type of landscape was also observed in the X ONLY fitness 45

landscape. 46

Genotype distribution is restricted by evolution with sex- 47

ual reproduction 48

Thus far, we have investigated the shape and features of the 49

fitness landscape by comprehensively calculating the correla- 50

tions between genotype, phenotype, and fitness in a two-gene 51

network. By introducing Θ as a genotype parameter, we were 52

able to examine the phenotype and fitness for a given genotype 53

and obtain the global structure of the fitness landscape. Once we 54

have information on the global fitness landscape, we can predict 55

the gene distribution and evolvability of the population during 56

sexual reproduction and mutation. Thus, we investigated how 57

the population distribution of the gene parameter Θ changed 58

through evolution, with or without sexual reproduction. 59

In particular, we focused on how the population distribution 60

was restricted to a convex set of maximum fitness regions by 61

evolution during sexual reproduction (i.e., convex regionaliza- 62

tion). We introduced asexual and sexual reproduction into this 63

model and numerically evolved the population distribution in 64

these conditions for each typical fitness landscape. 65

Definition of mutation and recombination 66

Before discussing convex regionalization, we defined the pro-
cedure for genetic evolution. We considered two inheritance
modes: asexual and sexual reproduction processes. In asexual
reproduction, GRN Jnew in the next generation was chosen from
a set of Jfit with high fitness in the population. For mutations,
the network adjacency matrix for the next generation, Jnew, was
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θy

θx θx θx θx

ONE RECTANGLE TWO RECTANGLES L-SHAPE ONE BAND

X ONLY: 

&


w(x, y) = x

(x0, y0) = (0.05,0.5)
AND: 


&

w(x, y) = xy

(x0, y0) = (0.05,0.5)
XOR: 


&

w(x, y) = |x − y |

(x0, y0) = (0.18,0.18)
OR: 


&

w(x, y) = x + y − xy

(x0, y0) = (0.05,0.5)

(i) (ii) (iii) (iv)

fitness fitness fitness fitness

Figure 5 Four typical landscapes. The fitness value is represented by a color plotted as a function of (θx, θy). (i) A single rectangular
region has maximum fitness. (ii) The maximum fitness region was divided into two parts. (iii) Even when the initial conditions
were changed, the genotypes on the red line surrounding the region achieved maximum fitness. (iv) The arrowed band extends in
the horizontal direction. If θy is fixed in this range, θx will be maximally fit for any value (neutral for x).

changed by adding a random value generated by a normal dis-
tribution with mean 0 and variance σ. Note that the mutation
was not introduced to Θ but to Jnew. This was because Θ was an
abstract characteristic value and not the actual value for simplic-
ity. In sexual reproduction, two individuals, Jfit1 and Jfit2, were
selected from the set Jfit to generate high fitness. The GRN in
the next generation was then defined by row-wise mixing of the
two highly fitted individuals. Therefore,

 Jfit1
xx Jfit1

xy

Jfit2
yx Jfit2

yy

 or

 Jfit2
xx Jfit2

xy

Jfit1
yx Jfit1

yy


yields Jnew. This corresponded to the recombination of the pro-1

moter or enhancer regions. The evolutionary change in regula-2

tory regions is much faster than in the gene that encodes for the3

protein itself (Luscombe et al. (2004)). Because proteins can bind4

to gene promotor regions, it is appropriate to use row-by-row5

mixing of the GRN adjacency matrix J as a model for sexual6

reproduction with free recombination. In the Θ torus, sexual re-7

production could be expressed as parents with Jfit1 : (θfit1
x , θfit1

y )8

and Jfit2 : (θfit2
x , θfit2

y ), and with θfit1
x ̸= θfit2

x and θfit1
y ̸= θfit2

y . Ad-9

ditionally, suppose a rectangle with each side parallel to the θx10

or θy axis (Fig.6). By mixing the row vectors of the adjacency11

matrices with sexual reproduction, the children from (θfit1
x , θfit1

y )12

and (θfit2
x , θfit2

y ) could be represented by (θfit1
x , θfit2

y ) or (θfit2
x , θfit1

y ).13

This corresponded to the vertex of the other side of the diagonal14

compared to the parent in the rectangle of Fig.6. Mutations in15

sexual reproduction were introduced in the same way as asexual16

reproduction, in which a normal distribution with mean 0 and17

variance σ were added to Jnew. Thus, sexual reproduction with18

a slight mutation could create a population of genotypes on the19

vertices of the rectangle.20

Convex regionalization of sexually reproducing popula- 21

tions from a non-convex fitted area 22

For each fitness landscape category, we used simulations to 23

examine changes in the population distribution due to sexual 24

reproduction. 25

Simulation method: We ran simulations for 130 generations with 26

a mutation size σ of 0.01 or 0.1, and a population size of 100. First, 27

we set the initial expression to (x0, y0). The initial expression 28

(x0, y0) was fixed and did not change throughout the subsequent 29

simulations. Each element of Jij in the 0th generation was given 30

a uniform random number in the interval [-1,+1]. The dynamics 31

of the GRN were calculated using Eq.(1) and Eq.(2) for 100 time 32

steps. The average of each x, y in the last ten steps was used 33

as the phenotype (expression). Fitness was calculated from the 34

phenotype using the function defined in the previous section. 35

TWO RECTANGLES fitness landscape: The difference in the 36

distribution between the asexually and sexually reproducing 37

populations in the simulation is shown in Fig.7. During asex- 38

ual reproduction, the population remained distributed in both 39

maximum-fitness regions. In contrast, the evolution during sex- 40

ual reproduction was concentrated only on one of the two fitted 41

rectangles. These results can be explained as follows. The TWO 42

RECTANGLES fitness landscape had two regions with equal 43

maximum fitness values. If a population was distributed across 44

both, the offspring from the parent of the two rectangles fall onto 45

the non-fitted region and the sexually reproducing population 46

concentrated in one of the two regions was selected. Thus, the 47

population distribution was in a convex region and sustained. 48

In contrast, during asexual reproduction, the population was 49

distributed across the two regions. Therefore, evolution of sex- 50

ual reproduction could induce speciation. Here, the offspring 51

from the two regions were less fit, resulting in hybrid sterility. 52
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θx

θy Jfit2

Jfit1child

child

Figure 6 Transfer of genetic parameters (θx, θy) to children
through recombination. Sexual reproduction involves mixing
the row vectors of the adjacency matrix. The vector of children
from the parents (θfit1

x , θfit1
y ) and (θfit2

x , θfit2
y ) were randomly

chosen from θfit1
x or θfit1

x , and θfit1
y or θfit1

y . Graphically, two
vertices can fall to a child on another diagonal from the parent
rectangular axis.

Following the definition of speciation by hybrid sterility, it can1

be concluded that speciation occurred in this case.2

L-SHAPE fitness landscape: The difference in population dis-3

tribution between asexual and sexual reproduction was also ob-4

served in the L-SHAPE fitness landscape, as shown in Fig.8(iii).5

During asexual reproduction, the genotype population was6

spread over the entire L-shaped area of the landscape; how-7

ever, during sexual reproduction, the population was biased8

in one direction of the L-SHAPE. Here, the L-SHAPE fitness9

landscape (Fig.9) extended vertically and horizontally in two10

directions, but the offspring from the parent between these two11

directions (IV of Fig.9) were less fit as a result of the genetic12

change in Fig.6.13

Hence, the offspring produced from sexual reproduction be-14

tween the two branches of the L-SHAPE landscape (II and III in15

Fig.9) shrank into a rectangular region, either vertically (I and III16

in Fig.9) or horizontally (I and II in Fig.9). Such convex region-17

alization of the population distribution did not occur during18

asexual reproduction. This convex regionalization was similar19

to speciation in the Bateson-Dobzhansky-Muller model (Bateson20

(1909); Dobzhansky (1936, 1937); Muller (1940, 1942)), which is21

supposed to be an L-shaped fitness landscape. However, we22

found that some individuals from the common square area (I23

in Fig.9) of the two edges maintained high fitness and were not24

reproductively isolated, indicating that complete speciation did25

not occur. Only some of the two rectangular regions (II and III26

in Fig.9) were not fit, as an offspring could be located in IV in27

Fig.9. However, this convex regionalization was achieved so that28

the population in the L-SHAPE region was not allowed under29

sexual reproduction.30

Discussion31

This study analyzed the genotype–phenotype relationship across32

all two-gene regulatory networks and obtained the fitness land-33

θy

θx

(a) asexual reproduction

θy

θx

(b) sexual reproduction (right region is se-
lected)

θy

θx

(c) sexual reproduction (right region is se-
lected)

Figure 7 Comparison of the population distributions in two
rectangular fitness landscapes with X ONLY(w(x, y) = x)
fitness (a)during asexual reproduction (mutation only) or dur-
ing sexual reproduction, where the population is branched
into two cases, (b) and (c), which differ in each run of the
evolution simulation. The initial expression was chosen as
(x0, y0) = (0.05, 0.5). The mutation rate was set to 0.01. "gen:"
number is the generation number and "fit:" number is the aver-
age fitness of the population.
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θy

θx

(a) asexual reproduction

θx

θy

(b) sexual reproduction (case of vertical
convex regionalization)

θy

θx

(c) sexual reproduction (case of horizontal
convex regionalization)

Figure 8 Comparison of the population distributions in two
rectangular fitness landscapes with X ONLY(w(x, y) = x)
fitness during (a) asexual reproduction (mutation only) and
(b,c) sexual reproduction. The population branched into two
cases, (b) and (c), which differ in each run of the evolution
simulation. The initial expression was chosen as (x0, y0) =
(0.18, 0.18). The mutation rate was set at 0.1. "gen:" number is
the generation number and "fit:" number is the average fitness
of the population.

Figure 9 Partition of L-SHAPE fitness landscape. Regions
I, II, and III support the highest fitness, while fitness is lost
in region IV. Values with brackets like (1,0) shows the stable
expression levels of x and y.

scapes according to possible Boolean fitness functions. Charac- 1

teristic landscapes including TWO RECTANGLES with the two 2

optimal regions, L-SHAPE and ONE BAND, were obtained. As 3

a result of evolution during sexual reproduction, the population 4

becomes restricted to the convex region, leading in speciation. 5

To characterize the genetic changes in the gene regulatory 6

matrix, a pair of continuous parameters Θ = (θx, θy) was intro- 7

duced and the relationship between genotype and phenotype 8

was characterized to examine how these relationships are associ- 9

ated with fitness and genome distribution. Several studies have 10

discussed how the genotype-phenotype–fitness relationship af- 11

fects GRN dynamics(Hether and Hohenlohe (2014); Friedlander 12

et al. (2017); Schiffman and Ralph (2022)). However, these analy- 13

ses were restricted to a specific level. For instance, genotype to 14

phenotype in Hether and Hohenlohe (2014)), while a complete 15

analysis of GRN dynamics has not been performed. We con- 16

ducted a comprehensive analysis of the genotype–phenotype– 17

fitness–distribution relationship. Furthermore, our results im- 18

prove our understanding of how sexual reproduction changes 19

population distribution or leads to speciation-like events in the 20

fitness landscape, which requires a global landscape structure. 21

This study demonstrated that sexual reproduction limits pop- 22

ulations only in a restricted, convex set in the maximum fitness 23

regions (convex regionalization). The population was restricted 24

to horizontal or vertical rectangular regions in the L-SHAPE 25

landscape. In the TWO RECTANGLES landscape, the popula- 26

tion was limited to one of the two separate high-fitness regions, 27

which led to speciation. In the L-SHAPE landscape, complete 28

speciation was not achieved, but convex regionalization led to 29

two distinct population distributions, as in speciation. 30

When discussing the effects of multiple gene interactions, 31

epistasis is often adopted. Epistasis is defined as a nonlinear 32

change in fitness with multiple mutations. When the fitness 33

change is lower or higher than the addition of changes in mul- 34

tiple mutations, it is called negative or positive epistasis, re- 35

spectively. Epistasis is applied to local fitness changes, which 36

benefits the study of the effects of relatively small mutations. In 37

contrast, the fitness landscape provides global information on 38

the fitness. This study showed that such information is essential 39

for studying changes in population distribution, robustness of 40

sexual reproduction, and speciation. 41
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The method and results presented in this study can be used1

to solve other network related problems. First, the genotype2

parameter Θ may be used for evolution in other Boolean net-3

work systems such as machine learning and social or ecological4

networks(Raimundo et al. (2018); Saavedra et al. (2007); Shizuka5

and McDonald (2015); Sinha et al. (2022); Gordon (2014)). It can6

also be applied to a system that interacts with a steep sigmoid7

function. Here, the threshold ζ = 0.5 was used for simplicity and8

symmetry, but even if the threshold for each genes is changed,9

Θ can be used because the dynamics equivalent to this study10

were obtained by the transformation of variables, even though11

the classification of dynamics was more complex. In addition, Θ12

can be extended to systems with more than two (N) genes. In13

this case, the Θ space had N(N − 1) dimensions, which made it14

more difficult to obtain a global fitness landscape. However, the15

fixed points and their stability can be evaluated according to the16

value of Θ. The method of the present study can be applied by17

maintaining some Θ values within a certain range. For instance,18

the present results can be extended to a system of multiple pairs19

of corresponding genes. In general, by introducing network20

modules (network motifs Alon (2019)), the application of this21

method is straightforward.22

In conclusion, our global analysis of GRNs based on Θ val-23

ues and the characterized fitness landscape contributes to the24

comprehensive understanding of GRN evolution, particularly25

convex regionalization associated with sexual reproduction and26

resultant speciation.27
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