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ABSTRACT	
In	normal	somatic	tissue	differentiation,	changes	in	chromatin	accessibility	govern	priming	and	commitment	

of	precursors	 towards	cellular	 fates.	 In	 turn,	 somatic	mutations	can	disrupt	differentiation	 topologies	 leading	 to	
abnormal	clonal	outgrowth.	However,	defining	the	impact	of	somatic	mutations	on	the	epigenome	in	human	samples	
is	 challenging	 due	 to	 admixed	mutated	 and	wildtype	 cells.	 To	 chart	 how	 somatic	mutations	 disrupt	 epigenetic	
landscapes	 in	 human	 clonal	 outgrowths,	 we	 developed	 Genotyping	 of	 Targeted	 loci	 with	 single-cell	 Chromatin	
Accessibility	 (GoT-ChA).	 This	 high-throughput,	 broadly	 accessible	 platform	 links	 genotypes	 to	 chromatin	
accessibility	at	single-cell	resolution,	across	thousands	of	cells	within	a	single	assay.	We	applied	GoT-ChA	to	CD34+	
cells	 from	 myeloproliferative	 neoplasm	 (MPN)	 patients	 with	 JAK2V617F-mutated	 hematopoiesis,	 where	 the	 JAK2	
mutation	is	known	to	perturb	hematopoietic	differentiation.	Differential	accessibility	analysis	between	wildtype	and	
JAK2V617F	mutant	progenitors	revealed	both	cell-intrinsic	and	cell	state-specific	shifts	within	mutant	hematopoietic	
precursors.	An	early	subset	of	mutant	hematopoietic	stem	and	progenitor	cells	(HSPCs)	exhibited	a	cell-intrinsic	pro-
inflammatory	signature	characterized	by	increased	NF-kB	and	JUN/FOS	transcription	factor	motif	accessibility.	In	
addition,	mutant	HSPCs	showed	increased	myeloid/erythroid	epigenetic	priming,	preceding	increased	erythroid	and	
megakaryocytic	cellular	output.	Erythroid	progenitors	displayed	aberrant	regulation	of	the	g-globin	locus,	providing	
an	 intrinsic	 epigenetic	 basis	 for	 the	 dysregulated	 fetal	 hemoglobin	 expression	 observed	 in	 MPNs.	 In	 contrast,	
megakaryocytic	progenitors	exhibited	a	more	specialized	inflammatory	chromatin	landscape	relative	to	early	HSPCs,	
with	increased	accessibility	of	pro-fibrotic	JUN/FOS	transcription	factors.	Notably,	analysis	of	myelofibrosis	patients	
treated	with	JAK	inhibitors	revealed	an	overall	loss	of	mutant-specific	phenotypes	without	modifying	clonal	burden,	
consistent	 with	 clinical	 responses.	 Finally,	 expansion	 of	 the	 multi-modality	 capability	 of	 GoT-ChA	 to	 integrate	
mitochondrial	genome	profiling	and	cell	surface	protein	expression	measurement	enabled	genotyping	imputation	
and	discovery	of	aberrant	cellular	phenotypes.	Collectively,	we	show	that	the	JAK2V617F	mutation	leads	to	epigenetic	
rewiring	in	a	cell-intrinsic	and	cell	type-specific	manner.	We	envision	that	GoT-ChA	will	thus	serve	as	a	foundation	
for	 broad	 future	 explorations	 to	 uncover	 the	 critical	 link	 between	 mutated	 somatic	 genotypes	 and	 epigenetic	
alterations	across	clonal	populations	in	malignant	and	non-malignant	contexts.	

INTRODUCTION	

Differentiation	 topologies	 are	 critical	 for	
homeostasis	 across	human	 tissues	and	are	maintained	
through	 tightly	 coordinated	 epigenetic	 regulation.	 For	
example,	 in	 the	 hematopoietic	 system,	 coordinated	
epigenetic	 changes	 are	 reflected	 in	 the	 chromatin	
accessibility	 landscape	 and	 determine	 hematopoietic	
and	stem	progenitor	cells	(HSPCs)	commitment	towards	
specific	downstream	cellular	fates1.	Recent	advances	in		
single	cell	mapping	of	chromatin	accessibility	revealed	

that	key	transcription	factors	promote	variability	in	the	
accessibility	 of	 regulatory	 elements,	 underlying	 the	
epigenetic	 heterogeneity	 across	 progenitor	 cells2.	
Importantly,	during	hematopoiesis,	 shifts	 in	chromatin	
accessibility	 at	 regulatory	 regions	 precede	
transcriptional	 changes	 during	 differentiation3,	 a	
process	defined	as	epigenetic	priming4.	

Somatic	driver	mutations	within	HSPCs	result	in	
clonal	 expansions	 and	 the	 reshaping	 of	 differentiation	
landscapes.	 Altered	 HSPC	 differentiation	 landscapes	
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range	 from	 subtle	 differentiation	 biases	 in	 clonal	
hematopoiesis5,6,	 through	 skewed	 accumulation	 of	
mature	 blood	 cells	 in	 myeloproliferative	 neoplasia	
(MPN)7,8,	 to	 impaired	 differentiation	 in	 leukemogenic	
transformation9,10.	 The	 recurrent	 V617F	 hotspot	
mutation	in	the	Janus	Kinase	2	(JAK2)	gene	serves	as	a	
prototypical	 example,	 associated	 both	 with	 clonal	
hematopoiesis11–14	as	well	as	overt	differentiation	skews	
in	 polycythemia	 vera	 (PV)	 and	 essential	
thrombocythemia	 (ET),	and	ultimately	 leading	 to	bone	
marrow	failure	in	myelofibrosis	(MF)15–18.	The	JAK2V617F	
protein	 is	 constitutively	 active	 and	 phosphorylates	
downstream	 signal	 transducers	 and	 activators	 of	
transcription	 (STATs)16,17,	 which	 promote	 an	
inflammatory	 phenotype19–21	 and	 result	 in	 cytokine-
independent	expansion	of	the	erythroid-megakaryocytic	
lineage7,17,22,23.	 However,	 in	 humans,	 mutated	 and	
wildtype	 cells	 are	 often	 admixed	 without	 clear	
distinguishing	 cell	 surface	 markers	 amenable	 to	
fluorescence-activated	 cell	 sorting	 (FACS)	 enrichment,	
limiting	 bulk	 or	 single-cell	 chromatin	 profiling.	
Moreover,	 inter-individual	 comparisons	 are	 limited	 by	
clinical	 confounders,	 as	well	 as	 potential	 cell-extrinsic	
effects	 due	 to	 variation	 of	 microenvironmental	 cues	
across	 patients24–26.	 Thus,	 the	 epigenetic	 underpinning	
of	 JAK2V617F	 differentiation	 topographies	 in	 human	
disease	remains	largely	unknown.		

To	overcome	the	challenge	of	resolving	admixed	
wildtype	and	mutated	cells	in	primary	human	samples,	
single-cell	multi-omics	methods	have	been	developed	to	
link	 genotypes	 with	 transcriptional24,25,27–33	 or	 cell	
surface	protein34,35	profiles.	TARGET-seq,	for	example,	is	
a	 plate-based	 technique	 that	 performs	 simultaneous	
single-cell	 RNA-seq	 (scRNA-seq)	 with	 genotyping	 via	
targeted	 amplification	 of	 both	 complementary	 DNA	
(cDNA)	and	genomic	DNA	(gDNA),	achieving	up	to	98%	
detection	 rate	 of	 multiple	 mutations	 in	 hundreds	 of	
single	 cells	 at	 a	 time25,27.	 Alternative	 droplet-	 or	
nanowell-based	techniques	allow	for	higher	throughput	
with	 simultaneous	 scRNA-seq	and	 genotyping	 of	 the	
actively	 transcribed	 genes	 containing	 the	 loci	 of	
interest28,29,31,32.	 However,	 these	 droplet-based	
genotyping	 methods	 rely	 solely	 on	 captured	 mRNA	
transcripts,	which	 results	 in	 a	 limiting	 dependency	 on	
both	 the	expression	 level	of	 the	 targeted	gene	and	 the	
distance	 of	 the	 mutated	 locus	 from	 transcript	 end.	
Indeed,	 these	 features	 have	 been	 shown	 to	 severely	
impact	the	ability	of	transcription-based	genotyping	for	
lowly	expressed	genes,	such	as	JAK229,31.	Finally,	existing	
methods	 are	 unable	 to	 jointly	 capture	 genotyping	 and	
chromatin	accessibility,	a	 requirement	 for	 the	study	of	
the	 impact	 of	 somatic	 mutations	 on	 the	 epigenetic	
landscape	of	clonal	HSPCs.	

Here,	we	developed	Genotyping	of	Targeted	loci	
with	 single-cell	Chromatin	Accessibility	 (GoT-ChA),	 for	
droplet-based	high-throughput	simultaneous	capture	of	
genotyping	 and	 chromatin	 accessibility	 from	 the	 same	
single	 cell.	 This	 approach	 allows	 for	 high	 resolution	
intra-sample	 comparisons	 of	mutated	 versus	wildtype	
chromatin	accessibility	profiles.	As	wildtype	cells	within	
the	same	sample	provide	the	ideal	comparator	to	mutant	
cells,	 GoT-ChA	 bypasses	 clinical	 confounders	 in	 inter-
individual	 comparisons	 in	 human	 studies,	 as	 well	 as	
allowing	 to	 decouple	 cell-intrinsic	 from	
microenvironment	 effects.	 Unlike	 RNA-based	
genotyping	methods,	 single	 cell	 genotyping	 with	 GoT-
ChA	 is	based	on	 targeted	amplification	of	 gDNA.	Thus,	
GoT-ChA	 obviates	 both	 the	 dependency	 on	 expression	
level	of	the	gene	containing	the	target	 locus,	as	well	as	
the	dependency	on	the	mutation	position	relative	to	the	
expressed	transcript	end,	radically	expanding	the	scope	
of	 genetic	 alterations	 that	 can	 be	 assayed	 with	 high-
throughput	 single	 cell	 profiling.	 Furthermore,	 we	
integrated	GoT-ChA	with	copy	number	variation	(CNV)	
inference36	 as	 well	 as	 mitochondrial	 genome	 and	 cell	
surface	 protein	 capture	 in	 single	 cells37,38,	 delivering	 a	
highly	multi-modal	single-cell	platform.		

When	 applied	 to	 human	 PV	 and	 MF	 samples	
targeting	 the	 JAK2V617	 locus,	 GoT-ChA	 drastically	
increased	 the	 rate	 of	 genotyped	 cells	 relative	 to	 RNA-
based	methods29,31,32.	While	untreated	patients	showed	
erythroid	 and	 megakaryocytic	 differentiation	 biases	
consistent	 with	 the	 disease	 phenotype39,	 patients	
treated	with	JAK2	inhibitors	show	a	more	homogeneous	
distribution	 of	 mutant	 cells	 across	 the	 differentiation	
topology,	 suggesting	 that	 JAK	 inhibition	 abrogates	
differential	 hematopoietic	 contributions	 of	 JAK2V617F	
without	 eliminating	 disease-initiating	 HSPCs,	 in	 line	
with	 clinical	 observations40–42.	 Intra-individual	 and	
intra-cluster	 comparisons	 show	 that	 cell-intrinsic	 pro-
inflammatory	epigenetic	profiles	are	already	present	in	
a	 subset	 of	 the	 earliest	 JAK2V617F	 mutant	 HSPCs,	 while	
increased	 accessibility	 of	 transcription	 factor	 motifs	
involved	 in	 erythroid	 differentiation	 consistent	 with	
epigenetic	 priming	 is	 observed	 across	 HSPCs.	 In	
JAK2V617F	committed	erythroid	progenitors,	we	observed	
increased	accessibility	of	the	HBG1	gene,	a	component	of	
fetal	 hemoglobin	 (HbF),	 while	 megakaryocyte	
progenitors	showed	increased	motif	accessibility	of	pro-
fibrotic	 JUN/FOS43–45	 transcription	 factors.	 These	
observations	underscore	intrinsic	and	cell	type-specific	
effects	of	the	JAK2V617F	mutation	in	human	hematopoiesis	
and	demonstrate	the	ability	of	GoT-ChA	to	resolve	clonal	
admixtures	 and	 to	 provide	 genotype	 to	 epigenome	
mapping	 of	 clonal	 outgrowths	 in	 primary	 human	
samples.	
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RESULTS	

Droplet-based	 high-throughput	 simultaneous	
capture	of	genotypes	and	chromatin	accessibility	in	
single	cells.	

To	 integrate	 genotyping	 into	 scATAC-seq,	 we	
modified	the	broadly	utilized	10x	Genomics	platform	by	
adding	 two	 custom	primers	 (GoT-ChA	 primers)	 to	 the	
cell	barcoding	PCR	reaction	mixture	prior	to	loading	the	
microfluidics	chip	for	droplet	generation	(Fig.	1a).	These	
primers	 are	 designed	 to	 flank	 a	 specific	 region	 of	
interest,	with	one	primer	 containing	a	Read	1	Nextera	
(R1N)	handle	 (Extended	Fig.	1a-b).	During	 in-droplet	
PCR,	 the	 GoT-ChA	 primers	 bind	 to	 and	 amplify	 the	
genomic	region	of	interest,	generating	an	amplicon	that	
is	 complementary	 to	 the	 10x	 scATAC-seq	 Gel	 Bead	
oligonucleotides,	allowing	for	cell	barcoding	and	further	
amplification.	 In	 this	 manner,	 both	 tagmented	 gDNA	
fragments	 and	 GoT-ChA	 amplicons	 simultaneously	
obtain	 the	 unique	 cell	 barcode	 sequence	 and	 the	 P5	
Illumina	 sequencing	 handle	 prior	 to	 breakage	 of	 the	
single-cell	emulsion	(Fig.	1a).	Of	note,	 tagmentation	of	
the	targeted	site	is	not	required	for	genotype	capture,	as	
target	 amplification	 with	 GoT-ChA	 primers	 results	 in	
amplicons	already	containing	the	R1N	capture	sequence.	
Moreover,	while	 in-droplet	 amplification	of	 tagmented	
genomic	 fragments	 is	 linear,	 GoT-ChA	 amplicons	 are	
exponentially	 amplified	 by	 design,	 resulting	 in	 an	
increased	relative	abundance	of	genotyping	amplicons.	
Then,	 10%	of	 the	 total	 product	 is	 used	 for	 genotyping	
library	construction,	while	the	remainder	is	utilized	for	
the	 scATAC-seq	 library.	 During	 genotyping	 library	
construction,	 GoT-ChA	 fragments	 are	 specifically	
amplified	using	a	hemi-nested	PCR	strategy	and	a	biotin-
streptavidin	 pulldown	 prior	 to	 sample	 indexing	
(Extended	Data	Fig.	1c).	Both	the	scATAC-seq	and	GoT-
ChA	 libraries	 can	 then	 be	 sequenced	 together,	 with	
chromatin	accessibility	and	genotype	information	linked	
via	 shared	 cell	 barcodes.	 To	 encourage	 the	 broad	
implementation	of	GoT-ChA,	we	developed	an	R	package	
(Gotcha	R	package,	see	code	availability	section)	that	
provides	start-to-end	processing	of	GoT-ChA	data	and	its	
integration	with	the	corresponding	scATAC-seq	profiles.	

To	 test	 the	 ability	 of	 GoT-ChA	 to	 accurately	
capture	 genotype	 along	 with	 chromatin	 accessibility	
information,	we	performed	a	cell	line	mixing	study.	Two	
human	 cell	 lines	 of	 discrete	 cell	 types	 (CA46,	 a	 B	
lymphocyte	cell	line;	and	HEL,	an	erythroblast	cell	line)	
and	 differing	 genotypes	 for	 the	 TP53R248	 locus	 (CA46,	
TP53R248Q	 homozygous	 mutant;	 HEL,	 TP53R248	
homozygous	 wildtype;	 Extended	 Data	 Fig.	 2a)	 were	
mixed	at	a	1:1	ratio	and	profiled	with	GoT-ChA	(Fig.	1b,	
upper	 panel).	 Using	 chromatin	 accessibility	
information	 alone,	 cells	 clustered	 into	 two	 distinct	

populations	(Fig.	1b,	bottom	panel).	The	two	clusters	
were	readily	annotated	as	the	expected	mixed	cell	lines	
via	chromatin	accessibility	signals	at	key	marker	genes	
(Fig.	 1c,	Extended	Data	 Fig.	 2b),	 as	well	 as	mutually	
exclusive	 mitochondrial	 variants	 (Fig.	 1d).	 Fragment	
size	distribution,	total	number	of	fragments	per	cell,	and	
enrichment	 of	 fragments	 mapping	 to	 transcriptional	
start	sites	(TSS)	all	reflect	high	quality	scATAC-seq	data,	
unaffected	by	the	inclusion	of	GoT-ChA	primers	during	
droplet	generation	(Extended	Data	Fig.	2c-e).		

Analysis	 of	 the	 matching	 unprocessed	
genotyping	 data	 showed	 the	 presence	 of	 two	 distinct	
modes	 in	 the	distribution	of	genotyping	reads	per	cell.	
We	 reasoned	 that	 these	 distributions	 reflect	 cells	 for	
which	genotyping	was	successfully	captured	versus	cells	
displaying	 background	 noise	 from	 the	 genotyping	
library.	 To	 address	 this	 aspect,	 we	 developed	 a	
computational	 framework	 (Extended	 Data	 Fig.	 2f)	
using	 kernel	 density	 estimation	 (KDE)	 to	 define	 the	
boundaries	between	background	noise	and	genotyping	
signal	(Extended	Data	Fig.	2g),	 followed	by	clustering	
and	 genotype	 assignment	 based	 on	 the	 z-scores	 of	
genotyping	read	counts	(Extended	Data	Fig.	2h).	This	
approach	 was	 orthogonally	 validated	 using	 an	
alternative	 framework	 leveraging	 recent	 work46	 in	
single-cell	 genomics	 that	 proposed	 estimating	 the	
background	noise	with	empty	droplets	(Extended	Data	
Fig.	2i-j;	see	materials	and	methods;	both	approaches	
for	noise	correction	and	genotype	calling	are	included	in	
the	Gotcha	R	package).	While	less	than	4%	of	cells	had	at	
least	one	scATAC-seq	read	covering	the	TP53R248	locus	of	
interest	 in	 either	 cell	 line,	 GoT-ChA	 resulted	 in	 high	
confidence	genotyping	for	49.8%	and	49.1%	of	HEL	and	
CA46	 cells,	 respectively	 (Fig.	 1e).	 By	 correcting	 for	
background	 noise,	 we	 achieved	 genotyping	 of	 the	
TP53R248	 locus	 in	49.5%	of	all	cells	with	an	accuracy	of	
99.7%	(Fig.	1f).	As	an	additional	orthogonal	validation	
of	 our	 genotyping,	we	 compared	wildtype	 and	mutant	
cell	 CNV	 scores36	 inferred	 from	 the	 chromatin	
accessibility	 profiles	 (see	 materials	 and	 methods)	
across	chromosome	9,	 for	which	the	TP53R248	wildtype	
HEL	 cell	 line	 carries	 an	 amplification47–49.	 Consistent	
with	our	observed	genotyping,	wildtype	cells	as	defined	
by	 GoT-ChA	 genotyping	 exhibited	 an	 increased	 CNV	
score	 relative	 to	 mutant	 cells,	 further	 confirming	
successful	single-cell	genotyping	(Fig.	1g).		

We	further	tested	GoT-ChA	targeting	a	different	
genomic	 locus,	 the	 JAK2V617	 hotspot,	 with	 a	 separate	
mixing	 study	 to	 directly	 address	 heterozygous	
genotyping.	 Three	 human	 cell	 lines	 (HEL,	 an	
erythroblast	cell	line;	SET-2,	a	megakaryoblast	cell	line;	
CCRF-CEM,	 a	 T	 lymphoblast	 cell	 line)	 with	 discrete	
JAK2V617	genotypes	(HEL,	JAK2V617F	homozygous	mutant;		
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Fig.	1	|	GoT-ChA	allows	for	accurate	single-cell	genotyping	of	somatic	mutations	together	with	chromatin	accessibility	
information.	a,	Schematic	representation	of	GoT-ChA	workflow.	P5,	Illumina	sequencing	handle;	BC,	unique	cell	barcode;	R1N,	
Read	1	Nextera	adapter;	gDNA,	genomic	DNA;	R2N,	Read	2	Nextera	adapter.	b,	Schematic	representation	of	the	TP53R248	mixing	
study	(upper	panel)	and	accessibility-based	uniform	manifold	approximation	and	projection	(UMAP)	for	HEL	(n	=	2,540	cells;	
TP53WT/WT;	purple)	and	CA46	(n	=	2,117	cells;	TP53MUT/MUT;	green;	bottom	panel).	c,	Chromatin	accessibility	coverage	of	marker	
genes	 (FDR	 <	 0.05	 and	 log2FC	 >	 1.25;	 Wilcoxon	 rank	 sum	 test	 followed	 by	 Benjamini-Hochberg	 correction),	 agnostic	 to	
genotyping	information,	used	for	cell	line	identity	assignments.	ATAC	signal	was	normalized	by	the	number	of	reads	covering	
transcriptional	start	sites	(TSS).	d,	Heatmap	showing	heteroplasmy	for	mutually	exclusive	mitochondrial	variants	detected	in	
the	scATAC-seq	data	for	either	HEL	or	CA46	cell	lines.	Minimum	coverage	of	10	reads	mapping	to	the	variant	site	was	required.	
e,	Detected	coverage	for	the	TP53R248	locus	of	interest	for	either	HEL	or	CA46	cell	lines	illustrating	improved	genotyping	capture	
with	GoT-ChA	versus	standard	10x	scATAC.	Percent	of	cells	reported	for	the	10x	scATAC	libraries	was	defined	as	the	percent	of	
cells	with	at	least	one	read	mapping	to	the	assayed	locus.	Percent	of	cells	for	the	GoT-ChA	libraries	was	defined	as	successful	
genotyping	post	processing	(see	materials	and	methods).	f,	UMAP	colored	by	GoT-ChA	genotype	classifications	of	CA46	(n	=	
2,117	cells)	and	HEL	(n	=	2,540	cells)	assigned	as	wildtype	(WT,	blue),	mutant	(MUT,	red),	or	not	assignable	(NA,	grey)	cells.	
The	percentage	of	cells	assigned	to	each	genotype	per	cell	line,	as	well	as	accuracy	and	overall	percent	of	cells	genotyped	are	
shown.	g,	Inferred	copy	number	variation	(CNV)	scores	from	the	scATAC-seq	data	(see	materials	and	methods)	in	either	TP53R248	
wildtype	or	mutant	cells	as	defined	by	GoT-ChA	mixing	study	relative	to	a	healthy	control	(see	materials	and	methods),	verifying	
the	concordance	between	known	amplification	of	the	region	including	the	JAK2	gene	on	chromosome	9	in	HEL	cells,	which	are	
wildtype	for	TP53R248.	h,	Schematic	representation	of	the	JAK2V617	mixing	study	(top	panel)	and	chromatin	accessibility-based	
UMAP	for	HEL	(n	=	1,334	cells;	JAK2MUT/MUT;	purple),	CCRF-CEM	(n	=	638	cells;	JAK2WT/WT;	light	blue)	and	SET-2	(n	=	1,268	cells;	
JAK2WT/MUT;	pink)	cell	 lines	(bottom	panel).	 i,	Chromatin	accessibility	coverage	of	marker	genes	(FDR	<	0.05,	 log2FC	>	1.25),	
agnostic	 to	 genotyping	 information	used	 for	 cell	 line	 identity	 assignments.	Wilcoxon	 rank	 sum	 test	 followed	by	Benjamini-	
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SET-2,	 JAK2V617F	 heterozygous;	 CCRF-CEM,	 JAK2V617	
homozygous	 wildtype;	 Extended	 Data	 Fig.	 2k)	 were	
mixed	at	a	1:1:1	ratio	and	profiled	with	GoT-ChA.	As	with	
the	homozygous	mixing	study	targeting	TP53R248	shown	
above,	 clustering	 agnostic	 to	 genotyping	 utilizing	 only	
the	scATAC-seq	data	resulted	in	discrete	populations	of	
cells	 (Fig.	 1h)	 that	 were	 annotated	 via	 differential	
chromatin	accessibility	signals	at	key	marker	genes	(Fig.	
1i;	Extended	 Data	 Fig.	 2l)	 and	 unique	mitochondrial	
variants	 (Fig.	 1j),	 while	 again	 confirming	 unaffected	
quality	of	the	scATAC-seq	data	(Extended	Data	Fig.	2m,	
n).	 The	 genotyping	 data	 was	 processed	 as	 described	
above,	 using	 KDE	 applied	 to	 log-read	 distributions	 to	
define	 the	 boundaries	 between	 background	 noise	 and	
genotyping	 signal	 for	 wildtype	 and	 mutant	 reads	
(Extended	Data	Fig.	2o),	 followed	by	 clustering	on	 z-
score	read	counts	(Extended	Data	Fig.	2p).	While	less	
than	 2%	 of	 cells	 had	 at	 least	 one	 scATAC-seq	 read	
covering	 the	 JAK2V617	 locus,	 genotyping	 by	 GoT-ChA	
captured	 30.7%	 of	 CCRF-CEM,	 64.7%	 of	 SET-2	 and	
78.8%	of	HEL	cells	(Fig.	1k).	In	the	two	homozygous	cell	
lines	(wildtype	CCRF-CEM	and	mutant	HEL),	genotyping	
of	the	JAK2V617	locus	was	achieved	in	63.2%	of	cells	with	
an	accuracy	of	96.2%	(Fig.	1l,	left	panel).	In	the	SET-2	
heterozygous	cell	line,	64.7%	of	cells	were	successfully	
genotyped;	 34.3%	 of	 genotyped	 cells	 were	 correctly	
identified	as	heterozygous,	confirming	bi-allelic	capture,	
with	 the	 remaining	 genotyped	 cells	 split	 between	
homozygous	 wildtype	 and	 mutant	 assignments,	
suggesting	 incomplete	 capture	 of	 the	 heterozygous	
genotype	(Fig.	1l,	right	panel,	note	that	SET-2	cells	have	
a	3:1	ratio	of	mutated:wildtype	alleles	(Extended	Data	
Fig.	2k),	likely	underlying	the	higher	fraction	of	mutated	
versus	 wildtype	 calls	 in	 non-heterozygous	 genotype	
classification).	CNV	scores	for	homozygous	wildtype	and	
mutant	 cells	 along	 the	 chromosome	 9	 amplification	
present	 in	 the	 JAK2V617F	 homozygous	 mutant	 HEL	 cell	
line47–49	orthogonally	validated	successful	genotyping	of	

the	 JAK2V617	 locus	 (Fig.	1m).	We	note	 that	variation	 in	
genotyping	efficiency	across	cell	lines	is	likely	related	to	
the	 copy	 number	 variation	 for	 the	 JAK2	 locus47,50,51.	
Indeed,	 the	 proportion	 of	 genotyped	 cells	 positively	
correlated	with	the	copy	number	of	the	JAK2	locus	(Fig.	
1n,	left	panel,	Pearson	correlation;	P	=	0.011;	R2	=	0.91;	
F-test),	 suggesting	 that	 additional	 copies	 of	 the	 target	
locus	 improve	 the	 genotype	 capture	 rate.	 Importantly,	
genotyping	accuracy	remained	consistent	regardless	of	
target	copy	number	differences	(Fig.	1n,	right	panel).	

Altogether,	 these	 data	 demonstrate	 that	 GoT-
ChA	allows	for	high-throughput	simultaneous	capture	of	
genotypes	and	chromatin	accessibility	profiles	in	single	
cells,	with	high	accuracy	and	cell	recovery	independent	
of	 expression	 level	 and	 genomic	 localization	 of	 the	
targeted	region.		

GoT-ChA	of	primary	human	 JAK2V617F	myelofibrosis	
reveals	cell	type-specific	mutant	cell	predominance	
in	erythroid	and	megakaryocytic	progenitors.	

The	JAK2V617F	mutation	has	a	central	role	in	the	
pathogenesis	 of	 myeloproliferative	 neoplasms7,15–18,22.	
We	 sought	 to	 explore	 how	 this	 mutation	 disrupts	 the	
regulatory	 chromatin	 landscape	 that	 determines	 cell-
fate	 decisions	 of	 HSPCs.	 To	 address	 this	 question,	 we	
applied	GoT-ChA	to	CD34+	sorted	progenitor	cells	from	
seven	 patients	 with	 JAK2V617F-mutated	 MF	 with	 no	
additional	 mutations	 (Extended	 Data	 Table	 1),	 who	
had	either	not	been	treated	with	JAK	inhibition	or	were	
being	 treated	 with	 ruxolitinib,	 a	 JAK1/2	 inhibitor,	 or	
fedratinib,	a	JAK2-specific	inhibitor	at	the	time	of	sample	
collection	(Extended	Data	Table	1).	The	quality	of	the	
scATAC-seq	data	was	not	affected	by	removal	of	a	small	
portion	 of	 the	 sample	 for	 GoT-ChA	 genotyping	 library	
construction	 (Extended	 Data	 Fig.	 3a-c).	 We	 then	
performed	 cell	 clustering	 in	 a	 manner	 agnostic	 to	
genotyping	 information,	 based	 solely	 on	 chromatin	
accessibility	 (Fig.	 2a).	 Reciprocal	 latent	 semantic	

Hochberg	correction.	j,	Heatmap	showing	heteroplasmy	of	mutually	exclusive	mitochondrial	variants	detected	in	the	scATAC-
seq	data	 for	HEL,	CCRF-CEM	and	SET-2	cell	 lines.	Minimum	coverage	of	10	reads	mapping	to	the	variant	site	was	required.		
k,	 Detected	 coverage	 for	 the	 locus	 of	 interest	 per	 cell	 line	 illustrating	 improved	 genotyping	 capture	with	 GoT-ChA	 versus	
standard	 10x	 scATAC.	 Percent	 of	 cells	 reported	 for	 10x	 scATAC-seq	 and	 GoT-ChA	 are	 as	 defined	 in	 panel	 e.	 l,	 Chromatin	
accessibility-based	UMAP	for	HEL	(n	=	1,334	cells),	SET-2	(n	=	1,268	cells)	and	CCRF-CEM	(n	=	638	cells)	colored	by	GoT-ChA	
genotype	classifications	of	homozygous	wildtype	(WT,	blue),	homozygous	mutant	(MUT,	red),	heterozygous	(HET,	yellow),	and	
not	assignable	(NA,	grey)	cells	(left	panel).	Percentage	of	cells	assigned	to	each	genotype	and	overall	accuracy	and	percent	of	
genotyped	 cells	 is	 reported	 for	 the	 HEL	 and	 CCRF-CEM	 homozygous	 cell	 lines.	 Genotyping	 results	 for	 the	 SET-2	 cell	 line	
indicating	multi-allelic	capture	by	GoT-ChA	genotyping	in	a	subset	of	cells,	allowing	for	accurate	heterozygous	classification	in	
34.3%	of	genotyped	cells	(right	panel).	We	note	that	mutated	and	wildtype	annotation	likely	represents	incomplete	capture	of	
all	alleles,	and	the	observed	percentages	correspond	to	the	3:1	allelic	ratio	of	mutated:wildtype	alleles	present	in	SET-2	cells,	as	
verified	by	Sanger	sequencing	(see	Extended	Data	2k).	m,	CNV	scores	inferred	from	the	scATAC-seq	data	(see	materials	and	
methods)	comparing	homozygous	wildtype	and	mutant	cells	in	the	JAK2V617	GoT-ChA	mixing	study	relative	to	a	healthy	control	
(see	materials	and	methods),	illustrating	concordance	between	known	amplification	of	the	region	including	the	JAK2	gene	on	
chromosome	9	in	HEL	cells,	which	are	mutant	for	JAK2V617.	n,	GoT-ChA	quality	metrics	in	relation	to	target	locus	copy	number:	
fraction	of	cells	genotyped	(left	panel)	positively	correlates	with	locus	copy	number,	while	genotyping	accuracy	(right	panel)	
remains	above	95%	irrespective	of	locus	copy	number.	
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indexing52	applied	to	the	binarized	genomic	bin	by	cell	
matrix	 was	 used	 for	 sample	 integration	 to	 correct	 for	
patient-specific	 batch	 effects	 (Fig.	 2b;	 Extended	Data	
Fig.	3d;	see	materials	and	methods).	Individual	cluster	
identities	were	assigned	using	gene	accessibility	scores	
of	key	marker	genes	for	hematopoietic	lineages	(Fig.	2c;	
Extended	Data	Fig.	3e)	and	confirmed	via	transcription	
factor	footprinting	(Fig.	2d)	and	peak	calling	(Extended	
Data	 Fig.	 3f),	 followed	 by	 differential	 enrichment	 of	
marker	 peaks	 (Extended	Data	 Fig.	 3g).	We	 identified	
the	 expected	 progenitor	 subtypes,	 along	 with	 a	
population	of	mature	monocytic	 cells	 characterized	by	
CD14	 expression	 and	 lack	 of	 CD34	 expression,	 often	
observed	in	CD34+	sorting	of	human	bone	marrow53.	The	
presence	 of	 two	 distinct	 HSPC	 subclusters,	 early	
(HSPC1)	 and	 late	 (HSPC2),	 was	 validated	 via	 gene	
accessibility	 scores	 of	 multiple	 markers	 of	
hematopoietic	 stem	 cells	 (Extended	 Data	 Fig.	 3h).	
Cluster	 assignments	 were	 further	 supported	 via	
orthogonal	annotation	utilizing	cell	mapping	through	a	
novel	 multiomic	 bridge	 integration	 approach54	
(Extended	Data	Fig.	3i;	see	materials	and	methods).		

Analysis	 of	 the	 GoT-ChA	 genotyping	 data	
(Extended	Data	Fig.	4a)	resulted	in	JAK2V617	genotyping	
information	for	15,737	out	of	32,268	total	cells	(48.8%	±	
9.64%;	 mean	 ±	 standard	 deviation	 across	 samples),	
compared	 to	 7-10%	 of	 cells	 in	 previously	 reported	
droplet-based	 scRNA-seq	 cDNA-based	 genotyping29,31	
(Fig.	 2e),	 demonstrating	 the	 increased	 ability	 of	 GoT-
ChA	 to	genotype	 loci	with	 relatively	 low	expression	 in	
single	 cells.	 Pseudo-bulked	 GoT-ChA	 variant	 allele	
frequencies	(VAFs)	were	positively	correlated	with	the	
reported	VAFs	from	clinical	targeted	panels	(P	=	0.036;	
Rho	=	0.84;	Spearman	correlation;	Extended	Data	Fig.	
4b).	We	noted	variability	in	genotyping	efficiency	across	
cell	types	(range:	23.7%	to	66.6%),	which	may	be	related	
to	 locus	 accessibility	 (Extended	 Data	 Fig.	 4c).	
Nonetheless,	 by	 design,	 GoT-ChA	 is	 not	 strictly	
dependent	on	accessibility,	allowing	genotyping	across	
cell	types	despite	minimal	locus	accessibility	(Extended	
Data	Fig.	4d).		

Projection	 of	 genotypes	 onto	 the	 cell	
differentiation	map	demonstrated	intermingling	of	JAK2	
wildtype	 and	 mutant	 cells	 throughout	 HSPCs	 and	
myeloid	 progenitor	 clusters,	 while	 the	 common	
lymphoid	 progenitors	 (CLPs)	 and	 B	 cell	 clusters	 were	
mainly	comprised	of	wildtype	cells	(Fig.	2f,	left	panel;	
Extended	 Data	 Fig.	 4e),	 consistent	 with	 previous	
studies	 of	 hematopoietic	 colonies/subsets	 from	 MPN	
patients23,55.	The	intermingling	of	mutated	and	wildtype	
progenitors	 reinforced	 the	 inability	 of	 chromatin	
accessibility	profiles	alone	to	distinguish	wildtype	from	

mutant	cells,	highlighting	the	need	for	single-cell	multi-
omics	for	genotype-epigenome	inferences.		

Nonetheless,	 projection	 of	 genotype	 densities	
onto	 the	 differentiation	 map	 suggested	 an	 uneven	
distribution	of	mutant	cells	across	cell	subtypes	(Fig.	2f,	
right	 panel).	 Indeed,	 while	 HSPCs	 and	 committed	
myeloid	 progenitor	 clusters	 were	 composed	 of	 an	
admixture	of	wildtype	and	 JAK2V617F	mutant	cells,	 their	
frequencies	 varied	 greatly.	 The	 normalized	 mutant	
fraction	was	 increased	 in	the	 late	erythroid	progenitor	
cluster	 (EP2),	 as	 well	 as	 in	 the	 megakaryocytic	
progenitor	(MkP)	cluster	(Fig.	2g;	Extended	Data	Fig.	
4f).	 In	 contrast,	 patients	 treated	 with	 the	 JAK1/JAK2	
inhibitor	 ruxolitinib	 displayed	 a	 more	 homogeneous	
distribution	of	mutant	cells	across	cell	types	(Fig.	2g;	see	
Extended	 Data	 Fig.	 4f	 for	 per	 sample	 analysis),	
suggesting	 that	 JAK	 inhibition	 alters	 the	 relative	
contribution	of	 JAK2V617F	 to	 these	 cellular	 lineages,	 but	
does	 not	 eliminate	 the	 mutated	 clone40–42.	 Treatment	
with	 fedratinib,	 a	 JAK2-specific	 inhibitor,	 showed	 a	
similar	 distribution	 to	 ruxolitinib	 across	 cell	 types	
(Extended	Data	Fig.	4g).	Consistently,	pseudotemporal	
ordering	 of	 cells	 along	 the	 erythroid	 differentiation	
trajectory	 (Fig.	 2h)	 showed	 a	 steady	 increase	 in	 the	
fraction	 of	 mutant	 cells	 in	 untreated	 patients,	 while	
ruxolitinib	 treatment	 resulted	 in	 a	 more	 uniform	
distribution	 of	 mutant	 cells	 along	 erythroid	
differentiation	(Fig.	2i).	We	observed	a	similar	pattern	
of	mutant	cell	fraction	increase	with	MkP	differentiation,	
and	 to	 a	 lesser	 extent	 in	 the	monocyte	 differentiation	
trajectory	 (Extended	 Data	 Fig.	 4h-i).	 Thus,	 high	
resolution	 mapping	 of	 the	 JAK2V617F	 mutation	 across	
human	 hematopoietic	 differentiation	 demonstrated	 a	
progenitor-specific	 mutant	 cell	 predominance	 in	
myelofibrosis	 that	 is	 eliminated	 by	 therapeutic	 JAK2	
inhibition.	

JAK2V617F	 HSPCs	 show	 a	 cell-intrinsic	 pro-
inflammatory	 phenotype	 and	 myeloid/erythroid	
epigenetic	priming.	

Inflammatory	 disruption	 of	 the	 bone	 marrow	
microenvironment	has	been	extensively	documented	in	
myelofibrosis19–21,39,56–59.	 Indeed,	 secretion	 of	
inflammatory	 cytokines	 is	 a	 central	 feature	 of	 MPN	
pathophysiology	 and	 has	 been	 shown	 to	 provide	 a	
supportive	niche	for	the	expansion	of	mutant	clones	in	
various	 disease	 states,	 including	 MPNs	 and	 clonal	
hematopoiesis33,60–63.	 However,	 defining	 how	 wildtype	
and	JAK2V617F	mutant	early	progenitors	differ	regarding	
cell-intrinsic	epigenetic	profiles	in	human	myelofibrosis	
remains	 unknown	 due	 to	 the	 inability	 to	 directly	
compare	 mutated	 and	 wildtype	 cells	 within	 primary	
human	samples.		
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Fig.	 2	 |	 GoT-ChA	 on	 human	 JAK2V617F-mutated	 myelofibrosis	 samples	 reveals	 myeloid	 differentiation	 bias	 that	 is	
abrogated	with	ruxolitinib	treatment.	a,	Integrated	chromatin	accessibility	uniform	manifold	approximation	and	projection	
(UMAP)	after	 reciprocal	 latent	 semantic	 indexing	 (LSI)	 integration	 (see	materials	 and	methods)	 from	CD34+	 sorted	patient	
samples	(n	=	9	samples,	7	patients,	32,268	cells)	illustrating	the	expected	progenitor	populations	in	early	hematopoiesis.	HSPC	
=	hematopoietic	stem	and	progenitor	cells;	MPP	=	multi-potent	progenitors;	GMP	=	granulocyte	monocyte	progenitors;	MEP	=	
megakaryocyte-erythrocyte	progenitors;	EP	=	erythroid	progenitors;	MkP	=	megakaryocytic	progenitors;	LMPP	=	lymphoid-
myeloid	pluripotent	progenitors;	CLP	=	 common	 lymphoid	progenitors;	CD16-Mono	=	CD16+	monocyte	progenitors;	CD14-
Mono	=	CD14+	monocytes.	b,	Integrated	UMAP	plotted	for	each	patient	sample,	illustrating	consistent	distribution	of	cells	after	
reciprocal	LSI	 integration	(see	materials	and	methods).	c,	UMAPs	showing	the	gene	accessibility	scores	of	canonical	marker	
genes	(FDR	<	0.05	and	log2FC	>	1;	Wilcoxon	rank	sum	test	followed	by	Benjamini-Hochberg	correction)	used	to	identify	the	
individual	progenitor	clusters	within	the	integrated	UMAP.	d,	Transcription	factor	footprinting	of	canonical	transcription	factors	
for	progenitor	clusters,	further	confirming	cluster	identity	assignments.	e,	Comparison	of	JAK2V617	genotyping	efficiency	across	
recent	 publications	 applying	 single-cell	 droplet-based	 technologies	 for	 genotyping.	Bars	 represent	mean	 values,	 each	point	
represents	an	individual	patient	sample,	and	error	bars	indicate	standard	deviation.	f,	Integrated	UMAP	colored	by	GoT-ChA-
assigned	JAK2V617	genotypes	as	homozygous	wildtype	(WT;	n	=	4,195	cells;	blue),	homozygous	mutant	(MUT;	n	=	9,202	cells;	
red)	or	heterozygous	(HET;	n	=	2,340	cells;	yellow)	and	not	assignable	(NA;	n	=	16,531	cells;	grey).	g,	Radar	plot	showing	the	
mutant	 fraction	 for	each	cluster,	 relative	 to	 the	 fraction	of	mutant	cells	observed	 for	 the	entire	 sample,	of	either	untreated	
(green)	 or	 ruxolitinib-treated	 (yellow)	 patient	 samples	 across	 myeloid	 and	 HSPC/MPP	 clusters.	 h,	 UMAP	 depicting	 semi-
supervised	pseudotime	estimation	for	the	erythroid	differentiation	trajectory,	with	the	HSPC1	cluster	as	initial	state	and	the	
EP2	cluster	as	final	state.	i,	Fraction	of	mutant	cells	along	erythroid	pseudotime	for	untreated	(n	=	3,894	cells)	or	ruxolitinib-
treated	 (n	 =	 1,765	 cells)	 samples.	 Erythroid	 pseudotime	 was	 divided	 in	 10	 quantiles;	 each	 point	
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To	delineate	the	effects	of	JAK2V617F	on	chromatin	
accessibility,	we	first	compared	gene	accessibility	scores	
(as	the	number	of	cells	profiled	varied	between	samples,	
linear	 mixture	 model	 (LMM)	 was	 used	 with	 patient	
sample	 identity	explicitly	modeled	as	 random	effect	 to	
account	 for	 inter-patient	 variability,	 followed	 by	
likelihood	 ratio	 test;	 see	 materials	 and	 methods)	
between	wildtype	and	JAK2V617F-mutated	cells	within	the	
HSPC1	 cluster	 (Fig.	 3a;	Extended	Data	Table	2)	 as	 a	
proxy	 for	 gene	 expression.	 These	 data	 revealed	 a	 cell-
intrinsic	 pro-inflammatory	 phenotype	 in	 JAK2V617F	
mutant	 HSPCs,	 with	 increased	 gene	 accessibility	 of	
critical	 inflammatory	 genes	 (Fig.	 3a-b).	 Pro-
inflammatory	genes	more	accessible	in	JAK2V617F	HSPC1	
cells	 included	 members	 of	 the	 tumor	 necrosis	 factor	
(TNF)	family,	such	as	the	receptor	TNFRS9	(CD137)	and	
its	ligand	TNFS9,	as	well	as	the	cytokine	CD70,	which	acts	
as	 ligand	 of	 the	 TNFRSF27	 (CD27)	 receptor.	 This	
suggests	an	increase	in	levels	of	both	ligands	and	their	
corresponding	receptors	in	mutant	HSPCs,	which	could	
result	 in	 increased	 downstream	 activation	 of	 NF-kB	
signaling64.	In	addition,	both	colony	stimulating	factors	1	
and	2	 (CSF1	 and	CSF2)	 show	 increased	accessibility	 in	
JAK2V617F	HSPC1	cells.	CSF1	can	promote	differentiation	
of	 HSPCs	 towards	 the	myeloid	 lineage65	 and	 CSF2	 has	
been	 shown	 to	 be	 required	 for	 differentiation	 of	
precursor	 cells	 towards	 the	 myeloid/erythroid	 fate66.	
We	 also	 observed	 increased	 accessibility	 of	 the	 CCL2	
gene,	a	key	cytokine	mediating	monocyte	recruitment	to	
inflammatory	 sites67,	 which	 has	 been	 reported	 to	 be	
increased	in	MF68.	

Consistently,	gene	pathway	analysis	revealed	an	
enrichment	 in	 the	 inflammatory	 response	 pathway	 in	
mutant	 HSPC1	 cells	 (Family-wise	 error	 rate		
[FWER]	 =	 0.1031;	 normalized	 enrichment	 score		
[NES]	 =	 1.375;	Hallmark	 pathway	M5932;	Fig.	 3b).	 In	
addition	 to	 the	 genes	 involved	 in	 the	 inflammatory	
pathway,	 we	 observed	 increased	 gene	 accessibility	 of	
S100A12	(Fig.	3c,	left	panel,	decreased	accessibility	of	
GTSE1	gene	is	shown	for	comparison)	encoding	a	protein	
involved	 in	 pro-inflammatory	 cytokine	 upregulation,	
including	TNF	 through	 activation	of	NF-kB	 signaling69.	
Notably,	 the	 pro-inflammatory	 signature	 observed	 in	
mutant	 cells	 was	 lost	 upon	 ruxolitinib	 treatment	
(Extended	 Data	 Fig.	 5a-b;	 Extended	 Data	 Table	 3),	
consistent	 with	 ruxolitinib	 resulting	 in	 lowered	
circulating	cytokine	levels	in	patients39,56.		

To	further	explore	the	regulatory	underpinning	
of	 inflammatory	 phenotypes	 in	 HSPCs,	 we	 leveraged	

chromatin	 accessibility	 to	 infer	 transcription	 factor	
activity	based	on	the	accessibility	of	their	DNA	binding	
motifs	 (see	 materials	 and	 methods)70,71.	 Comparing	
wildtype	and	 JAK2V617F-mutated	cells	within	 the	HSPC1	
cluster,	we	uncovered	a	subset	of	 transcription	 factors	
that	show	increased	motif	accessibility	(false	discovery	
rate	[FDR]	<	0.05	and	∆z-score	>	0.25)	in	early	mutant	
HSPCs	(Fig.	3d;	Extended	Data	Table	4).	Transcription	
factors	 involved	 in	 NF-kB	 signaling	 (NFKB1,	 NFKB2,	
REL,	 RELA,	 and	 RELB)	 and	 in	 the	 AP-1	 complex	 (JUN,	
JUNB,	 JUND,	 FOS,	 FOSB,	 FOSL1,	 FOSL2)	 showed	
increased	 accessibility	 in	mutant	 cells,	 suggesting	 that	
the	 JAK2V617F	 mutation	 already	 primes	 early	 HSPCs	
towards	 a	 pro-inflammatory	 cellular	 state.	 These	
findings	 are	 consistent	 with	 recent	 studies	 that	 have	
identified	NF-kB	and	 STAT3	as	 essential	 co-regulatory	
drivers	 of	 inflammation	 in	 MPN	 murine	 models,	
resulting	 in	 aberrant	 cytokine	 signaling	 from	 both	
mutant	 and	 non-mutant	 cells26,72.	 Additionally,	 NF-kB	
signaling	has	been	implicated	in	the	regulation	of	AP-1	
transcription	 factors73,	 and	 along	 with	 STAT3,	 act	 as	
important	 mediators	 of	 an	 inflammatory	 regulatory	
network	driving	complex	transcriptional	programs	in	a	
variety	 of	 human	 cancers74,75.	 Transcription	 factor	
footprinting	within	the	HSPC1	cluster	showed	increased	
accessibility	 surrounding	 JUN	 and	 NFKB1	 motifs	 in	
JAK2V617F	mutant	cells	(Fig.	3e).		

By	 leveraging	 longitudinal	 sampling	 obtained	
from	an	untreated	patient	with	PV	that	later	progressed	
to	MF	(Pt-01,	see	Extended	Data	Table	1),	we	explored	
whether	the	pro-inflammatory	phenotype	as	measured	
by	 JUN	 and	 NFKB1	 motif	 accessibility	 preceded	 the	
increase	 in	 bone	 marrow	 fibrosis	 observed	 in	 MF.	
Indeed,	 we	 observed	 that	 both	 JUN	 and	 NFKB1	 motif	
accessibilities	were	increased	in	JAK2V617F	mutant	early	
HSPCs	already	at	the	PV	stage	(Fig.	3f).	Importantly,	JUN	
and	NFKB1	transcription	 factor	motif	accessibility	was	
increased	in	MF	relative	to	PV	(Fig.	3f),	consistent	with	
an	 increasingly	 pro-inflammatory	 bone	 marrow	
environment	 in	 the	 progression	 from	 PV	 to	MF.	 Thus,	
while	pro-inflammatory	phenotypes	have	been	linked	to	
extrinsic	 effects25,26,72,	 and	 highlighted	 to	 affect	
transcriptional	 profiles	 in	 committed	 erythroid	
progenitors32,76,	 our	 high-resolution	 mapping	 of	
chromatin	 accessibility	 in	 early	 mutant	 human	 HSPCs	
showed	 that	 JAK2V617F	 promotes	 cell-intrinsic	 pro-
inflammatory	gene	accessibility	and	transcription	factor	
activity,	well	before	commitment	towards	the	erythroid	
fate.		

represents	 the	mean	 fraction	of	mutant	 cells,	 error	bars	 indicate	 standard	 error,	 lines	 indicate	 the	 fit	 and	 shadowed	areas	
represent	the	95%	confidence	interval	of	the	generalized	additive	model	(upper	panel).	The	fraction	of	cells	belonging	to	the	
cluster	specified	by	color	(HSPC	=	hematopoietic	stem	and	progenitor	cell;	MPP	=	multipotent	progenitor;	MEP	=	megakaryocyte	
erythrocyte	progenitor;	EP	=	erythroid	progenitor)	within	the	indicated	pseudotime	quantile	is	shown	(bottom	panel).	
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A	subset	of	transcription	factors	associated	with	

	
Fig.	 3	 |	 JAK2V617F	 mutant	 HSPCs	 exhibit	 intrinsic	 pro-inflammatory	 and	myeloid-biased	 epigenetic	 priming	 that	 is	
reduced	with	JAK	inhibition.	a,	Volcano	plot	illustrating	differential	gene	accessibility	scores	between	wildtype	(n	=	128	cells)	
and	mutant	(n	=	93	cells)	cells	within	the	HSPC1	cluster	of	untreated	MF	patients	(n	=	4;	excluding	PV	sample).	Horizontal	dotted	
line	represents	P	=	0.05;	vertical	dotted	lines	represent	absolute	log2FC	>	0.25.	Genes	involved	in	the	inflammatory	response	
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myeloid/erythroid	 differentiation	 (LYL177,78,	 SNAI179,	
TCF480,	 and	 MESP181)	 also	 exhibited	 increased	
accessibility	of	their	DNA-binding	motifs	in	mutant	cells	
(Fig.	3d),	suggesting	that	epigenetic	priming	towards	a	
myeloid	cell	 fate	 is	present	at	early	stages	of	JAK2V617F-
mutated	 hematopoiesis.	 We	 also	 observed	 modestly	
decreased	motif	accessibility	for	a	group	of	transcription	
factors	involved	in	stem	cell	quiescence	(NFYA/B/C82,83,	
YY184,	 and	 SP285,86)	 in	 mutant	 cells	 (Fig.	 3d).	 The	
decrease	 in	 potential	 activity	 of	 these	 transcription	
factors	may	underlie	the	increased	hematopoietic	output	
of	mutant	cells	relative	to	their	wildtype	counterparts,	as	
suggested	 by	 increased	 mutant	 fractions	 in	 more	
differentiated	progenitor	clusters	in	the	myeloid	lineage.		

To	 uncover	 further	 changes	 in	 transcription	
factor	 activity	 within	 later	 HSPCs,	 we	 performed	
differential	 transcription	 factor	 motif	 accessibility	
between	 wildtype	 and	mutant	 cells	 within	 the	 HSPC2	
cluster	 (Fig.	 3g;	 Extended	 Data	 Table	 4).	 Consistent	
with	 our	 observations	 in	 the	 earlier	 HSPC1	 cluster,	
differential	 transcription	 factor	 motif	 accessibility	
highlighted	 increased	 activity	 of	 transcription	 factors	
associated	with	myeloid/erythroid	differentiation	(e.g.,	
ID387,	MESP181,	SNAI179,	LMO288–91,	TCF480,	ZEB192,	and	
LYL177,78)	in	mutant	cells,	suggesting	that	the	erythroid	

bias	 is	 strengthened	 in	 later	 HSPCs,	 likely	 underlying	
erythroid	 priming6.	 Notably,	 LMO2,	 a	 key	 factor	 in	
erythroid	 differentiation88–91,	 has	 been	 postulated	 as	 a	
direct	 non-signaling	 target	 of	 JAK2	 through	 nuclear	
translocation	and	histone	modulation48,	thus	serving	as	
a	 potential	 direct	 link	 between	 the	 mutated	 genotype	
and	erythroid-biased	HSPC	priming.	A	second	group	of	
transcription	 factors	 also	 associated	with	myeloid	 and	
erythroid	 differentiation	 showed	 a	 more	 modest	 yet	
significant	 increase	 in	 JAK2V617F	 mutant	 HSPCs	 (e.g.	
TAL178,93,	 RUNX194,95,	 TFCP296,	 NFIA97,	 NFIB98,	 and	
CBFB99;	Fig.	3g).	Of	note,	RUNX1	is	known	to	drive	the	
initial	 commitment	 towards	myeloid	 differentiation	 in	
hematopoiesis9,95,100	 and	 may	 underlie	 the	 myeloid	
priming	observed	in	myelofibrosis.		

Consistent	 with	 mutant	 cells	 in	 the	 HSPC1	
cluster,	HSPC2	mutant	cells	also	exhibited	a	decrease	in	
the	accessibility	of	transcription	factor	motifs	implicated	
in	 stem	 cell	 quiescence	 (NFYA/B/C82,83,	 YY184,	 YY2101,	
GATA2102–104	 and	HLF105;	Fig.	 3g).	 Additionally,	HSPC2	
mutant	 cells	 showed	 an	 increase	 in	 accessibility	 of	
transcription	 factor	 motifs	 within	 the	 TGF-b	 signaling	
pathway	(TGIF2,	SMAD1,	SMAD4,	and	SMAD9),	which	is	
thought	to	play	an	important	role	in	the	development	of	
marrow	 fibrosis106–109.	 Of	 note,	 ruxolitinib	 treatment	

pathway	(Hallmark	M5932)	are	highlighted	in	green.	Alarmin	genes	are	highlighted	in	yellow.	Linear	mixture	model	(LMM)	
modeling	patient	sample	as	a	random	effect	for	accounting	for	inter-patient	variability	followed	by	likelihood	ratio	test	(see	
materials	and	methods).	b,	Pre-ranked	gene	set	enrichment	of	genes	within	the	Inflammatory	response	pathway	for	wildtype	
vs	 JAK2V617F	 HSPC1	 gene	 accessibility	 scores	 (Bonferroni	 correction;	 FWER	 =	 family	 wise	 error	 rate;	 NES	 =	 normalized	
enrichment	score;	Hallmark	pathway	M5932).	c,	Chromatin	accessibility	coverage	tracks	of	two	differentially	accessible	(P	<	
0.05	and	absolute	 log2FC	>	0.25)	genes	between	wildtype	(blue)	and	mutant	cells	(red).	d,	Volcano	plot	of	 the	differentially	
accessible	 transcription	 factor	motifs	 (FDR	<	0.05	and	absolute	Dz-score	>	0.25;	LMM	followed	by	 likelihood	ratio	 test	and	
Benjamini-Hochberg	correction)	between	wildtype	(n	=	128	cells)	and	JAK2V617F	mutant	(n	=	93	cells)	HSPC1	cells	from	untreated	
MF	patients	(n	=	4;	excluding	PV	sample).	Only	motif	accessibility	of	transcription	factors	expressed	in	scRNA-seq	data	from	
MPN	 patients29	 were	 considered.	 Transcription	 factors	 involved	 in	 biological	 pathways	 such	 as	 myeloid/erythroid	
differentiation	 (pink),	NF-kB	signaling	 (teal)	and	AP-1	complex	 (JUN/FOS;	blue)	are	highlighted.	The	horizontal	dotted	 line	
represents	FDR	=	0.05,	the	vertical	dotted	lines	represent	absolute	Dz-score	>	0.25.	e,	Transcription	factor	footprinting	for	JUN	
or	NFKB1	motif	sites	in	either	wildtype	or	JAK2V617F	mutant	cells	within	the	HSPC1	cluster	for	untreated	or	ruxolitinib-treated	
patients.	f,	Motif	accessibility	for	either	JUN	or	NFKB1	transcription	factors	for	a	longitudinal	sample	(Pt-01)	from	a	patient	that	
progressed	from	polycythemia	vera	(PV)	to	myelofibrosis	(MF).	Wilcoxon	rank	sum	test.	g,	Volcano	plot	of	the	differentially	
accessible	 transcription	 factor	motifs	 (FDR	<	0.05	and	absolute	Dz-score	>	0.25;	LMM	followed	by	 likelihood	ratio	 test	and	
Benjamini-Hochberg	correction)	between	wildtype	(n	=	312	cells)	and	mutant	(n	=	517	cells)	HSPC2	cells	from	untreated	MF	
patients	 (n	 =	 4;	 excluding	 PV	 sample).	 Transcription	 factors	 involved	 in	 biological	 pathways	 such	 as	 myeloid/erythroid	
differentiation	(pink)	and	TGF-b	signaling	(purple)	are	highlighted.	The	horizontal	dotted	line	represents	FDR	=	0.05,	the	vertical	
dotted	lines	represent	absolute	Dz-score	>	0.25.	h,	Correlation	between	motif	accessibility	of	transcription	factors	belonging	to	
the	STAT	family	and	transcription	factors	involved	in	NF-kB	signaling	within	HSPCs	(HSPC1	and	HSPC2	clusters	combined)	in	
untreated	MF	patients	(n	=	4;	excluding	PV	sample).	Spearman	correlation.	i,	Scatter	plots	illustrating	transcription	factor	motif	
accessibility	correlation	in	untreated	MF	HSPCs	(HSPC1	and	HSPC2)	between	NFKB1	and	STAT1	(left	panel)	and	STAT4	(right	
panel).	Each	point	represents	a	single	cell,	and	the	lines	represent	the	linear	fit	for	either	wildtype	(blue)	or	JAK2V617F	mutant	
(red).	Shadowed	areas	represent	95%	confidence	intervals.	Linear	modeling	followed	by	ANOVA	test	for	comparison	between	
wildtype	and	mutant	slopes,	as	well	as	the	Rho	values	representing	the	goodness	of	fit	for	each	genotype	are	shown.	j,	Schematic	
representation	 of	 a	 Jak2RL	mouse	 experiment110	 in	which	 bulk	 RNA-seq	was	 performed	 on	 sorted	 LSK	 cells	 from	 Jak2V617F		
and	 Jak2V617F-deleted	 mice.	 k,	 Pre-ranked	 gene	 set	 enrichment	 of	 differentially	 expressed	 genes	 within	 the	 erythroid		
(FDR	=	2.5	x	10-4;	NES	=	-1.87;	heme	metabolism	Hallmark	gene	set)	and	TNF	via	NF-kB	(FDR	=	4.1	x	10-4;	NES	=	-1.59)	gene	sets	
in	Jak2V617F	compared	to	Jak2V617F-deleted	mouse	LSK	cells.	
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abrogated	 the	 cell-intrinsic	 differences	 observed	 in	
transcription	 factor	 motif	 accessibility	 between	
wildtype	and	JAK2V617F-mutated	HSPCs	(Extended	Data	
Fig.	5c-d;	Extended	Data	Table	4),	demonstrating	that	
the	changes	observed	in	untreated	patients	are	mediated	
by	the	JAK2V617F	constitutive	activation.	

To	 link	 the	 activation	 of	 NF-kB	 signaling	 to	
canonical	 JAK2	downstream	targets,	we	correlated	NF-
kB-related	 transcription	 factor	motif	 accessibility	with	
members	of	the	STAT	family	transcription	factor	motifs	
in	 HSPCs.	 We	 found	 increased	 correlation	 of	 STAT1,	
STAT3,	 STAT5A,	 and	 STAT5B	 motif	 accessibility	 with	
NF-kB	 factor	 motif	 accessibility,	 consistent	 with	 JAK2	
activation	of	canonical	STAT	targets	(Fig.	3h;	Extended	
Data	 Fig.	 5e).	 In	 contrast,	 non-canonical	 JAK2	 targets	
STAT2,	STAT4,	and	STAT6	showed	reduced	correlation	
values	with	NFKB1	compared	 to	canonical	 JAK2	target	
STATs	(Fig.	3h;	Extended	Data	Fig.	5e),	suggesting	that	
JAK2-mediated	 activation	 underlies	 the	 increased	
activity	 of	 the	 NF-kB-associated	 transcription	 factors.	
Indeed,	 although	 both	 wildtype	 and	 JAK2V617F	 mutant	
HSPCs	show	a	positive	correlation	between	STAT1	and	
NFKB1	motif	accessibility,	mutant	cells	display	a	higher	
correlation	coefficient	(Fig.	3i,	left	panel;	P	=	7.1	x	10-4;	
Spearman	 correlation),	 while	 no	 differences	 were	
observed	in	the	correlation	between	STAT4	and	NFKB1	
(Fig.	3i,	 right	panel;	P	 =	0.21;	 Spearman	correlation).	
Thus,	activation	of	STAT1,	STAT3,	STAT5A	and	STAT5B	
downstream	 of	 JAK2V617F	 might	 drive	 the	 observed		
NF-kB	signal.	

To	 validate	 the	 inflammatory	 and	
myeloid/erythroid	 signatures	 observed	 in	 mutant	
HSPCs,	we	leveraged	bulk	RNA-seq	data	of	Lin-,	Sca-1+,		
c-Kit+	(LSK)	progenitor	cells	from	a	novel	Dre-rox,	Cre-
lox	dual	recombinase	Jak2V617F	mouse	model	that	allows	
for	 sequential	 knock-in	 followed	 by	 knock-out	 of	 the	
mutated	allele110	 (Jak2Rox/Lox/Jak2RL;	Fig.	3j).	Consistent	
with	 our	 findings	 in	 human	 patient	 samples	 showing	
erythroid	priming	and	a	cell-intrinsic	pro-inflammatory	
signals,	 gene	 set	 enrichment	 analysis	 revealed	 an	
enrichment	 of	 the	 heme	 metabolism	 gene	 set	 which	
includes	key	erythroid	transcription	factors	(FDR	=	2.5	x	
10-4;	NES	=	-1.87),	and	the	tumor	necrosis	factor	(TNF)	
signaling	 via	 NF-kB	 gene	 set	 (FDR	 =	 4.1	 x	 10-4;		
NES	=	 -1.59)	 in	 Jak2V617F	 compared	 to	 Jak2V617F-deleted	
murine	LSK	cells	 (Fig.	3k),	 supporting	 the	 causality	of	
the	 JAK2V617F	 mutation	 in	 driving	 the	 observed	
phenotypes.		

Collectively,	gene	accessibility	and	transcription	
factor	motif	accessibility	comparisons	revealed	a	subset	
of	 early	 HSPCs	 displaying	 cell-intrinsic	 pro-
inflammatory	phenotypes,	 as	well	 as	 erythroid	 lineage	

priming	 in	 JAK2V617F	 mutant	 versus	 wildtype	 human	
HSPCs.		

JAK2V617F	 results	 in	 cell	 type-specific	 epigenetic	
changes	 in	 committed	 erythroid	 and	
megakaryocytic	progenitors.	

We	next	sought	to	define	the	epigenetic	changes	
in	 the	 erythroid	 and	 megakaryocytic	 progenitors,	 the	
cell	 types	 undergoing	 significant	 clonal	 expansion	 of	
JAK2V617F-mutated	 cells	 (Fig.	 2g).	 When	 assessing	
transcription	 factor	 motif	 accessibility	 changes	 in	 the	
EP1	 cluster,	we	 found	 increased	 STAT5A	 and	 STAT5B	
transcription	 factor	 motifs	 (Fig.	 4a;	 Extended	 Data	
Table	4),	with	increased	accessibility	of	STAT1,	STAT3,	
STAT5A,	 and	 STAT5B	 motifs	 in	 the	 late	 erythroid	
progenitor	 (EP2)	 cluster	 (Extended	 Data	 Fig.	 6a;	
Extended	Data	Table	4).	These	results	highlight	the	cell	
type-specific	 degree	 of	 activation	 of	 canonical	
downstream	 targets	 of	 JAK2,	 varying	 between	 HSPCs	
and	between	early	and	late	EPs,	which	might	drive	the	
increased	fitness	of	mutated	erythroid	progenitors111,112.	
In	 addition,	 we	 observed	 increased	 accessibility	 of	
multiple	myeloid/erythroid	transcription	factor	binding	
motifs	 (TCF480,	 ID387,	 MESP181,	 TFCP296,	 POU2F1113,	
THRB114,	THRA115,	ZEB192,	LMO288–91,	and	DDIT3116;	Fig.	
4a),	consistent	with	our	previous	observations	in	early	
HSPCs,	 pointing	 to	 a	 JAK2V617F	 effect	 that	 remains	
consistent	across	erythroid	differentiation.	 In	contrast,	
PU.1	 (SPI1),	 a	 critical	 regulator	 of	 cell	 fate	 decisions	
between	 myeloid	 and	 lymphoid	 lineages117,	 exhibited	
decreased	 motif	 accessibility	 in	 mutant	 cells.	 Recent	
work	 has	 shown	 that	 downregulation	 of	 PU.1	 induces	
gene	 expression	 changes	 that	 promote	myeloid-biased	
stem	 cells	 and	 erythroid	 differentiation118,119.	 Thus,	
increased	erythroid-associated	and	STAT	 transcription	
factor	activity	may	result	in	increased	fitness	underlying	
the	expansion	of	mutated	erythroid	progenitors.	

Of	note,	BCL11A	was	one	of	the	top	transcription	factors	
noted	to	have	decreased	motif	accessibility	 in	mutated	
erythroid	 progenitors	 (FDR	 =	 0.0032,		
Dz-score	 =	 -2.84;	 Fig.	 4a).	 BCL11A	 is	 required	 for	
repression	 of	 the	 g-globin	 gene	 (HBG1)120,	 and	 loss	 of	
BCL11A	 is	 sufficient	 for	 increased	 expression	 of	
HBG1121,122,	a	component	of	fetal	hemoglobin	(HbF).	To	
further	explore	the	changes	in	the	regulatory	elements	
controlling	 the	 hemoglobin	 locus,	 scATAC-seq	 data	 is	
particularly	 well	 suited	 for	 defining	 pairs	 of	 co-
accessible	 regions	 within	 the	 same	 single	 cell,	 which	
reflect	coordinated	activation	of	regulatory	elements123.	
By	 utilizing	 single-cell	 genotyping	 with	 GoT-ChA,	 we	
performed	 co-accessibility	 analysis	 of	 the	 hemoglobin	
locus	 region	 in	 either	 wildtype	 or	 JAK2V617F	 mutant	
erythroid	progenitors.	We	found	that	an	enhancer	region	
(ENCODE	accession	EH38E1516933)	upstream	of	HBG1		
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Fig.	4	|	GoT-ChA	reveals	JAK2V617F-driven	epigenetic	dysregulation	of	hemoglobin	locus	in	EPs	and	increased	JUN/FOS	
signaling	in	MkPs.	a,	Differential	transcription	factor	motif	accessibility	between	wildtype	(n	=	121)	and	mutant	(n	=	703)	cells	
within	the	EP1	cluster	of	untreated	MF	patient	samples	(n	=	4).	Horizontal	dotted	line	represents	FDR	=	0.05;	vertical	dotted	
lines	 represent	absolute	Dz-score	>	0.25;	 transcription	 factors	 involved	 in	erythroid	differentiation	are	highlighted	 in	pink.	
Linear	 mixture	 model	 (LMM)	 followed	 by	 likelihood	 ratio	 test	 and	 Benjamini-Hochberg	 correction.	 b,	 Examples	 of		
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showed	 increased	 co-accessibility	 in	 JAK2V617F	 mutant	
erythroid	progenitors	when	compared	to	their	wildtype	
counterparts	 (Fig.	 4b,	 red	highlighted	 region),	while	
another	enhancer	region	located	within	the	locus	control	
region124	 controlling	 the	 b-globin	 expression	 showed	
consistent	co-accessibility	across	wildtype	and	JAK2V617F	
mutant	cells	(Fig.	4b,	grey	highlighted	region).	These	
data	 provide	 further	 insight	 into	 reports	 that	 have	
shown	 an	 increase	 in	 HbF	 in	 MPN	 patients125–127.	 By	
leveraging	GoT-ChA	and	comparing	genotyped	cells,	we	
observed	 a	 consistent	 increase	 in	 the	 accessibility	 of	
HBG1	 (Fig.	 4c)	 proportional	 to	 the	 JAK2V617F	 allelic	
burden,	 while	 no	 apparent	 changes	 were	 observed	 in	
accessibility	of	the	b-globin	gene	(HBB;	Fig.	4c).	Indeed,	
we	 observed	 an	 increase	 in	 the	 proportion	 of	 mutant	
cells	in	the	EP1	cluster	showing	accessibility	of	the	HBG1	
gene	 (Fig.	 4d,	 upper	 panel;	 Fisher	 exact	 test),	 while	
HBG1	gene	accessibility	increased	proportionally	to	the	
mutated	 allele	 burden	 (Fig.	 4d,	 bottom	 panel;	 LMM	
followed	 by	 likelihood	 ratio	 test).	 By	 leveraging	
longitudinal	sampling	of	Pt-01	(PV	®	MF),	we	observed	
that	 decreased	 BCL11A	 motif	 accessibility	 as	 well	 as	
increased	HBG1	gene	accessibility	are	already	present	at	
the	 PV	 stage	 (Fig.	 4e;	 Wilcoxon	 rank	 sum	 test)	 and	
remain	 upon	 progression	 to	MF.	While	 increased	 HbF	
levels	 often	 result	 from	 defective	 erythropoiesis,	 our	
data	 reveals	 that	 cell-intrinsic	 regulatory	 changes	 in	
JAK2V617F	 mutant	 erythroid	 progenitors	 may	 also	
promote	HbF	and	precede	the	onset	of	marrow	fibrosis.	
In	 further	 support	 of	 a	 cell-intrinsic	mechanism,	 these	
changes	 were	 reverted	 by	 ruxolitinib	 treatment	
(Extended	Data	Fig.	6b-d),	indicating	the	requirement	
of	 constitutive	 JAK2V617F	 activity	 for	 the	 increased	
accessibility	 of	 HBG1	 and	 decreased	 accessibility	 of	
BCL11A	binding	motifs.		

	 A	 key	 clinical	 feature	 of	 myelofibrosis	 is	 a	
dramatic	increase	in	megakaryocytes,	which	are	thought	
to	be	one	of	the	main	cellular	drivers	of	marrow	fibrosis	
via	 pro-fibrotic	 cytokine	 and	 growth	 factor	
signaling109,128–130.	Differential	transcription	factor	motif	
accessibility	 in	MkPs	 revealed	 an	 increased	 activity	 of	
JUN	 and	 FOS	 family	 proteins	 (Fig.	 4f;	 Extended	Data	
Table	 4),	 which	 have	 recently	 been	 implicated	 in	
inflammation74	and	as	important	mediators	of	fibrosis	in	
various	 conditions,	 including	 myelofibrosis43,44.	 In	
contrast,	 differential	 transcription	 factor	 motif	
accessibility	 signals	 were	 reverted	 by	 ruxolitinib	
treatment	 (Extended	 Data	 Fig.	 6e;	 Extended	 Data	
Table	4),	consistent	with	mutated	versus	wildtype	motif	
footprinting	 analysis	 for	 JUN	 (Fig.	4g).	To	validate	 the	
dependency	of	JUN/FOS	activation	on	JAK2V617F,	we	again	
interrogated	 the	 reversible	 Jak2RL	 mouse	 model110		
(Fig.	 4h).	 Consistent	 with	 our	 findings	 in	 human	
myelofibrosis,	 differential	 bulk	 RNA-seq	 analysis	 of	
sorted	 megakaryocytic-erythroid	 progenitors	 (MEPs)	
showed	depletion	of	an	erythroid	gene	set	as	well	as	JUN	
targets	 upon	 reversal	 of	 the	 Jak2V617F	 allele	 (Fig.	 4i),	
demonstrating	 that	 Jak2V617F	 is	 required	 for	 increased	
JUN	 activity	 in	 MEPs.	 Taken	 together,	 these	 data	
demonstrate	 cell	 type-specific	 and	 cell-intrinsic	
alterations	 in	 the	 epigenetic	 landscape	 leading	 to	
aberrant	 erythropoiesis	 and	 increased	 pro-fibrotic	
JUN/FOS	activation	in	megakaryocyte	progenitors	in	MF.		

GoT-ChA	 with	 select	 antigen	 profiling	 allows	
mitochondrial-based	 genotyping	 imputation	 and	
protein	measurement	integration.	

To	 expand	 the	 reach	 of	 GoT-ChA	 for	 multi-
modality	 single-cell	 sequencing,	 we	 integrated	 it	 with	
ASAP-seq38,	 a	 method	 that	 assays	 genome-wide	

co-accessibility	measurements	 (correlation	>	0.1	and	FDR	<	0.05;	Wilcoxon	rank	sum	test	 followed	by	Benjamini-Hochberg	
correction)	of	regulatory	elements	surrounding	the	HBG1	locus	for	wildtype	(n	=	121	cells;	blue)	and	mutant	(n	=	703	cells;	red)	
cells	in	the	EP1	cluster.	Peaks	(light	blue),	the	hemoglobin	locus	control	region	(LCR,	purple),	and	transcription	factor	motifs	for	
BCL11A	(red)	and	LYL1	(yellow)	are	indicated.	Co-accessibility	measurements	centered	in	two	peaks	of	interest	are	indicated	
via	shaded	dotted	lines	for	an	enhancer	controlling	HBG1	expression	(shaded	in	red)	on	top,	and	a	comparison	peak	within	the	
LCR	 (shaded	 in	 blue).	 Gene	 location	 and	 shaded	 regions	 indicating	 location	 of	 highlighted	 peaks	 are	 shown	 at	 bottom.	 c,	
Chromatin	accessibility	coverage	tracks	comparing	accessibility	between	homozygous	wildtype	(blue),	heterozygous	(yellow),	
and	homozygous	mutant	(red)	cells	within	the	EP1	cluster	for	the	HBG1	and	HBB	genes.	d,	Quantification	of	the	proportion	of	
cells	showing	accessibility	of	the	HBG1	gene	(upper	panel;	Fisher	exact	test)	or	the	imputed	gene	accessibility	value	for	either	
homozygous	wildtype,	heterozygous	or	homozygous	mutant	 cells	 (bottom	panel;	LMM	 followed	by	 likelihood	ratio	 test).	e,	
BCL11A	motif	accessibility	and	HBG1	gene	accessibility	scores	for	longitudinal	sample	(Pt-01)	from	a	patient	progressing	from	
polycythemia	vera	(PV)	to	myelofibrosis	(MF).	Wilcoxon	rank	sum	test.	f,	Differential	transcription	factor	motif	accessibility	
between	wildtype	(n	=	95	cells)	and	mutant	(n	=	542	cells)	within	the	MkP	cluster	of	untreated	MF	patients	(n	=	4).	A	subset	of	
TFs	that	exhibited	enrichment	in	mutant	cells	are	highlighted	by	pathway	involvement:	JUN/FOS	signaling	in	blue,	TGF-b	 in	
purple.	Horizontal	dotted	line	represents	FDR	=	0.05;	vertical	dotted	lines	represent	absolute	Dz-score	>	0.25.	LMM	followed	by	
likelihood	 ratio	 test	 and	 Benjamini-Hochberg	 correction.	 g,	 Transcription	 factor	 footprinting	 for	 JUN	 and	 FOS	 comparing	
wildtype	 (blue)	 and	mutant	 (red)	 in	 untreated	 (n	 =	 4;	 top)	 and	 treated	 (n	 =	 3;	 bottom)	MF	 patient	 samples.	h,	 Schematic	
representation	of	a	Jak2RL	mouse	experiment110	in	which	bulk	RNA-seq	was	performed	on	sorted	MEP	cells	from	Jak2V617F	and	
Jak2V617F-deleted	mice.	i,	Gene	set	enrichment	analysis	illustrating	a	depletion	of	JUN	targets	and	heme	metabolism	pathway	
(Hallmark	M5945)	in	Jak2V617F-deleted	compared	to	JAK2V617F	mouse	MEPs	(NES	=	normalized	enrichment	score).	
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chromatin	 accessibility	 simultaneously	 with	 targeted	
protein	 expression	 utilizing	 fixed	 whole	 cells	 (rather	
than	 nuclei	 in	 standard	 scATAC-seq).	 We	 applied	 the	
combined	 method	 to	 two	 MF	 patient	 samples,	 Pt-02	
(untreated)	and	Pt-06	(ruxolitinib	treated).	Genotyping	
of	 the	 JAK2V617	 locus	 was	 available	 for	 2,663	 out	 of	
11,457	(23.2%)	and	for	489	out	of	2,928	(16.7%)	cells	
for	Pt-02	 and	Pt-06,	 respectively	 (Extended	Data	Fig.	
7a),	 while	 retaining	 chromatin	 accessibility	 quality	
(Extended	 Data	 Fig.	 7b-c).	 We	 note	 a	 decrease	 in	
genotyping	rate	with	GoT-ChA-ASAP	(23.2%	and	16.7%	
for	Pt-02	and	Pt-06,	respectively)	compared	to	when	the	
samples	were	profiled	with	GoT-ChA	alone	(51.8%	and	
27.8%	 for	Pt-02	 and	Pt-06,	 respectively),	 likely	due	 to	
the	fixation	conditions	required	for	ASAP-seq.	However,	
by	 assaying	 entire	 cells	 rather	 than	 isolating	 nuclei	
during	 sample	 preparation,	 ASAP-seq	 results	 in	 a	
massively	 increased	 coverage	 of	 the	 mitochondrial	
genome	 (Fig.	 5a)38.	 We	 hypothesized	 that	 JAK2V617F	
mutant	 cells	 might	 harbor	 mitochondrial	 variants,	 as	
previously	 observed31	 (Extended	 Data	 Fig.	 7d),	 that	
could	 be	 utilized	 for	 imputation	 of	 genotypes	 in	 cells	
where	the	JAK2	 locus	was	not	captured	directly.	Of	the	
two	 GoT-ChA-ASAP	 samples,	 only	 Pt-02	 showed	 two	
mitochondrial	variants	(12,786	A>G	and	3,834	G>A)	at	
high	 heteroplasmy	 in	 JAK2V617F	 cells	 (average	
heteroplasmy	of	77.7%	and	18.1%,	respectively),	while	
exhibiting	low	heteroplasmy	in	wildtype	cells	(average	
heteroplasmy	 of	 7.85%	 and	 1.47%,	 respectively;	 Fig.	
5b).	While	 both	mitochondrial	 variants	were	 in	 phase	
with	 the	 JAK2V617F	 mutation,	 they	 were	 mutually	
exclusive,	suggesting	that	they	were	acquired	early	after	
the	JAK2V617F	mutation.	

To	leverage	the	clonal	phasing	of	mitochondrial	
variants	 and	 JAK2V617F,	 we	 developed	 a	 random	 forest	
classifier	 to	 impute	 missing	 JAK2	 genotypes	 based	 on	
heteroplasmy	 levels.	 We	 trained	 the	 classifier	 on	 a	
random	 sampling	 of	 90%	 of	 Pt-02	 genotyped	 cells	
(training	 set)	 and	 assessed	 performance	 with	 the	
remaining	10%	of	genotyped	cells	(test	set),	resulting	in	
a	 genotyping	 accuracy	 of	 94.7%	 (Fig.	 5c).	
Implementation	of	the	classifier	on	non-genotyped	cells	
resulted	 in	 a	 striking	 increase	 in	 genotyped	 cells	 from	
23.2%	to	92.53%	of	cells	(Fig.	5d;	Extended	Data	Fig.	
7e).	 Thus,	 while	 standalone	 GoT-ChA	 already	
demonstrated	a	significant	improvement	for	genotyping	
loci	 that	 were	 previously	 challenging	 due	 to	 low	
expression	 and	 mutation	 location,	 the	 additional	
implementation	 of	 an	 imputation	 classifier	 built	 on	
phased	 mitochondrial	 variants	 yielded	 the	 ability	 to	
accurately	genotype	nearly	all	cells	within	the	sample.	

Cell	 clustering	 of	 the	 Pt-02	 sample	 based	 on	
chromatin	accessibility	alone,	and	therefore	agnostic	to	

genotyping,	protein,	 or	mitochondrial	data,	 resulted	 in	
the	 expected	 cell	 clusters	 (Fig.	 5e)	 identified	 via	
accessibility	of	canonical	marker	genes	(Extended	Data	
Fig.	7f-g).	Importantly,	while	mutant	and	wildtype	cells	
intermingled	in	most	progenitor	subtypes,	HSPC	clusters	
1	and	2	were	predominantly	enriched	by	wildtype	and	
mutant	 cells,	 respectively,	 suggesting	 a	 discrete	
enrichment	 of	 later	 HSPCs	 (HSPC2)	 with		
JAK2V617F-mutated	cells	in	this	sample	(Fig.	5f).	

We	 further	 leveraged	 GoT-ChA-ASAP	 for	
simultaneous	 measurement	 of	 protein	 expression,	
applying	 a	 panel	 of	 21	 cell	 surface	protein	markers	 to	
orthogonally	 validate	 cluster	 assignments	 (see	
materials	 and	 methods).	 Progenitor	 clusters	 HSPC1,	
HSPC2,	and	MPP	showed	increased	CD34	and	decreased	
CD38	staining,	while	MkPs	showed	increased	CD41	and	
CD36,	EPs	showed	high	CD71,	lymphoid	clusters	showed	
high	CD99	staining,	and	T-cells	showed	high	CD7	levels	
(Fig.	 5g).	 Differential	 protein	 expression	 comparisons	
showed	that	mutant	HSPCs	exhibited	higher	expression	
of	CD90	than	their	wildtype	counterparts	(Fig.	5h;	Dz-
score	 >	 1	 and	 FWER	 <	 0.05;	 Wilcoxon	 rank	 sum	 test	
followed	 by	 Bonferroni	 correction),	 while	 Pt-06,	
undergoing	ruxolitinib	treatment	at	the	time	of	sample	
collection,	 showed	 no	 significant	 changes	 in	 CD90	
protein	 expression	 levels	 between	 wildtype	 and	
JAK2V617F	 cells	within	HSPCs	 (Extended	Data	Fig.	 7h).	
Indeed,	 Pt-02	 CD34high,	 CD90high	 HSPC	 cells	 were	
comprised	of	93.1%	mutant	cells	compared	to	50.4%	of	
CD34high,	 CD90low	 cells	 (Fig.	 5i).	 Concordantly,	 Pt-02	
mutant	HSPCs	exhibited	an	increase	in	gene	accessibility	
of	the	CD90	gene	(THY1;	FDR	=	1.1	x	10-3),	as	well	as	in	
accessibility	of	a	proximal	upstream	regulatory	element	
(FDR	 =	 4.7	 x	 10-3)	 relative	 to	 wildtype	 cells	 (Fig.	 5j).	
Importantly,	we	observed	increased	accessibility	of	the	
CD90	gene	in	HSPCs	in	the	other	untreated	MF	samples	
in	this	cohort	(Fig.	5k,	upper	panel;	P	=	5.3	x	10-5;	LMM	
followed	 by	 likelihood	 ratio	 test,	 HSPC1	 and	 HSPC2	
combined;	 see	 Extended	 Data	 Fig.	 7i	 for	 per	 patient	
analysis)	while	ruxolitinib	treatment	reverted	this	effect	
(Fig.	 5k,	 bottom	 panel;	 P	 =	 0.98;	 LMM	 followed	 by	
likelihood	ratio	test,	HSPC1	and	HSPC2	combined).	CD90	
is	a	cell	surface	marker	expressed	in	a	subset	of	primitive	
HSPCs131.	 Indeed,	 expansion	 of	 the	 CD90high	 HSPC	 cell	
population	 has	 been	 reported	 in	 PV23.	 Furthermore,	
Rodriguez-Meira	 and	 colleagues	 also	 noted	 aberrant	
expression	of	CD90	in	homozygous	JAK2V617F	MPN	HSPCs	
using	 TARGET-seq25.	 However,	 due	 to	 the	 lower	
throughput	 of	 plate-based	 methods,	 this	 observation	
was	 supported	 by	 only	 five	 cells,	 demonstrating	 the	
advantage	 of	 high-throughput	 single-cell	 multi-omics	
integration.		
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Fig.	5	|	GoT-ChA	integration	with	ASAP-seq	enables	mitochondrially	informed	genotype	imputation	and	surface	protein	
measurements	in	primary	human	samples.	a,	Depiction	of	the	overall	mitochondrial	genome	coverage	from	sample	Pt-02	
processed	with	GoT-ChA-ASAP	compared	to	the	same	sample	with	the	standard	GoT-ChA	protocol.	The	average	number	of	reads	
per	cell	covering	each	region	is	shown.	b,	Heatmap	of	heteroplasmy	of	mitochondrial	variants	per	cell	for	patient	sample	Pt-02,	
illustrating	 the	presence	of	 two	variants	 (12,786	A>G	and	3,834	G>A)	 that	 segregate	 in	phase	with	GoT-ChA	genotyping.	c,	
Schematic	representation	detailing	the	process	of	genotype	imputation	using	a	random	forest	classifier.	GoT-ChA	genotyped	
cells	were	separated	into	a	training	set	(90%	of	cells,	downsampled	for	even	numbers	of	mutant	and	wildtype	cells)	and	a	test	
set	(10%	of	cells).	The	classifier	resulted	in	an	imputed	genotyping	accuracy	of	94.7%	on	the	test	set	and,	when	applied	to	non-
genotyped	cells	in	the	same	sample,	increased	the	effective	rate	of	genotyping	in	the	sample	from	23.2%	to	92.5%.	d,	Percent	of	
JAK2V617	 genotyped	 cells	 across	 multiple	 studies	 and	 protocols	 utilizing	 high-throughput	 droplet-based	 technologies.	 Bars	
represent	 the	mean;	 each	 dot	 represents	 a	 sample	 and	 error	 bars	 represent	 the	 standard	 deviation.	 e,	 Uniform	manifold	
approximation	and	projection	(UMAP)	of	cells	from	sample	Pt-02	processed	with	GoT-ChA-ASAP,	illustrating	the	expected	stem	
cell	and	committed	progenitor	populations	in	early	hematopoiesis	(n	=	11,457	cells).	HSPC	=	hematopoietic	stem	and	progenitor	
cells;	 MPP	 =	 multi-potent	 progenitors;	 GMP	 =	 granulocyte	 monocyte	 progenitors;	 MEP	 =	 megakaryocyte-erythrocyte	
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Overall,	these	results	demonstrate	the	capability	
of	 GoT-ChA	 to	 deliver	 a	 highly	multi-modal	 single-cell	
platform	to	link	mutated	genotypes	with	mitochondrial	
variants	 and	 cell	 surface	 proteins,	 together	 with	
chromatin	 accessibility,	 enabling	 discovery	 of	 clonal	
changes	across	multiple	layers	of	information	in	a	single,	
high-throughput,	unified	assay.		

DISCUSSION	

A	critical	challenge	in	studying	the	phenotypes	of	
clonal	 expansions,	 in	 both	 healthy	 tissues	 and	 overt	
malignancies,	is	that	primary	human	samples	are	often	
composed	of	an	admixture	of	wildtype	and	mutant	cells.	
Thus,	precision	mapping	of	genotypes	to	phenotypes	is	
obscured.	Additionally,	 bulk	population	measurements	
likely	 aggregate	 heterogeneous	 groups	 of	 cells,	
hindering	 the	 identification	 of	 cell	 type-	 or	 cell	 state-
specific	phenotypes	arising	from	the	presence	of	somatic	
mutations.	 To	 circumvent	 these	 limitations,	 single	 cell	
simultaneous	 capture	 of	 genotypes	 together	 with	
phenotypic	 information	 is	 required,	 enabling	 intra-
sample,	 cell	 type-specific	 mutant	 to	 wildtype	
comparisons.	Application	of	such	single	cell	multi-omic	
approaches	 have	 shown	 that	 somatic	 mutations	 in	
human	 tissues	 exert	 a	 differing	 phenotypic	 effect	 as	 a	
function	of	cell	state5,6,24,25,28–33.		

While	 droplet-based	 single	 cell	 technologies	
allow	 high-throughput	 linkage	 of	 cDNA-captured	
mutated	 genotypes	 with	 phenotypes29,31,	 similar	 high-
throughput	methods	for	linking	somatic	genotypes	with	
epigenetic	 profiles	 were	 lacking.	 Furthermore,	 cDNA-
based	capture	results	in	limiting	dependencies	on	target	
gene	 expression	 and	 the	 distance	 of	 the	 locus	 from	
transcript	end.	For	example,	these	dependencies	 led	to	
inefficient	capture	of	the	lowly	expressed	JAK2V617F	locus	
(<10%	of	 cells29,31),	 requiring	 gDNA	 capture	 via	 lower	
throughput	 plate-based	 single	 cell	 sequencing25,33,132.	
The	 dependency	 on	 gene	 expression	 also	 limits	 the	
application	to	archival	frozen	tissues,	as	nuclei	isolation	
further	 decreases	 the	 number	 of	 available	 mRNA	

molecules	for	genotyping.	Collectively,	these	limitations	
restrict	 the	 ability	 to	 profile	 key	 lowly	 expressed	
mutations,	 as	 well	 as	 mutations	 leading	 to	 nonsense-
mediated	mRNA	decay	or	affecting	non-coding	regions.		

GoT-ChA	addresses	this	challenge	by	delivering	
droplet-based,	broadly	available,	high-throughput	 joint	
capture	 of	 genotypes	 and	 chromatin	 accessibility.	 We	
further	 show	 that	 GoT-ChA	 can	 be	 readily	 integrated	
with	protein	and	mitochondrial	DNA	capture,	enabling	
robust	 linkage	 of	 somatic	 genotypes	 to	 a	 variety	 of	
signals	at	single	cell	resolution.	As	GoT-ChA	is	based	on	
gDNA	 rather	 than	 cDNA	 capture,	 it	 also	 obviates	 the	
limiting	dependencies	on	mutated	locus	expression	and	
location.	 Thus,	 GoT-ChA	 enables	 the	 interrogation	 of	
somatic	mutations	throughout	the	genome,	and	radically	
expands	the	range	of	human	biological	phenomena	that	
can	 be	 investigated	 for	 epigenetic	 deregulation	 due	 to	
somatic	mutations.	Importantly,	the	ability	to	apply	GoT-
ChA	 to	 nuclei	 opens	 the	 possibility	 for	 application	 to	
archived	 frozen	solid	 tissues	or	 tumors,	critical	 for	 the	
exciting	 emerging	 field	 of	 clonal	 mosaicism	 across	
human	tissues133–142.		

To	leverage	the	unique	ability	to	chart	the	impact	
of	 somatic	 mutation	 on	 epigenetic	 differentiation	
landscapes,	 we	 focused	 on	 JAK2V617F-driven	 clonal	
expansions	in	primary	human	samples	from	PV	and	MF	
patients.	 These	 data	 revealed	 that	 the	 epigenetic	
consequences	 of	 the	 JAK2V617F	mutation	 are	 highly	 cell	
state	dependent.	Indeed,	the	frequency	of	mutated	cells	
expanded	 at	 the	 stage	 of	 committed	 erythroid	 and	
megakaryocytic	 progenitors,	 consistent	 with	 clinical	
phenotypes39,	 and	 demonstrates	 that	 the	 clonal	
representation	of	this	mutation	varies	by	differentiation	
stage	and	fate.	Notably,	 the	ability	to	profile	single-cell	
chromatin	 landscapes	 allowed	 to	 examine	 patterns	 of	
HSPC	 priming	 and	 demonstrated	 that	 increases	 in	 the	
frequencies	 of	 mutated	 committed	 progenitors	 were	
heralded	 by	 increased	 accessibility	 of	 erythroid	
transcription	 factor	 motifs	 already	 in	 mutated	 HSPCs,	

progenitors;	 EP	 =	 erythroid	 progenitors;	 MkP	 =	 megakaryocytic	 progenitors;	 LMPP	 =	 lymphoid-myeloid	 pluripotent	
progenitors;	Pre-B	=	precursor	B	cells;	NK	=	natural	killer	cells;	BP	=	basophil	progenitors.	f,	UMAP	as	seen	in	e,	colored	by	GoT-
ChA	genotyping	of	the	JAK2V617	locus	after	mitochondrial-based	imputation:	wildtype	(WT;	n	=	3,482	cells;	blue),	mutant	(MUT;	
n	=	6,697	cells;	red),	and	not	assignable	(NA;	n	=	872	cells;	grey).	g,	UMAP	as	seen	in	e,	colored	by	protein	expression	of	cell	
surface	 markers,	 illustrating	 successful	 measurement	 of	 protein	 expression	 with	 GoT-ChA-ASAP.	 h,	 Differential	 protein	
expression	 between	 wildtype	 and	 mutant	 cells	 within	 HSPC1	 and	 HSPC2	 clusters.	 Wilcoxon	 rank	 sum	 test	 followed	 by	
Bonferroni	correction.	Black	dots	represent	differentially	expressed	(family	wise	error	rate	[FWER]	<	0.05	and	absolute	Dz-
score	>	1)	 cell	 surface	proteins.	 i,	 Scatter	plot	 comparing	protein	 expression	of	 CD34	and	CD90.	 Inset	 pie	 charts	 show	 the	
enrichment	of	JAK2V617F	mutant	cells	in	each	CD34+	quadrant.	j,	Chromatin	accessibility	coverage	track	of	the	CD90	gene	(THY1)	
and	a	proximal	upstream	regulatory	element	is	shown	for	either	wildtype	(blue)	and	mutant	cells	(red)	from	the	HSPC1	and	
HSPC2	 clusters.	 Wilcoxon	 rank	 sum	 test	 followed	 by	 Benjamini-Hochberg	 correction.	 k,	 CD90	 (THY1	 gene)	 chromatin	
accessibility	scores	of	HSPCs	(HSPC1	and	HSPC2	clusters)	for	untreated	MF	samples	(upper	panel;	P	=	5.3	x	10-5;	linear	mixture	
model	(LMM)	modeling	patient	identity	as	random	effects,	followed	by	likelihood	ratio	test)	excluding	Pt-01	(PV)	and	sample	
Pt-02,	or	ruxolitinib-treated	samples	(P	=	0.98;	LMM	modeling	patient	identity	as	random	effects,	followed	by	likelihood	ratio	
test).	
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consistent	 with	 aberrant	 lineage	 priming	 in	 MPN	
initiating	cells.		

JAK2V617F	myeloproliferation	is	characterized	by	
the	 presence	 of	 an	 inflammatory	 microenvironment,	
driving	 bone	 marrow	 fibrosis	 and	 extramedullary	
hematopoiesis7,20,21.	 Previous	 work	 has	 linked	 JAK2-
mediated	 activation	of	 STAT1	and	 STAT3	 to	 increased	
NF-kB	 signaling	 in	mouse	models26,72,	 and	 highlighted	
cell-extrinsic	effects	of	the	microenvironment.	Here,	we	
show	 that	 the	 JAK2V617F	 mutant	 HSPCs	 also	 display	
epigenetic	profiles	that	are	consistent	with	cell-intrinsic	
pro-inflammatory	 phenotypes,	 with	 increased	 motif	
accessibility	 of	 NF-kB-,	 AP-1-,	 and	 TGF-b-associated	
transcription	 factors	 in	 mutant	 cells.	 The	 observation	
that	pro-inflammatory	phenotypes	are,	at	least	to	some	
degree,	 linked	 directly	 to	 JAK2V617F	 in	 a	 cell-intrinsic	
fashion	 opens	 an	 avenue	 for	 potential	 combined	
therapeutic	 strategies	 for	 mutant-specific	 targeting,	
aimed	at	both	JAK2V617F	constitutive	activation	as	well	as	
pro-inflammatory	signaling	in	mutant	HSPCs.	In	another	
striking	 demonstration	 of	 cell-type	 specificity	 in	
mutational	 impact,	 JAK2V617F	 megakaryocytic	
progenitors,	 which	 produce	 mature	 megakaryocytes	
thought	to	drive	characteristic	marrow	fibrosis	through	
pro-fibrotic	 cytokine	 signaling109,128–130,	 showed	 a	 pro-
inflammatory	 landscape	specific	 for	AP-1	transcription	
factor	activity,	which	has	been	 linked	with	 the	 fibrotic	
clinical	 phenotype	 of	 MF.	 In	 contrast,	 early	 HSPCs	
(HSPC1)	 showed	 broad,	 pro-inflammatory	 signature	
characterized	 not	 only	 by	 increased	 AP-1-,	 but	 also		
NF-kB-	and	TGF-b-associated	transcription	factor	motif	
accessibility.	 The	 study	 of	 paired	 samples	 from	 a	 PV	
patient	who	progressed	to	MF	showed	that	many	of	the	
changes	 described	 above,	 including	 increased	 pro-
inflammatory	 NF-kB	 and	 AP-1	 motif	 accessibility	 in	
HSPCs	and	aberrant	 regulation	of	 the	g-globin	 locus	 in	
EPs,	are	already	evident	long	before	significant	marrow	
fibrosis	 occurs,	 providing	 human	 data	 support	 to	 the	
causal	role	of	 JUN/FOS	in	inducing	fibrosis.	These	data	
suggest	 that	 JAK2V617F-mediated	 inflammation	 and	
fibrosis	results	 from	a	complex	 interplay	between	cell-
extrinsic25,26,72	and	cell-intrinsic	effects	that	vary	across	
different	progenitor	populations.		

Interestingly,	we	observed	a	near	complete	loss	
of	differential	accessibility	signals	between	mutant	and	
wildtype	 cells	 within	 patients	 treated	 with	 ruxolitinib	
therapy,	 including	 reversion	 of	 intrinsic	 pro-
inflammatory	 phenotypes	 and	 differentiation	 biases.	
However,	 ruxolitinib	 treatment	 does	 not	 eliminate	
JAK2V617F	 mutant	 HSPCs.	 This	 is	 in	 line	 with	 the	
observation	that	while	ruxolitinib	reduces	splenomegaly	
and	disease	symptoms	resulting	in	overall	improvement	
in	 quality	 of	 life39,143,	 it	 fails	 to	 prevent	 disease	

progression	 or	 eliminate	 the	 mutated	 clones	 in		
MPNs40–42.	Thus,	while	ruxolitinib	treatment	appears	to	
abrogate	 JAK2V617F-mediated	 shifts	 in	 the	 epigenetic	
landscape	 of	 HSPCs,	 mutated	 cells	 may	 continue	 to	
promote	disease	progression	 through	clonal	evolution,	
even	 in	 the	 context	 of	 JAK	 inhibition144–147.	 Thus,	
improved	 JAK2	 inhibition	 for	 elimination	 of	 mutated	
cells	 may	 be	 critical	 for	 the	 prevention	 of	 disease	
progression110.	

We	 note	 key	 limitations	 to	 the	 GoT-ChA	
framework.	While	our	cell	mixing	study	directly	testing	
heterozygous	 genotyping	 demonstrated	 a	 34%	 rate	 of	
complete	allelic	capture,	incomplete	capture	of	targeted	
alleles	 during	 in-droplet	 genotyping	 reduces	 the	
capacity	 for	 classification	 of	 heterozygous	 cells.	While	
MF	 patients	 tend	 to	 have	 homozygous	 JAK2V617F	
mutations148–153,	 allelic	 dropout	 will	 result	 in	
misclassification	 of	 heterozygous	 cells	 as	 either	
homozygous	wildtype	or	mutant.	Nonetheless,	genotype	
misclassifications	 would	 dilute	 the	 strength	 of	 the	
biological	differences	between	genotypes,	and	thus	the	
differential	epigenomic	alterations	reported	here	likely	
serve	 as	 a	 lower	 bound	 to	 effect	 sizes.	 Further,	
application	of	GoT-ChA-ASAP	in	samples	with	in-phase	
mitochondrial	 variants	 may	 allow	 for	 inference	
genotyping,	decreasing	the	impact	of	allelic	dropout.	In	
addition,	although	our	multi-modal	approach	expanding	
GoT-ChA	 allows	 to	 link	 genotype	 to	 both	 epigenetic	
changes	 and	 to	 protein	 expression	 levels,	 it	 does	 not	
provide	 simultaneous	 capture	 of	 transcriptional	
information,	thus	limiting	the	assessment	of	mutational	
impact	 on	 gene	 expression.	 While	 the	 10x	 Genomics	
Multiome	platform	obtains	both	chromatin	accessibility	
and	 gene	 expression	 information,	 the	 cell	 barcoding	
reaction	 does	 not	 utilize	 in-droplet	 PCR	 and	 thus	
precludes	the	usage	of	GoT-ChA.	However,	development	
of	alternative	multiomic	technologies	that	retain	an	in-
droplet	 barcoding	 PCR,	 such	 as	 ISSAAC-seq154	 that	
utilizes	 the	 10x	 Genomics	 scATAC-seq	 platform	 as	 a	
foundation	 for	 simultaneous	 scRNA-seq,	 provides	
promising	avenues	for	linking	gene	expression	changes	
to	mutation-specific	 epigenetic	 alterations	 assayed	 via	
GoT-ChA.	 Furthermore,	 given	 that	 the	 transposase-
enabled	scATAC-seq	has	been	 leveraged	 to	expand	 the	
range	 of	 assayable	 epigenomic	 profiles	 to	 other	
modalities	such	as	histone	modifications155,156,	GoT-ChA	
has	 the	 potential	 to	 link	 genotypes	 with	 additional	
epigenetic	 features	 and	 therefore	 provide	 a	 more	
comprehensive	 understanding	 of	 the	 cellular	
phenotypes	driven	by	somatic	mutations	.	

Collectively,	we	report	a	powerful	novel	single-
cell	 multiomic	 approach	 that	 allows	 for	 the	 direct	
investigation	 of	 the	 impact	 of	 somatic	 mutations	 on	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491515
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 		
18	 	 Myers,	R.M.	&	Izzo,	F.	et	al.	(2022).	bioRxiv.	

chromatin	 accessibility	 in	 primary	 human	 patient	
samples.	 These	 data	 show	 that	 the	 JAK2V617F	 somatic	
mutation,	 central	 to	 MPN	 pathogenesis,	 leads	 to	
epigenetic	 rewiring,	 in	 a	 cell-intrinsic	 and	 cell	 type-
specific	 manner.	 These	 results,	 thus,	 demonstrate	 the	
power	 of	 joint	 single-cell	 capture	 of	 genotypes	 and	
epigenomes	 for	 a	 high-resolution	 study	 of	 clonal	
outgrowths	 in	primary	human	tissue.	We	propose	 that	
GoT-ChA	 may	 be	 of	 particular	 importance	 to	 the	
emerging	field	of	clonal	mosaicism,	now	understood	to	
be	 ubiquitous	 across	 the	 human	 body133,134,140.	 In		
non-malignant	 clonal	 mosaicism,	 previous	
investigations	have	been	 largely	 limited	to	genotyping,	
due	to	the	inability	to	separate	admixtures	of	wildtype	
and	mutant	cells	 for	genotype-phenotype	inferences	 in	
primary	human	samples.	We	envision	that	GoT-ChA	will	
thus	serve	as	a	foundation	for	broad	future	explorations	
to	 uncover	 the	 critical	 link	 between	 mutated	 somatic	
genotypes	 and	 epigenetic	 alterations	 across	 human	
clonal	 outgrowths	 in	 malignant	 and	 non-malignant	
contexts.		
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MATERIALS	AND	METHODS	

Cell	lines	

Human	 CA46	 (ATCC,	 #CRL-1648),	 HEL	 (ATCC,	 #TIB-
180),	 SET-2	 (DSMZ,	#ACC	608)	 and	CCRF-CEM	 (ATCC,	
#CRM-CCL-119)	cell	lines	were	maintained	according	to	
standard	 procedures	 in	 RPMI-1640	 (Thermo	 Fisher	
Scientific,	 #11-875-119)	 with	 10%	 (or	 20%	 for	 CA46	
and	SET-2	cells)	FBS	(Thermo	Fisher	Scientific,	#10-437-
028)	 at	 37˚C	 with	 5%	 CO2.	 Cell	 lines	 in	 culture	 were	
screened	biweekly	for	mycoplasma	contamination	using	
the	MycoAlert	PLUS	Mycoplasma	Detection	Kit	 (Lonza,	
#LT07-703).	

Patient	samples	

This	study	was	approved	by	the	local	ethics	committee	
and	by	the	Institutional	Review	Boards	of	Weill	Cornell	
Medicine,	Memorial	Sloan	Kettering	Cancer	Center,	and	
the	 Icahn	 School	 of	Medicine	 at	Mount	 Sinai,	 and	was	
conducted	 in	 accordance	 with	 the	 Declaration	 of	
Helsinki	 protocol.	 Either	 fresh	 peripheral	 blood	 or	
cryopreserved	 mononuclear	 cells	 isolated	 from	 bone	
marrow	biopsies	or	peripheral	blood	from	patients	with	
JAK2V617F	 mutations	 were	 retrieved	 after	 a	 database	
search	(Extended	Data	Table	1).	Samples	were	selected	
to	harbor	only	JAK2V617F	mutations,	as	assessed	by	MSK-
IMPACT,	 RainDance,	 or	 Neogenomics	 hematology	
panels.	Fresh	peripheral	blood	mononuclear	cells	were	
isolated	within	48	hours	of	blood	collection	utilizing	a	
Ficoll	(Thermo	Fisher	Scientific,	#45-001-750)	gradient	
according	 to	 manufacturer’s	 recommendations,	 and	
either	 processed	 immediately	 or	 cryopreserved	 for	
future	 experiments.	 Isolated	 mononuclear	 cells	 from	

peripheral	blood	or	bone	marrow	biopsies	were	thawed	
if	 cryopreserved	 and	 stained	 according	 to	 standard	
procedures,	 beginning	 with	 resuspension	 in	 staining	
buffer	 (Biolegend,	 #420201)	 and	 incubation	 with	
Human	 TruStain	 FxC	 (10	 minutes	 at	 4˚C;	 Biolegend,	
#422302)	to	block	Fc	receptor-mediated	binding.	Cells	
were	then	stained	with	a	CD34-PE-Vio770	antibody	(20	
minutes	at	4˚C;	Miltenyi	Biotec,	clone	AC136,	#130-113-
180)	and	DAPI	(Invitrogen,	#D1306).	The	samples	were	
then	sorted	for	DAPI-negative,	CD34-positive	cells	using	
a	BD	Influx	cell	sorter.	

Single	nucleus	ATAC-seq	with	GoT-ChA	

Cells	were	subjected	to	nuclei	isolation	according	to	the	
Nuclei	 Isolation	 for	 Single	 Cell	 ATAC	 Sequencing	
protocol	 (version	 CG000169	 Rev	 D,	 10x	 Genomics).	
Briefly,	cells	were	resuspended	with	lysis	buffer	(10	mM	
Tris-HCL	 (pH	 7.4),	 10	 mM	 NaCl,	 3	 mM	 MgCl2,	 0.1%	
Tween-20,	 0.1%	 Nonidet	 P40	 Substitute,	 0.01%	
Digitonin,	1%	BSA)	and	incubated	on	ice	(3	minutes	for	
patient	 samples,	 5	minutes	 for	 cell	 lines),	 followed	 by	
adding	chilled	wash	buffer	(10	mM	Tris-HCL	(pH	7.4),	10	
mM	NaCl,	 3	mM	MgCl2,	 1%	BSA,	 0.1%	Tween-20)	 and	
centrifuging	 to	pellet	 isolated	nuclei.	Nuclei	were	 then	
resuspended	in	1X	diluted	nuclei	buffer	(10x	Genomics)	
and	 counted	 using	 trypan	 blue	 and	 a	 Countess	 II	 FL	
Automated	Cell	Counter.	

Nuclei	 were	 subsequently	 processed	 according	 to	 the	
Chromium	 Next	 GEM	 Single	 Cell	 ATAC	 Solution	 user	
guide	(version	CG000209	Rev	F,	10x	Genomics)	with	the	
following	modifications:	

1. During	the	GEM	Generation	and	Barcoding	reaction	
(Step	2.1),	1	µL	of	22.5	µM	GoT-ChA	primer	mix	was	
added	 to	 the	 barcoding	 reaction	 mixture.	 The	
primers	 used	 are	 GoT-ChA_R1N	 (locus-specific	
primer	 with	 a	 Read	 1N	 handle	 sequence:	
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	 -	
[22bp	 locus	 specific])	 and	 GoT-ChA_IS2	 (locus-
specific	 primer	 with	 an	 IS2	 handle	 sequence:	
AGCAAGTGAGAAGCATCGTGTC	 -	 [22bp	 locus	
specific]).	 These	 primers	 allow	 for	 exponential	
amplification	of	 the	GoT-ChA	fragments,	relative	to	
the	linear	amplification	of	ATAC	fragments.	

2. During	the	Post	GEM	Incubation	Cleanup	(Step	3.2),	
45.5	µL	of	Elution	Solution	I	is	used	to	elute	material	
from	 SPRIselect	 beads.	 5	 µL	 is	 used	 for	 GoT-ChA	
library	 construction,	 and	 the	 remaining	 40	 µL	 are	
used	 for	ATAC	 library	 construction	 as	 indicated	 in	
the	standard	protocol.	

3. To	 generate	 the	 GoT-ChA	 library,	 two	 additional	
PCRs	were	performed	on	the	5	µL	set	aside	during	
Step	3.2	(Extended	Data	Fig.	1c).	The	first	PCR	aims	
to	 amplify	 genotyping	 fragments	 prior	 to	 sample	
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indexing	 and	 uses	 P5	 (binds	 the	 P5	 Illumina	
sequencing	 handle:	
AATGATACGGCGACCACCGAGATCTACAC)	 and	 GoT-
ChA_nested	 (a	 nested,	 biotinylated,	 locus	 specific	
primer	 with	 a	 TruSeq	 Small	 RNA	 Read	 2	 handle:	
/5BiosG/CCTTGGCACCCGAGAATTCCA-[22bp	 locus	
specific])	 primers	with	 the	 following	 thermocycler	
program:	95	°C	for	3	min;	15	cycles	of	95	°C	for	20	s,	
65°C	for	30	s	and	72°C	for	20	s;	followed	by	72°C	for	
5	 min	 and	 ending	 with	 hold	 at	 4°C.	 After	 a	 1.2X	
SPRIselect	 clean	 up,	 biotinylated	 PCR	 product	 is	
bound	 and	 isolated	 using	 Dynabeads	 M-280	
Streptavidin	 magnetic	 beads	 (Thermo	 Fisher	
Scientific,	 #11206D).	 Briefly,	 beads	 are	 washed	
three	 times	 with	 1X	 sodium	 chloride-sodium	
phosphate-EDTA	buffer	 (SSPE,	VWR,	#VWRV0810-
4L),	 added	 to	 the	 purified	 PCR	 product,	 and	
incubated	at	room	temperature	for	15	minutes.	The	
beads	 are	 then	washed	 twice	with	 1X	 SSPE	 buffer	
and	 once	 with	 10	 mM	 Tris-HCl	 (pH	 8.0)	 before	
resuspending	 in	water.	 The	bead-bound	 fragments	
are	then	amplified	and	sample	indexed	using	P5	and	
RPI-X	 (binds	 the	TruSeq	Small	RNA	Read	2	handle	
and	adds	a	sample	index	and	P7	Illumina	sequencing	
handle:	
CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGAC
TGGAGTTCCTTGGCACCCGAGAATTCCA,	 “X”	denotes	
user-defined	 sample	 index)	 primers	 with	 the	
following	thermocycler	program:	95	°C	for	3	min;	6-
10	cycles	of	95	°C	for	20	s,	65°C	for	30	s	and	72°C	for	
20	 s;	 followed	 by	 72°C	 for	 5	min	 and	 ending	with	
hold	at	4°C.	

Final	libraries	were	quantified	using	a	Qubit	dsDNA	HS	
Assay	 Kit	 (Thermo	 Fisher	 Scientific,	 #Q32854)	 and	 a	
High	Sensitivity	DNA	chip	(Agilent	Technologies,	#5067-
4626)	 run	 on	 a	 Bioanalyzer	 2100	 system	 (Agilent	
Technologies)	and	sequenced	on	a	NovaSeq	6000	at	the	
Weill	 Cornell	 Medicine	 Genomics	 Resources	 Core	
Facility	 with	 the	 following	 parameters:	 paired-end	 50	
cycles;	Read	1N	50	cycles,	i7	Index	8	cycles,	i5	Index	16	
cycles,	 Read	 2N	 50	 cycles.	 ATAC	 libraries	 were	
sequenced	to	a	depth	of	25,000	read	pairs	per	nucleus	
and	 GoT-ChA	 libraries	 were	 sequenced	 to	 5,000	 read	
pairs	per	nucleus.	

Single	cell	ASAP-seq	with	GoT-ChA	

Samples	 were	 processed	 in	 a	 similar	 fashion	 to	 that	
described	 previously	 for	 standard	 scATAC-seq,	 with	 a	
few	 key	 differences	 as	 described	 by	 the	 original	
authors38.	 Additional	 minor	 modifications	 for	
incorporation	of	GoT-ChA	into	ASAP-seq	are	as	follows:	

1. During	the	GEM	Generation	and	Barcoding	reaction	
(Step	2.1),	1	µL	of	22.5	µM	GoT-ChA	primer	mix	 is	

added	to	the	barcoding	reaction	mixture,	just	as	was	
done	for	scATAC-seq.		

2. During	the	Post	GEM	Incubation	Cleanup	(Step	3.2),	
45.5	µL	of	Elution	Solution	I	is	used	to	elute	material	
from	 SPRIselect	 beads.	 5	 µL	 is	 used	 for	 GoT-ChA	
library	 construction,	 and	 the	 remaining	 40	 µL	 are	
used	 for	ATAC	 library	 construction	 as	 indicated	 in	
the	standard	protocol.	GoT-ChA	library	construction	
proceeded	as	described	above.		

Final	libraries	were	quantified	using	a	Qubit	dsDNA	HS	
Assay	 Kit	 (Thermo	 Fisher	 Scientific,	 #Q32854)	 and	 a	
High	Sensitivity	DNA	chip	(Agilent	Technologies,	#5067-
4626)	 run	 on	 a	 Bioanalyzer	 2100	 system	 (Agilent	
Technologies)	and	sequenced	on	a	NovaSeq	6000	with	
the	following	parameters:	paired-end	50	cycles;	Read	1N	
50	cycles,	i7	Index	8	cycles,	i5	Index	16	cycles,	Read	2N	
50	cycles.	ATAC	libraries	were	sequenced	to	a	depth	of	
25,000	 read	pairs	per	 cell,	 and	both	GoT-ChA	and	any	
protein	tag	libraries	were	sequenced	to	5,000	read	pairs	
per	cell.	

Protein	 expression	 measurements	 were	 performed	
using	TotalSeq-A	reagents	from	Biolegend	according	to	
manufacturer’s	 recommendations.	 The	 following	
surface	markers	were	assayed:	CD34	(#343537),	CD38	
(#356635),	 CD90	 (#328135),	 CD49f	 (#313633),	
CD45RA	(#304157),	CD41	(#303737),	CD36	(#336225),	
CD69	 (#310947),	 CD9	 (#312119),	 CD71	 (#334123),	
CD99	 (#371317),	 CD184	 (#306531),	 HLA-DR	
(#307659),	CD134	(#350033),	CD48	(#336709),	CD52	
(#316017),	 CD135	 (#313317),	 CD47	 (#323129),	 CD7	
(#343123),	CD56	(#362557),	and	CD45	(#368543).	

GoT-ChA	data	processing		

Initial	 read	 processing	 and	 genotype	 calling.	 Raw	
sequencing	 data	 for	 GoT-ChA	 libraries	 were	
demultiplexed	using	cellranger-ATAC	mkfastq.	The	GoT-
ChA	sequencing	FASTQ	files	were	then	used	as	input	into	
the	GoT-ChA	pre-processing	pipeline	designed	to	result	
in	 a	 genotype-per-cell	 output.	 These	 functions	 are	
available	as	a	R	package	(“Gotcha”;	see	code	availability	
section).	

As	 a	 first	 step,	 input	 FASTQ	 files	 are	 split	 into	 a	 user-
defined	 n	 reads	 files	 to	 allow	 for	 parallelized	
downstream	 processing	 through	 the	 “FastqSplit”	
function.	Next,	 the	 “FastqFiltering”	 function	 takes	each	
newly	 generated	 split	 FASTQ	 file	 and	 identifies	 read	
pairs	that	do	not	pass	a	set	of	user-defined	parameters	
for	base	quality	filtering.	Default	usage	was	designed	to	
identify	poor	quality	bases	at	or	surrounding	a	SNV	site,	
though	the	function	includes	parameters	to	easily	adjust	
for	filtering	of	all	base	pairs	in	paired	read	sequences	or	
of	only	a	single	read	for	each	pair.	After	quality	filtering,	
the	 “BatchMutationCalling”	 function	 first	 identifies	
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whether	 a	 read	 contains	 the	 expected	 sequence	of	 the	
nested	primer	used	during	library	construction	through	
pattern	 matching.	 If	 so,	 then	 each	 read’s	 paired	 cell	
barcode	is	matched	to	a	provided	whitelist,	considering	
a	maximum	Hamming	distance	of	two.	All	reads	that	pass	
these	 criteria	 are	 then	 assessed	 for	 whether	 the	 read	
contains	 a	 specified	wildtype	 or	mutant	 sequence	 at	 a	
designated	position.	This	process	is	performed	for	each	
read	in	each	split	and	filtered	FASTQ	file	via	parallelized	
processing	 through	 a	 slurm	 workload	 manager,	
ultimately	outputting	a	cell	barcode	by	genotyped	reads	
matrix	 for	 each	 FASTQ	 file	 processed.	 Finally,	
“MergeMutationCalling”	 combines	 all	 matrices	
generated	from	each	split	FASTQ	file	and	merges	them	
together	grouping	by	cell	barcode	and	summarizing	the	
counts	of	reads	that	were	identified	as	wildtype,	mutant,	
or	neither.	The	summarized	genotyping	data	must	then	
be	 integrated	 with	 the	 chromatin	 accessibility	
information	via	shared	cell	barcodes.	This	is	achieved	via	
the	“AddGenotypingArchR”	function,	that	is	compatible	
with	the	ArchR157	scATAC-seq	pipeline.		

Background	 correction	 and	 genotype	 assignment.	Once	
read	counts	per	cell	corresponding	to	the	WT	and	MUT	
alleles	are	generated,	we	then	require	a	method	to	label	
these	cells	with	their	corresponding	biological	genotype.	
Given	high	level	of	PCR	amplification	needed	to	capture	
in	single	cells	the	1-2	molecules	of	DNA	containing	the	
targeted	locus,	the	data	is	vulnerable	to	various	sources	
of	 noise	 such	 as	 PCR	 errors	 and	 PCR	 recombination,	
aggravated	 by	 the	 exponential	 amplification	 bias	
inherent	 to	 PCR.	 For	 example,	 the	 total	 observed	 read	
counts	for	WT	do	not	correspond	to	the	number	of	WT	
alleles.	Rather,	 they	are	defined	by	 the	cycle	of	PCR	 in	
which	 the	 targeted	 loci	 is	 captured,	 as	 well	 as	 the	
sequencing	depth.	Thus,	if	an	allele	is	captured	earlier	on	
in	 the	 PCR	 process,	 exponential	 amplification	 would	
then	result	in	inflated	read	counts.	Additionally,	ambient	
contamination	of	 fragments	between	neighboring	 cells	
can	 influence	 the	 null	 distribution	 of	 reads	 for	 each	
allele.	To	account	for	the	potential	sources	of	noise,	we	
developed	 two	 alternative	 approaches	 to	 quantify	 and	
correct	for	potential	background	noise	in	the	genotyping	
data.	Our	first	approach	(empty	droplet-based)	leverages	
the	 genotyping	 information	 present	 in	 empty	 droplets	
generated	during	the	10X	run	(i.e.,	barcodes	that	do	not	
contain	a	 cell,	 and	 therefore	yield	 low	 to	no	ATAC-seq	
fragments).	 Our	 second	 approach,	 (cluster-based)	
leverages	 the	 presence	 of	 a	 bimodal	 distribution	 of	
genotyping	 reads	 in	 cells,	 representing	 successful	 vs.	
unsuccessful	genotyping.	Both	methods	are	described	in	
the	sections	below.	

Empty	 droplet-based	 background	 noise	 correction	 and	
genotype	assignment.	To	estimate	the	background	noise	

present	 in	 the	 genotyping	 data,	 we	 leveraged	 the	
presence	of	empty	droplets	obtained	from	in	every	10X	
run,	as	has	previously	been	done	for	noise	correction	in	
single	cell	protein	expression158.	First,	background	noise	
is	 estimated	 for	 either	 wildtype	 or	 mutant	 reads	
independently.	 Given	 the	 zero-inflated	 distribution	 of	
genotyping	reads	present	in	empty	droplets	and	to	avoid	
the	 potential	 presence	 of	 outlier	 values	 (i.e.	 a	 droplet	
that	 contains	 a	 cell	 but	 was	 assigned	 as	 empty),	 we	
estimate	the	value	of	the	background	noise	as	that	of	the	
99th	percentile	of	the	read	number	distribution	for	each	
genotype	 independently.	Once	the	background	noise	 is	
quantified,	 we	 proceed	 to	 subtract	 the	 value	 for	 each	
genotype	read	count	from	the	barcodes	containing	real	
cells.	 In	 addition,	 cells	 are	 required	 to	 contain	 a	
minimum	 number	 of	 genotyping	 reads	 (>250	 after	
background	 subtraction).	 This	 procedure	 can	 be	
performed	 by	 using	 the	 “AddGenotyping”	 function	
followed	 by	 the	 “FilterGenotyping”	 function,	 both	
available	in	the	Gotcha	package	(see	code	availability).		

Cluster-based	background	noise	correction	and	genotype	
assignment.	 An	 alternative	 approach	 that	 results	 in	
higher	genotyping	efficiency	and	includes	the	ability	to	
detect	heterozygous	mutated	cells,	was	informed	by	pre-
existing	approaches	for	normalization	of	CITE-seq	data	
and	hashtag	oligo	(HTO)	demultiplexing	such	as	DSB158	
and	HTODemux159,	respectively.	The	basic	assumption	is	
that	 in	 our	 dataset	 we	 may	 encounter	 populations	 of	
homozygous	WT,	homozygous	MUT,	 and	heterozygous	
cells.	In	addition,	we	anticipate	a	population	of	cells	for	
which	 no	 genotyping	 call	 can	 be	 made,	 due	 to	
experimental	 constraints	 on	 capture.	 These	 cells	 may	
still	 have	 non-zero	 read	 counts	 for	 each	 allele,	
representing	 the	 level	 of	 background	 signal	 for	 each	
allele.	 Thus,	 the	 data	 will	 typically	 follow	 a	 bimodal	
distribution	of	supporting	reads	for	either	the	mutated	
or	 wildtype	 allele.	 One	 mode	 reflects	 cells	 with	 true	
capture	 of	 the	 mutated	 allele	 and	 the	 second	 mode	
reflects	cells	where	reads	reflect	background	noise.		

In	 the	 DSB158	 method,	 the	 authors	 employ	 a	 log-
transformation	of	the	protein	expression	counts,	which	
produces	a	bimodal	distribution	where	the	lower	mode	
represents	the	background	signal	and	the	higher	mode	
represents	 the	 true	 signal.	 The	 log-counts	 are	 then	 z-
scored	 using	 the	 mean	 and	 standard	 deviation	 of	 the	
noise	 distribution,	 as	 defined	 by	 a	 Gaussian	 Mixture	
Model	(GMM)	with	2	components.	In	several	methods	for	
HTO	demultiplexing,	the	transformed	hashtag	counts	are	
clustered,	and	the	resulting	clusters	are	characterized	to	
produce	 interpretable	 labels.	 Therefore,	 we	 sought	 to	
combine	these	two	basic	steps:	normalization	based	on	
background	noise	distribution	followed	by	clustering.	
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The	 flowchart	 depicting	 the	 steps	 of	 our	 method	 is	
shown	in	Extended	Data	Fig.	2f.	All	analyses,	including	
estimation	of	background,	is	performed	only	on	the	set	
of	barcodes	representing	captured	cells	as	defined	by	the	
ATAC	 library	 profile	 (see	 section	 ATAC-seq	 data	
processing	 below).	 Each	 feature	 (WT	 and	 MUT	 read	
counts)	 is	 normalized	 independently.	 First,	 the	 read	
counts	 are	 log-transformed	 with	 a	 pseudocount	 of	 1.	
This	 results	 in	 a	 bimodal	 distribution	 as	 shown	 in	
Extended	 Data	 Fig.	 2g.	 However,	 since	 count	 data	 is	
discrete,	continuous	density	estimation	methods	such	as	
GMMs	 and	 Kernel	 Density	 Estimation	 (KDE)	 are	 not	
immediately	 suitable.	 Thus,	 we	 add	 a	 Gaussian-
distributed,	independent	smoothing	noise	with	mean	0	
and	standard	deviation	0.3.	This	results	in	a	continuous,	
bimodal	distribution	of	transformed	counts,	as	shown	in	
Extended	 Data	 Fig.	 2g.	 This	 smoothing	 noise	 is	 later	
removed	(see	below).		

Next,	we	define	a	probability	density	function	(PDF)	on	
this	data	for	decomposition	background	signal	and	true	
signal	distributions.	For	this	purpose,	we	use	a	KDE	with	
a	Gaussian	 kernel	 and	 a	 fixed	bandwidth.	 The	 optimal	
bandwidth	 is	 inferred	 through	 a	 cross-validation	 grid	
search;	for	each	possible	bandwidth	value	between	0.1	
and	 1.0,	 we	 randomly	 select	 10%	 of	 the	 data	 and	
compute	the	KDE	using	these	values	as	 input.	We	then	
find	 the	 log-likelihood	 of	 this	 model	 on	 the	 entire	
dataset.	 This	 process	 is	 repeated	 10	 times	 for	 each	
bandwidth	 value,	 and	 the	 “loss”	 is	 defined	 as		
-1*mean(cross-validated	 log-likelihood).	 This	 loss	 is	
plotted	vs.	each	bandwidth	value,	and	a	polynomial	is	fit	
to	approximate	 the	 loss	 function.	This	 function	 is	 then	
minimized	using	stochastic	gradient	descent	to	find	the	
optimal	bandwidth	parameter.	

Next,	 the	 value	 defining	 the	 boundary	 between	
background	 and	 signal	 distributions	 is	 defined	 as	 the	
lowest	 point	 in	 the	 KDE	 between	 the	 two	modes.	 The	
KDE	 is	decomposed	by	 computing	KDEs	 separately	on	
the	data	under	or	above	the	defined	boundary,	where	the	
weights	 of	 each	 PDF	 component	 are	 defined	 by	 the	
proportion	 of	 the	 data	 below	 or	 above	 the	 threshold.	
Then,	 the	mean	and	standard	deviation	of	 the	 inferred	
distribution	 of	 the	 measurement	 background	 are	
computed	 by	 integration.	 The	 effect	 of	 the	 Gaussian	
smoothing	noise	is	accounted	for	as	follows.	The	KDE	we	
have	just	modeled	is	the	PDF	of	the	random	variable	X+Y.	
Then,	 given	 the	 properties	 of	 expectations	 (E)	 and	
variances	 (VAR),	 where	 X	 is	 the	 raw	 log-transformed	
read	counts	and	Y	=	N(0,0.09)	is	the	smoothing	noise:	

E[X+Y]	=	E[X]	+	E[Y]	

Var[X+Y]	=	Var[X]	+	Var[Y]	+	2Cov[X,Y]	

Since	X	and	Y	are	 independent,	 the	 covariance	 term	 is	
zero.	To	compute	z-scores,	we	then	go	back	to	the	raw,	
log-transformed	 counts,	 and	 subtract	 the	 mean	 and	
divide	by	the	standard	deviation	of	the	background	noise	
distribution	estimated	from	the	PDF	of	X+Y,	adjusted	for	
Y.	This	is	a	simple	subtraction	of	Var[Y]	=	0.09	from	the	
calculated	variance.	Importantly,	as	opposed	to	the	GMM	
approach,	 this	 approach	 does	 not	 force	 the	 inferred	
background	 noise	 and	 signal	 distributions	 to	 be	
Gaussian.	In	fact,	the	observed	background	noise	across	
multiple	samples	shows	a	positive	skewed	distribution.	
Thus,	 this	 approach	 is	 more	 broadly	 generalizable	 to	
unseen	datasets.	Below	is	the	formulation	of	the	final	z-
score:	

z-score	=	

[X	–	E(background)]	/	[sqrt(Var(background)	–	Var[Y])]	

Once	again,	X	 represents	 the	 log	 transformation	of	 the	
read	counts,	with	pseudocount	1.	The	distribution	of	the	
background	noise	is	computed	as	the	KDE	of	the	values	
of	 X+Y	 below	 the	 previously	 computed	 threshold.	We	
can	 then	 plot	 the	 z-scores	 for	 each	 WT	 and	 MUT	
distributions	in	two	dimensions	(wildtype	z-scores	and	
mutated	z-scores),	with	the	thresholds	dividing	the	data	
into	four	quadrants	as	shown	in	Extended	Data	Fig.	2h.	
We	 set	 the	 minimum	 z-score	 threshold	 in	 each	
dimension	to	be	2.0	to	account	for	potential	edge	cases	
in	the	upstream	calculation.	The	resulting	quadrants	are	
then	easily	interpretable:	cells	in	the	lower	left	quadrant	
have	low	z-scores	for	both	WT	and	MUT	and	as	such	are	
non-genotyped.	The	 lower	 right	quadrant	 corresponds	
to	 homozygous	 WT	 cells,	 the	 top	 left	 is	 homozygous	
MUT,	 and	 the	 top	 right	 consists	 of	 heterozygous	 cells.	
Crude	genotype	calls	can	in	fact	be	made	at	this	stage	and	
these	 labels	 are	 included	 in	 the	 final	output.	However,	
since	 decision	 boundaries	 are	 rarely	 optimal,	 we	
proceeded	with	a	 clustering-based	approach,	based	on	
spectral	clustering	and	KDE-based	mixture	models.	The	
underlying	 intuition	 for	 this	 step	 is	 that	 the	 clustering	
method	can	be	further	informed	by	the	joint	distribution	
of	the	data	for	WT	and	MUT	z-scores.	Thus,	we	again	fit	
a	 KDE	 to	 the	 data,	 this	 time	 in	 two	 dimensions,	while	
again	 adding	 a	 small	 multivariate	 Gaussian	 noise	 for	
smoothing	 and	 better	 fit.	 The	 optimal	 bandwidth	 was	
computed	 using	 the	 procedure	 described	 above.	 This	
bandwidth	 was	 then	 used	 as	 the	 hyperparameter	 for	
spectral	clustering	of	 the	data	using	a	Gaussian	kernel.	
To	choose	the	parameter	“k”	for	the	number	of	clusters,	
we	restricted	our	search	to	between	2	and	4	clusters	for	
interpretability,	where	one	cluster	will	always	represent	
non-genotyped	 cells.	 The	 optimal	 “k”	 was	 chosen	 by	
computing	 the	 Adjusted	 Rand	 Index	 between	 each	
clustering	 output	 and	 the	 quadrant	 labels	 and	 picking	
the	best	corresponding	“k”,	with	the	rationale	being	that	
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clusters	should	 line	up	with	 the	quadrant	divisions	 for	
biological	 interpretability.	 Clusters	were	 characterized	
by	the	quadrant	in	which	their	marginal	median	lie	(i.e.,	
the	 vector	 corresponding	 to	 the	 medians	 along	 each	
feature).	

Once	the	clusters	were	defined	on	the	smoothed	data,	we	
then	used	them	to	generate	a	KDE	mixture	model.	KDE	
was	 computed	using	 the	previously	 computed	optimal	
bandwidth	 on	 each	 cluster	 separately,	 with	 mixture	
weights	being	initialized	as	the	cluster	proportions	and	
updated	 through	 expectation	 maximization.	 This	
generated	a	probabilistic	model	that	we	could	then	use	
to	 compute	 the	 probability	 of	 every	 cell	 belonging	 to	
each	 genotype	 cluster.	 These	 probabilities	 can	 be	
computed	 on	 the	 raw	 z-scores	 without	 smoothing	
Gaussian	noise	added	during	 the	 initial	KDE	 fits.	Thus,	
we	now	have	relative	likelihoods	of	each	cell	belonging	
to	 each	 identified	 genotype,	 and	 hard	 cluster	
assignments	could	be	created	by	assigning	cells	to	their	
most	likely	cluster.		

However,	 since	 this	 model	 was	 produced	 from	 the	
smoothed	data,	we	next	proceed	to	refine	 the	 labeling.	
To	do	this,	we	applied	techniques	from	semi-supervised	
learning.	Since	the	KDE	mixture	model	(learned	from	the	
Z-scores	with	 2D	 Gaussian	 noise	 added)	was	 likely	 to	
produce	confident	 labels	when	 the	maximum	assigned	
probability	is	high,	we	elected	to	remove	the	labels	of	all	
the	 cells	 that	 had	 a	 probability	 of	 belonging	 to	 their	
assigned	genotype	below	99%.	These	unlabeled	points	
tended	to	lie	at	the	cluster	boundaries.	To	relabel	them,	
we	 used	 a	 semi-supervised	 K-Nearest	 Neighbors	
classifier.	With	k	=	sqrt(N),	the	classifier	would	build	a	
KNN	 graph	 using	 all	 the	 data	 and	 iteratively	 assign	
unlabeled	points	based	on	the	labels	of	their	neighbors.	
The	edges	of	the	KNN	graph	were	weighted	using	an	RBF	
kernel	 to	 account	 for	 the	 distance	 between	 neighbors.	
Given	the	size	of	most	single-cell	datasets,	we	chose	to	
opt	 for	 precision	 over	 performance,	 and	 forced	 the	
classifier	 to	 re-label	 only	 the	most	 optimal	 point	 each	
time	 before	 the	 KNN	 graph	 is	 re-computed	 on	 each	
iteration.		

In	 this	 way,	 all	 the	 previously	 unlabeled	 points	 are	
labeled	by	their	closest	inferred	genotype.	The	pipeline	
outputs	and	stores	all	relevant	plots	for	each	sample.	It	
is	recommended	for	the	user	to	 inspect	plots	to	assess	
the	 two	 possible	 outputs	 (quadrant	 vs.	 cluster-based	
genotyping)	and	determine	which	output’s	labels	fit	the	
distribution	of	the	data	better.	The	default	choice	should	
be	 the	 cluster	outputs,	 except	 in	 the	 case	 the	assigned	
clusters	 span	 multiple	 quadrants	 to	 a	 large	 degree.	
Finally,	 the	 output	 data	 is	 stored	 for	 cell	 barcode	
matched	 integration	 into	 the	 scATAC-seq	 metadata	
using	 the	 “AddGenotype”	 function	 for	 downstream	

analysis.	The	genotype	labeling	analysis	was	performed	
in	 Python,	 using	 the	 packages	 pandas,	 numpy,	
matplotlib,	 seaborn,	 scipy,	 and	 sklearn.	 Detailed	
documentation	of	the	method	and	plots	at	each	step	are	
available	(see	code	availability).	

ATAC-seq	data	processing.		

Cell	 line	 mixing	 data	 processing	 and	 analysis.	 Raw	
sequencing	 data	 for	 ATAC-seq	 libraries	 were	
demultiplexed	using	cellranger-ATAC	 (v2.0.0)	mkfastq.	
ATAC	sequencing	reads	were	 then	aligned	 to	 the	hg38	
reference	 genome	 using	 cellranger-ATAC	 count.	
Fragment	files	generated	by	cellranger-ATAC	were	used	
as	 input	 for	 processing	 through	 the	 ArchR	 (v1.0.1)	
pipeline157	 for	downstream	analysis.	Based	on	barcode	
quality	 control,	 a	minimum	TSS	enrichment	 score	of	5	
and	a	minimum	number	of	unique	fragments	of	20,000	
was	 set	 based	 on	 data	 distribution.	 Potential	 doublets	
were	 identified	 by	 the	 addDoubletScores	 function	 and	
removed	 using	 the	 filterDoublets	 function.	 Initial	
dimensionality	 reduction	 was	 performed	 via	 iterative	
latent	semantic	indexing	(LSI)	using	the	cell	by	genomic	
bin	 matrix	 (bin	 size	 =	 500	 bp)	 with	 the	 following	
parameters:	 iterations	 =	 4,	 resolution	 =	 0.1-4,	
sampleCells	 =	 10,000,	 n.start	 =	 10.	 Cell	 clustering	was	
performed	 through	 the	 addClusters	 function	 using	 the	
Seurat	method,	with	a	resolution	of	0.5.		

Patient	 data	 processing	 dimensionality	 reduction	 and	
clustering.	Raw	sequencing	data	for	ATAC-seq	 libraries	
were	 demultiplexed	 using	 cellranger-ATAC	 (v2.0.0)	
mkfastq.	 ATAC	 sequencing	 reads	were	 then	 aligned	 to	
the	hg38	reference	genome	using	cellranger-ATAC	count	
function.	 Fragment	 files	 generated	by	 cellranger-ATAC	
were	used	as	input	for	the	ArchR	(v1.0.0)	pipeline157	to	
generate	the	cell	by	genomic	bin	matrices	(bin	size	=	500	
bp)	 for	 each	 patient	 sample.	 High	 quality	 barcodes	
representing	captured	cells	were	identified	based	on	TSS	
enrichment	score	above	7.5	and	a	minimum	number	of	
unique	 fragments	 above	 3,000	 based	 on	 their	
distribution	 as	 shown	 in	 Extended	 Data	 Fig.	 3b.	 For	
initial	dimensionality	reduction,	the	cell	by	genomic	bin	
matrix	was	used	as	input	for	reciprocal	latent	semantic	
indexing	 (LSI)	 as	 calculated	 by	 the	 Signac	 (v1.1.1)	
pipeline52.	Briefly,	the	term	frequency-inverse	document	
frequency	 (TF-IDF)	 matrix	 is	 calculated	 followed	 by	
singular	 value	 decomposition	 as	 implemented	 in	 the	
RunSVD	 function.	 Dimensionality	 reduction	 via	 UMAP	
was	 performed	 using	 the	 RunUMAP	 function	 of	 the	
Seurat	 (v4.0.1)	 package160,	 for	 LSI	 components	 1:50.	
Next,	 to	 generate	 an	 integrated	 embedding	 across	
patient	 samples,	 we	 performed	 unsupervised	
identification	 of	 anchor	 correspondence	 between	
datasets161	using	the	“FindIntegrationAnchors”	function.	
To	 generate	 a	 common	 LSI	 space,	 we	 ran	 the	
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IntegrateEmbeddings161	 function	 followed	 by	 the	
RunUMAP	function	with	the	following	parameters:	dims	
=	 1:50,	 min.dist	 =	 0.01	 and	 spread	 =	 0.5	 for	
dimensionality	 reduction	 for	 visualization	 in	 two	
dimensions.	 Cell	 clustering	 was	 performed	 using	 the	
“FindNeighbours”	function	using	the	first	50	dimensions	
of	 the	 integrated	 LSI	 space	 as	 input	 followed	 by	 the	
“FindClusters”	function	with	resolution	=	1.	Downstream	
analysis	 was	 performed	 based	 on	 the	 genotype	
assignment	 obtained	 through	 the	Gotcha	 pipeline	 (see	
GoT-ChA	 data	 processing	 section	 above).	 These	
calculations	 can	 be	 performed	 by	 running	 the	
“NormalizedMutantFraction”	 function	 of	 the	 Gotcha	 R	
package.	Pseudotime	cell	ordering	was	performed	 in	a	
semi-supervised	 manner	 as	 described	 in	 the	 ArchR	
(v1.0.0)	 pipeline157.	 For	 calculating	 the	 fraction	 of	
mutant	 cells	 along	 pseudotime	 as	 defined	 by	 the	
differentiation	 axis	 (erythroid,	 megakaryocytic,	
neutrophil-monocytic	or	lymphoid),	cells	involved	in	the	
differentiation	trajectory	were	divided	into	10	quantiles	
based	 on	 their	 pseudotime	 values,	 and	 the	 fraction	 of	
mutant	cells	within	the	window	was	calculated	for	each	
sample.	

Differential	 gene	 and	motif	 accessibility	modeling	 inter-
patient	 variability.	 Gene	 accessibility	 scores	 were	
obtained	 through	 the	 ArchR	 (v1.0.0)	 pipeline157,	 and	
ChromVAR70	 (v1.8.0)	 was	 utilized	 within	 the	 ArchR	
pipeline	 to	 estimate	 transcription	 factor	 motif	
accessibility	 z-scores.	 For	 intra-cluster	 differential	
testing	 of	 either	 gene	 or	 transcription	 factor	 motif	
accessibility,	we	took	a	statistical	approach	allowing	to	
account	for	potential	technical	confounders	arising	from	
sample-specific	batch	effects.	To	that	end,	we	applied	a	
linear	 mixture	 model	 (LMM)	 approach	 followed	 by	
likelihood	ratio	test	as	follows:	

m1	=	yi	~	gi	+	(1|pi)	

m2	=	yi	~	(1|pi)	

anova(m1,	m2)	

Where	yi	is	the	response	feature	for	cell	i,	represented	by	
either	 motif	 or	 gene	 accessibility	 scores,	 gi	 is	 the	
genotype	of	cell	I	and	pi	is	the	patient	sample	of	origin	for	
cell	 i	 explicitly	model	 as	 a	 random	 factor	 of	 the	 LMM	
model.	This	model	was	 selected	 to	 account	 for	patient	
specific	confounders,	and	to	account	for	variability	in	cell	
numbers	 across	 samples.	 Raw	 P	 values	 were	 then	
adjusted	 by	 Benjamini-Hochberg	 correction.	 This	
analysis	can	be	applied	using	parallelized	computing	via	
the	 “DiffLMM”	 function	 available	 within	 the	 Gotcha	 R	
package	 (see	 code	 availability	 section).	 For	 gene	
accessibility	 scores,	 accessibility	 differences	 were	
calculated	as	the	ratio	of	the	mean	value	across	the	cells	
for	 the	 specified	 genotype	 and	 cell	 cluster	 for	mutant	

versus	wildtype	cells,	followed	by	application	of	log2.	For	
transcription	 factor	 motif	 accessibility,	 differences	
between	genotypes	were	calculated	as	the	difference	in	
the	mean	 z-score	 for	 each	 transcription	 factor	 for	 the	
specified	cell	cluster	and	genotype.	

Pathway	 enrichment	 analysis	 was	 performed	 via	 pre-
ranked	 differential	 gene	 accessibility	 scores	 using	 the	
msigdbr	(v7.2.1)	and	the	fgsea	(v1.12.0)	packages.	The	
differential	 gene	 accessibility	 rank	 was	 generated	 by	
utilizing	 the	 -log10(FDR)	 times	 the	 sign	 based	 on	 the	
direction	of	change	(1	or	-1).	This	rank	was	then	used	as	
input	 for	a	pre-selected	set	of	Hallmark	pathways	 into	
the	 fgsea	 function	with	minSize	=	10,	maxSize	=	1,000	
and	nperm	=	100,000.		

Transcription	 factor	 motif	 accessibility	 correlations	
were	 calculated	 based	 on	 the	 z-scores	 matrices	
estimated	 by	 ChromVAR70	 (v1.8.0).	 Cell	 by	 motif	
matrices	were	subset	based	on	the	transcription	factors	
of	interest	and	motif-motif	correlations	were	calculated	
via	the	cor	function	in	R	(v3.6.2).	For	STAT1	and	NFKB1	
correlations,	 the	 linear	model	was	estimated	using	 the	
“lm”	 base	 function	 in	 R,	 and	 F-test	 parameters	 were	
retrieved	using	the	“summary”	base	R	function.		

Co-accessibility	 scores	 for	 either	 wildtype	 or	 mutant	
cells	 for	a	given	cluster	were	calculated	 leveraging	 the	
ArchR	 “addCoAccess”	 function	 based	 on	 Cicero123.	 We	
generated	 a	 wrapper	 function	 named	
“DiffCoAccessibility”,	 allowing	 to	 split	 co-accessibility	
calculations	by	genotype,	generating	loop	files	for	each	
group	 separately.	 Briefly,	 after	 specifying	 the	 cell	
clusters,	genotype	levels	(i.e.,	WT,	MUT	or	HET),	subset	
of	peaks	of	interest	and	the	maximum	distance	between	
pairs	 of	 peaks,	 co-accessibility	 is	 calculated	 for	 each	
genotype	 independently,	 and	 the	 loop	 files	 for	 each	
genotype	 are	 provided	 as	 output.	 The	 output	 of	 this	
function	can	then	be	provided	to	the	“plotDCA”	function	
to	visualize	the	co-accessibility	loops	simultaneously	for	
both	 genotypes	 for	 each	 peak.	 Both	 functions	 are	
available	as	part	of	the	Gotcha	R	package.	

Protein	data	processing	

Protein	 expression	 was	 estimated	 using	 the	 antibody	
derived	 tag	 information.	 ADT	 FASTQ	 files	 were	 first	
processed	 with	 a	 python	 script	 “ASAP_to_kite.py”	
(obtained	 from	ASAP-seq	 authors)	which	 converts	 the	
files	into	a	format	similar	to	the	10x	scRNA-seq	FASTQ	
format,	 thus	 enabling	 analysis	 using	 the	 kallisto162	
(v0.46.0),	 bustools163	 (v0.39.3),	 and	 kite164	 (v0.0.2)	
frameworks.	 Protein	 data	 was	 normalized	 via	 the	
“DSBNormalizeProtein”	 function	 from	the	DBS	(v0.1.0)	
package158.	 Statistical	 comparisons	between	genotypes	
were	performed	via	Wilcoxon	rank	sum	test	followed	by	
Bonferroni	multiple	hypothesis	correction.	
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Mitochondrial	 data	 pre-processing	 and	 variant	
calling	

A	modified	version	of	the	hg38	reference	genome	with	
hard-masked	 nuclear	 mitochondrial	 DNA	 sequences	
(NuMTs)	 was	 generated	 using	 cellranger-atac	 (v2.0.0)	
“mkref”	 function.	Sequencing	reads	were	 then	mapped	
to	 the	 modified	 reference	 using	 cellranger-atac	 count.	
Note	 that	most	 scATAC	 fragments	 are	 not	 expected	 to	
arise	from	NuMTs,	so	they	can	be	a	priori	safely	uniquely	
mapped	to	the	mitochondrial	genome	by	masking	their	
nuclear	 paralogs37.	 Next,	 the	 mgatk	 (v0.5.0)	 package	
function	“mgatk”	with	“tenx”	mode	was	used	to	generate	
base	counts	at	each	mitochondrial	genomic	position	for	
each	cell	passing	cell-ranger	quality	 control	 standards.	
Reads	with	a	mapping	quality	 lower	 than	20	were	not	
considered,	as	well	as	bases	with	a	 sequencing	quality	
lower	 than	 20.	 Files	 containing	 the	 combined	 per-cell	
base	count	information	for	each	sample	were	loaded	into	
R	 and	 analyzed	 using	 custom	 code	 and	 functions	
developed	 to	 identify	 mitochondrial	 variants165.	 In	
summary,	 only	 those	 variants	 supported	 by	 at	 least	 2	
forward	 and	 2	 reverse	 reads	 in	 a	minimum	of	 5	 cells,	
likely	heteroplasmic	(variance	to	mean	ratio	in	log	scale	
higher	 than	 -2)	 and	 with	 a	 high	 strand	 concordance	
(correlation	between	forward	and	reverse	counts	across	
cells	higher	than	0.65)	were	considered	for	downstream	
analysis37.	Some	previously	described	false-positive	calls	
were	further	discarded,	as	well	as	those	variants	present	
in	two	or	more	unrelated	samples,	since	it	points	out	to	
arise	 from	 technical	 artifacts.	 For	 each	 variant	 call,	 an	
alternative	 allele	 frequency—also	 called	 heteroplasmy	
in	mitochondrial	context—was	calculated	for	each	cell.	
However,	for	those	cells	showing	less	than	10	reads	the	
allele	frequency	was	set	to	undetermined	to	favor	robust	
calling	 of	 heteroplasmic	 fractions.	 The	 GoT-ChA	
genotyping	 information	 was	 combined	 with	 these	
results	 and	 used	 to	 visualize	mitochondrial	mutations	
present	 in	a	subgroup	or	the	whole	population	of	cells	
carrying	 the	 GoT-ChA-targeted	 mutation.	 In	 this	
situation,	both	the	nuclear	and	mitochondrial	mutations	
are	referred	to	as	being	in	phase.	

Cell	 genotype	 classifier	 based	 on	 mitochondrial	
variants	

Mitochondrial	 mutations	 in	 phase	 with	 the	 GoT-ChA	
mutation	status	were	used	to	impute	genotyping	of	cells	
whose	mutation	status	could	not	be	determined	based	
on	 GoT-ChA	 information.	 This	 was	 achieved	 by	
implementing	a	supervised	learning	approach	based	on	
a	 random	 forest	 classifier.	For	 training	and	 testing	 the	
classification	model,	 the	 dataset	 was	 downsampled	 to	
contain	the	same	number	of	mutant	and	wildtype	cells	to	
obtain	a	balanced	dataset	for	training	and	test,	and	90%	
of	 the	 cells	were	assigned	 to	 the	 training	 set	and	10%	

were	 assigned	 to	 the	 test	 set.	 The	 classification	model	
was	 built	 by	 applying	 the	 “randomForest”	 function	
within	 the	 R	 package	 tidymodels	 (v0.1.3)166	 to	 the	
training	 set,	 using	 the	 heteroplasmy	 of	 the	 in-phase	
mutations	 as	 features	 and	 wildtype	 and	 mutant	
genotypes	as	classes.	The	number	of	decision	trees	was	
set	to	1000.	The	model	was	then	applied	to	the	test	set	
to	obtain	genotype	predictions.	The	classifier	accuracy	
was	measured	as	 the	percentage	of	correctly	classified	
instances	out	of	all	predictions.	As	the	model	showed	a	
high	accuracy	on	the	test	set,	it	was	subsequently	applied	
to	 make	 genotype	 imputations	 for	 the	 undetermined	
GoT-ChA	calls.		

Inference	 of	 copy	 number	 variations	 (CNV)	 from	
scATAC-seq	data	

A	CNV	score	was	calculated	for	each	cell	adapted	from	a	
method	 previously	 described36.	 Here,	 instead	 of	 using	
bins	of	similar	GC	content	as	a	baseline	CNV	score,	we	
compared	the	normalized	counts	in	10	Mb	bins	(step	size	
of	2	Mb)	to	normal	diploid	CD34+	cells.	CNV	scores	were	
plotted	as	a	heatmap	for	visualization	and	hierarchical	
clustering	was	performed	using	fastcluster	(v1.2.3)	and	
parallelDist	 (v0.2.6)	 R	 packages	 using	 default	
parameters.	

Cell	 label	prediction	based	on	scRNA-seq	reference	
and	bridge	integration	

To	orthogonally	validate	our	manually	assigned	cluster	
labels,	we	 leveraged	 a	 novel	method	 for	 annotation	 of	
scATAC-seq	 cell	 clusters	 using	 a	 scRNA-seq	 reference	
dataset	 (available	 at	
https://zenodo.org/record/5521512#.YmnDDi-B1uV),	
via	 multiome	 (scATAC-seq	 plus	 scRNA-seq)	 bridge	
integration	through	Seurat	(v4.1.0)160.	Briefly,	genomic	
features	present	in	the	publicly	available	multiome	data	
(GSE194122)	 were	 utilized	 to	 recalculate	 the	 count	
matrices	 from	 the	 scATAC-seq	 query	 data.	 A	 common	
dimensionality	reduction	space	was	generated	allowing	
for	 the	 creation	 of	 a	 bridge	 reference,	 followed	 by	
defining	 bridge	 anchors	 between	 the	 extended	 bridge	
reference	and	the	scATAC-seq	query.	Finally,	cells	from	
the	query	were	mapped	to	 the	reference	cluster	 labels	
via	the	extended	bridge	integration.	

JAK2V617F	reversible	mouse	model,	RNA-seq,	and	data	
analysis	

Jak2Rox/Lox	 (Jak2RL)	 Dre-rox,	 Cre-lox	 dual	 recombinase	
knock-in/knock-out	mice110	were	crossed	to	UbcCreER	
tamoxifen-inducible	 Cre	 lines	 and	 RLTG	 dual-
recombinase	reporter	lines167,168.	Jak2V617F	knock-in	was	
carried	out	using	Dre	mRNA	electroporation110.	For	gene	
expression	 analysis,	 secondary	 cohorts	 of	 lethally	
irradiated	 C57BL/6mice	 transplanted	 with	 UbcCreER-
Jak2RL	 bone	 marrow	 8	 weeks	 post-transplant	 and	
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exhibiting	MPN	were	treated	with	ruxolitinib	(60	mg/kg	
P.O.	BID),	tamoxifen	(100	mg/kg	daily	x4	followed	by	80	
mg/kg	daily	of	TAM	chow	x3)	or	vehicle	(MPN	control)	
for	7	days	and	then	sacrificed.	Bone	marrow	cells	were	
isolated	 from	 limb	 bones	 into	 FACS	 buffer	 (phosphate	
buffered	 saline	 (PBS)	 +	 2%	 fetal	 bovine	 serum)	 via	
centrifugation	(8000	rpm	x	1	min).	After	red	blood	cell	
lysis	(BioLegend),	single-cell	suspensions	were	depleted	
of	 lineage-committed	 hematopoietic	 cells	 using	 a	
Lineage	Cell	Depletion	Kit	according	 to	manufacturer’s	
protocol	 (EasySep™,	 StemCell	 Technologies,	 Inc.).	
Lineage-depleted	bone	marrow	was	then	stained	with	an	
antibody	 cocktail	 comprised	 of	 a	 lineage	 cocktail	
(BioLegend),	as	well	as	c-Kit	(2B8),	Sca-1	(D7),	FcγRII/III	
(2.4G2)	 and	 CD34	 (RAM34).	 All	 antibodies	 were	
purchased	from	BioLegend.	After	staining,	samples	were	
washed	in	FACS	buffer	and	resuspended	in	FACS	buffer	
with	 DAPI	 as	 a	 live-dead	 stain	 for	 cell	 sorting.	
TdTomato+	 (Jak2RL	 knock-in)	 or	 GFP+	 (Jak2RL	 knock-
out)	LSKs	and	MEPs	were	then	sorted	on	a	FACSAria	III	
directly	 into	Trizol	LS	(Invitrogen)	and	stored	at	 -80°C	
until	processing.	RNA	was	 subsequently	 isolated	using	
the	 Direct-Zol	 Microprep	 Kit	 (Zymo	 Research,	 R2061)	
according	 to	 manufacturer’s	 protocol	 and	 quantified	
using	 the	 Agilent	 High	 Sensitivity	 RNA	 ScreenTape	
(Agilent	 5067-5579)	 on	 an	 Agilent	 2200	 TapeStation.	
cDNA	was	generated	 from	1ng	of	 input	RNA	using	 the	
SMART-Seq	 HT	 Kit	 (Takara	 634455)	 at	 half	 reaction	
volume	followed	by	Nextera	XT	(Illumina	FC-131-1024)	
library	preparation.	cDNA	and	tagmented	libraries	were	
quantified	 using	 High	 Sensitivity	 D5000	 ScreenTape	
(5067-	 5592)	 and	 High	 Sensitivity	 D1000	 ScreenTape	
respectively	(5067-	5584).	Libraries	were	sequenced	on	
a	NovaSeq	at	the	Integrated	Genomics	Operation	(IGO)	
at	MSKCC.	
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EXTENDED	DATA	

	
Extended	Data	Fig.	1	|	Primer	sequences,	relative	positions,	and	library	construction	schematic	for	GoT-ChA.	a,	Primer	
design	schematic	for	GoT-ChA,	indicating	the	relative	position	of	GoT-ChA	primers	to	one	another	as	well	as	the	targeted	locus	
of	interest.	b,	Primer	binding	sites	for	TP53R248	and	JAK2V617	genotyping.	Binding	sites	are	highlighted	in	blue,	with	custom	primer	
handles	 shown	as	 indicated	 in	panel	a.	c,	 Schematic	 representation	detailing	GoT-ChA	 library	 construction,	 comprised	of	 a	
biotinylated	hemi-nested	PCR,	a	streptavidin-biotin	pull-down,	and	an	on-bead	sample	indexing	PCR,	ultimately	resulting	in	the	
generation	 of	 a	 genotyping	 library	 compatible	 with	 Illumina	 sequencing.	 P5,	 Illumina	 sequencing	 handle;	 BC,	 unique	 cell	
barcode;	R1N,	Read	1	Nextera	adapter;	gDNA,	genomic	DNA;	R2N,	Read	2	Nextera	adapter.	
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Extended	Data	Fig.	2	|	Genotyping	accuracy,	quality	control	metrics,	and	GoT-ChA	data	processing	of	proof-of-principle	
mixing	studies.	a,	Sanger	sequencing	confirming	known	homozygosity	of	TP53R248	wildtype	HEL	cells	and	TP53R248Q	mutant	
CA46	cells.	b,	Differential	gene	accessibility	score	heat	map	illustrating	the	identification	of	the	two	human	cell	lines	HEL	and	
CA46	in	the	TP53R248	mixing	study	(FDR	<	0.05	and	log2FC	>	1.25;	Wilcoxon	rank	sum	test	followed	by	Benjamini-Hochberg	
correction).	c,	scATAC-seq	library	fragment	size	distribution	for	the	TP53R248	mixing	study,	illustrating	characteristic	periodicity	
due	to	nucleosome	positioning.	d,	Number	of	unique	nuclear	fragments	per	cell	for	each	cell	line	in	the	TP53R248	mixing	study,	
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indicating	adequate	complexity	of	the	scATAC-seq	libraries.	e,	TSS	enrichment	scores	per	cell	for	each	cell	line	in	the	TP53R248	
mixing	study,	indicating	a	high	signal-to-background	ratio	in	the	scATAC-seq	data.	f,	Schematic	representation	illustrating	the	
workflow	 of	 the	 analytical	 pipeline	 used	 for	 noise	 correction	 of	 the	 GoT-ChA	 data	 and	 for	 defining	 single	 cell	 genotype	
assignments.	g,	Histograms	of	WT	(left	panel)	and	MUT	(right	panel)	number	of	reads	per	cell	from	the	TP53R248	mixing	study.	
Kernel	 density	 estimation	 (KDE)	 lines	 for	 overall	 data	 (red),	 background	 (yellow),	 and	 signal	 (pink)	 are	 shown	 for	 each	
genotype.	 h,	 Scatter	 plots	 comparing	 assigned	 genotypes	 from	 GoT-ChA	 processing	 (left	 panel)	 as	 compared	 to	 the	 true	
genotypes	 as	 determined	by	 cell	 line	 identity	 (right	 panel).	Dotted	 lines	 indicate	 the	detected	 threshold	 for	 the	distinction	
between	background	and	signal	before	updated	cluster	assignments	for	both	WT	and	MUT	data.	i,	Comparison	of	the	percentage	
of	cells	genotyped	in	alternative	empty	droplet-based	noise	correction	methods	(see	materials	and	methods).	j,	Confusion	matrix	
for	genotype	assignments	for	those	cells	with	available	genotyping	in	both	alternative	noise	correction	methods	(see	materials	
and	methods).	k,	Sanger	sequencing	confirmation	of	known	genotypes	for	the	JAK2V617	mixing	study:	CCRF-CEM	wildtype	cells,	
SET-2	heterozygous	cells,	and	HEL	homozygous	mutant	cells.	Note	that	SET-2	data	confirm	the	known	allelic	ratio	of	3:1	for	
mutated:wildtype	alleles	in	this	cell	line.	l,	Differential	gene	accessibility	score	(FDR	<	0.05	and	log2FC	>	1.25;	Wilcoxon	rank	
sum	test	followed	by	Benjamini-Hochberg	correction)	heat	map	indicating	identification	of	the	three	human	cell	 lines	CCRF-
CEM,	SET-2,	and	HEL	used	in	the	JAK2V617	mixing	study.	m,	Fragment	size	distribution	for	the	JAK2V617	mixing	study	scATAC-seq	
library,	showing	expected	nucleosomal	periodicity.	n,	Scatter	plots	showing	the	number	of	unique	nuclear	fragments	per	cell	vs.	
the	 transcriptional	 start	 site	 (TSS)	 enrichment.	 Dotted	 lines	 indicate	 the	 selected	 thresholds	 based	 on	 the	 distribution.	o,	
Histograms	of	WT	(left)	and	MUT	(right)	read	distributions	from	the	JAK2V617	mixing	study.	KDE	lines	for	overall	data	(red),	
background	(yellow),	and	signal	(pink)	are	shown	for	each	genotype.	p,	Scatter	plots	comparing	assigned	genotypes	from	GoT-
ChA	processing	(left	panel)	compared	to	the	true	genotypes	(right	panel)	as	determined	by	cell	line	identity.	Dotted	lines	indicate	
the	initial	thresholds	identified	between	background	noise	and	signal	for	either	WT	(vertical	line)	or	MUT	(horizontal	line)	data	
before	final	genotype	assignment	after	clustering	(see	materials	and	methods).		
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Extended	Data	Fig.	3	|	GoT-ChA	results	in	high	quality	chromatin	accessibility	data	in	human	patient	samples,	allowing	
progenitor	 subset	 annotation.	 a,	 Fragment	 size	 distribution	 plots	 per	 sample,	 showing	 characteristic	 periodicity	 due	 to	
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nucleosome	positioning	 across	 all	 samples.	 In	 samples	 for	which	multiple	10x	 lanes	were	 run,	 a	 representative	 example	 is	
shown.	b,	Scatter	plots	showing	the	number	of	unique	nuclear	fragments	versus	TSS	enrichment	for	each	patient	sample,	with	
dotted	lines	indicating	the	thresholds	used	for	identification	of	high-quality	cells	(TSS	enrichment	score	>	8	and	log10(unique	
fragments)	>	3.5).	The	median	values	for	unique	nuclear	fragments,	median	TSS	enrichment	score,	and	total	number	of	cells	that	
pass	filters	per	patient	sample	are	shown.	c,	Violin	plots	detailing	quality	metrics	for	scATAC-seq	data,	plotted	per	patient,	and	
colored	by	 JAK	 inhibitor	 therapy:	 fraction	of	reads	 in	promoters	(top	 left),	 fraction	of	reads	 in	peaks	(top	right),	number	of	
unique	fragments	(bottom	left),	and	nucleosome	ratio	(bottom	right).	Untreated	samples	are	colored	green,	ruxolitinib-treated	
in	yellow,	and	fedratinib-treated	in	purple.	d,	Integrated	uniform	manifold	approximation	and	projection	(UMAP)	colored	by	
patient	sample,	 illustrating	consistent	distribution	of	cells	after	 integration	through	reciprocal	 latent	semantic	 indexing	(see	
materials	 and	 methods).	 e,	 Heat	 map	 of	 gene	 accessibility	 scores	 across	 all	 progenitor	 subclusters,	 showing	 genes	 with	
differential	accessibility	(FDR	<	0.05	and	log2FC	>	1;	Wilcoxon	rank	sum	test	followed	by	Benjamini-Hochberg	correction),	and	
highlighting	informative	marker	genes.	f,	Genomic	distribution	of	peaks	in	distal	regions	(green),	exonic	regions	(blue),	intronic	
regions	(purple),	and	promoters	(yellow)	for	the	union	of	peaks	(n	=	321,995	peaks).	g,	Differentially	accessible	peaks	(FDR	<	
0.05	and	log2FC	>	1;	Wilcoxon	rank	sum	test	followed	by	Benjamini-Hochberg	correction)	across	progenitor	clusters.	h,	Gene	
accessibility	scores	for	key	stem	cell	(HLF,	AVP,	CD34,	CD38)	marker	genes	across	clusters	HSPC1	and	HSPC2	(Wilcoxon	rank	
sum	test),	consistent	with	HSPC1	representing	earlier	HSPCs	(higher	HLF,	AVP	and	CD34)	and	HSPC2	representing	later	HSPCs	
(higher	CD38	and	lower	HLF,	AVP	and	CD34).	i,	Confusion	matrix	between	manually	annotated	cluster	labels	and	predicted	labels	
based	on	scRNA-seq	reference	via	bridge	integration	mapping54	(see	materials	and	methods).		
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Extended	Data	Fig.	4	|	Genotyping	and	distribution	of	mutant	cells	in	patient	samples.	a,	Scatter	plots	 illustrating	two	
representative	examples	of	assigned	genotypes	from	GoT-ChA	processing.	Final	genotype	assignment	after	clustering	shown	in	
dot	color.	Homozygous	wildtype	(WT;	blue),	homozygous	mutant	(MUT;	red),	heterozygous	(HET;	yellow)	or	not	assignable	
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(NA;	 grey).	b,	 Scatter	 plot	 of	 pseudobulk	GoT-ChA	 variant	 allele	 fraction	 (VAF)	 versus	 bulk	DNA	 sequencing	VAF	 reported	
clinically	for	those	patients	for	which	was	available	(n	=	6	patients;	no	clinically	reported	VAF	available	for	samples	Pt-01	(PV),	
Pt-03,	and	Pt-01	(MF-T1)).	Source	of	biological	material	for	each	patient	sample	used	for	GoT-ChA	(bone	marrow	in	yellow	and	
peripheral	blood	in	red)	is	indicated.	Dotted	line	represents	a	slope	of	1	with	intersection	0	as	reference.	Correlation	values	are	
shown	(Spearman	correlation	test).	c,	Fraction	of	genotyped	cells	and	average	JAK2	gene	accessibility	per	cluster.	Bars	represent	
the	mean;	each	point	represents	a	patient	sample	and	error	bars	represent	the	standard	deviation	(upper	panel).	JAK2	mean	
gene	accessibility	z-scores	across	cell	clusters	is	shown	(bottom	panel)	d,	Chromatin	accessibility	coverage	of	the	JAK2	gene	
across	 progenitor	 clusters.	 The	 V617	 hotspot	 is	 indicated	 by	 the	 region	 shaded	 red.	 e,	 Genotype	 calls	 projected	 onto	 the	
integrated	uniform	manifold	approximation	and	projection	(UMAP)	per	sample.	WT	=	wildtype	cells	(blue);	HET	=	heterozygous	
cells	(yellow);	MUT	=	JAK2V617F	mutant	cells	(red);	NA	=	not	assigned	(grey).	f,	Relative	fold	change	of	mutant	fraction	in	MkP	
and	 EP	 clusters	 compared	 to	 HSPCs	 across	 all	 patient	 samples.	 Samples	 for	 which	more	 than	 one	 technical	 replicate	was	
performed	 are	 shown	 separately.	 Statistical	 significance	 was	 determined	 by	 Fisher	 test	 followed	 by	 Bonferroni	 multiple	
hypothesis	correction.	Family-wise	error	rate	(FWER)	indicated	as	Padj;	n.s.	=	not	significant	(Padj	>	0.05).	g,	Relative	fold	change	
of	 mutant	 fraction	 in	 MkP	 and	 EP	 clusters	 compared	 to	 HSPC	 cluster	 for	 the	 fedratinib	 treated	 sample	 Pt-07.	 Statistical	
significance	was	 determined	 by	 Fisher	 test	 followed	 by	 Bonferroni	multiple	 hypothesis	 correction.	 Family-wise	 error	 rate	
(FWER)	indicated	as	Padj;	n.s.	=	not	significant	(Padj	>	0.05).	h,	UMAP	illustrating	semi-supervised	pseudotime	estimation	for	
hematopoietic	lineages:	megakaryocytic	(left	panel),	and	monocyte	(right	panel).	i,	Fraction	of	mutant	cells	along	megakaryocyte	
or	monocyte	 pseudotime	 for	 untreated	 or	 ruxolitinib-treated	 samples.	 Pseudotime	was	 divided	 in	 8	 quantiles;	 each	 point	
represents	 the	mean	 fraction	of	mutant	 cells,	 error	 bars	 indicate	 standard	 error,	 lines	 indicate	 the	 fit	 and	 shadowed	 areas	
represent	the	95%	confidence	interval	of	the	generalized	additive	model.	The	fraction	of	cells	belonging	to	the	cluster	specified	
by	color	(HSPC	=	hematopoietic	stem	and	progenitor	cell;	MPP	=	multipotent	progenitor;	MEP	=	megakaryocyte	erythrocyte	
progenitor;	MkP	=	megakaryocyte	progenitor;	LMPP	=	lymphoid-myeloid	pluripotent	progenitor;	GMP	=	granulocyte	monocyte	
progenitor;	 CD14	Mono	=	CD14+	monocyte	 progenitors;	 CD16	Mono	=	CD16+	monocytes)	within	 the	 indicated	pseudotime	
quantile	is	shown	(bottom	panel).	
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Extended	Data	Fig.	 5	 |	Differential	 gene	and	 transcription	 factor	motif	 accessibility	 in	 ruxolitinib-treated	HSPCs.	 a,	
Volcano	plot	illustrating	differential	gene	accessibility	scores	between	wildtype	(n	=	55	cells)	and	mutant	(n	=	87	cells)	cells	
within	the	HSPC1	cluster	of	ruxolitinib-treated	patients	(n	=	3).	Horizontal	dotted	line	represents	P	=	0.05;	vertical	dotted	lines	
represent	absolute	log2FC	>	0.25.	Genes	involved	in	the	inflammatory	response	pathway	(Hallmark	M5932)	are	highlighted	in	
green.	Linear	mixture	model	(LMM)	followed	by	likelihood	ratio	test.	b,	Pre-ranked	gene	set	enrichment	of	genes	within	the	
Inflammatory	 response	 pathway	 for	 wildtype	 vs	 JAK2V617F	 HSPC1	 gene	 accessibility	 scores	 in	 ruxolitinib-treated	 samples	
(Bonferroni	multiple	hypothesis	 correction;	 FWER	=	 family	wise	 error	 rate;	NES	=	normalized	enrichment	 score;	Hallmark	
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pathway	M5932).	c,	Volcano	plot	of	differential	motif	accessibility	scores	between	wildtype	and	mutant	cells	within	the	HSPC1	
cluster	from	patients	treated	with	ruxolitinib	JAK	inhibitor	therapy.	Horizontal	dotted	lines	indicate	FDR	=	0.25,	vertical	dotted	
lines	 indicate	 absolute	 Dz-score	 >	 0.25.	 Linear	 mixture	 model	 followed	 by	 likelihood	 ratio	 test	 and	 Benjamini-Hochberg	
correction.	d,	Volcano	plot	of	differential	motif	accessibility	scores	between	wildtype	and	mutant	cells	within	the	HSPC2	cluster	
from	patients	treated	with	ruxolitinib	JAK	inhibitor	therapy.	Horizontal	dotted	lines	indicate	FDR	=	0.25,	vertical	dotted	lines	
indicate	absolute	Dz-score	>	0.25.	Linear	mixture	model	followed	by	likelihood	ratio	test	and	Benjamini-Hochberg	correction.	e,	
Table	 showing	 the	 correlation	 values	 and	 Rho	 goodness	 of	 fit	 values	 for	 HSPCs	 (HSPC1	 and	HSPC2	 clusters	 combined)	 in	
untreated	MF	samples;	Spearman	correlation	test.		
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Extended	Data	Fig.	6	|	Differential	gene	and	transcription	factor	motif	accessibility	in	EPs	and	MkPs	with	and	without	
ruxolitinib	treatment.	a,	Differentially	accessible	transcription	factor	motifs	between	wildtype	and	mutant	cells	within	the	EP2	
cluster	of	untreated	MF	patients	(n	=	4).	For	all	panels	unless	stated	otherwise,	horizontal	dotted	line	represents	FDR	=	0.05;	
vertical	 dotted	 lines	 represent	 absolute	 Dz-score>	 0.25.	 Linear	 mixture	 model	 (LMM)	 followed	 by	 Benjamini-Hochberg	
correction.	b,	Differentially	accessible	transcription	factor	motifs	between	wildtype	and	mutant	cells	within	the	EP1	cluster	of	
ruxolitinib-treated	MF	patients	(n	=	3).	c,	Quantification	of	the	imputed	gene	accessibility	value	for	either	homozygous	wildtype,	
heterozygous,	or	homozygous	mutant	cells	in	ruxolitinib-treated	MF	patients	(n	=	3)	from	the	EP1	(n	=	2,065	cells)	cluster	(LMM	
followed	by	 likelihood	ratio	 test).	d,	Differentially	accessible	 transcription	 factor	motifs	between	wildtype	and	mutant	 cells	
within	the	EP2	cluster	of	ruxolitinib-treated	MF	patients	(n	=	3).	e,	Differentially	accessible	transcription	factor	motifs	between	
wildtype	and	mutant	cells	within	the	MkP	cluster	(n	=	1,437	cells)	of	ruxolitinib-treated	MF	patients	(n	=	3).		
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Extended	Data	Fig.	7	 |	Quality	control	and	clustering	of	GoT-ChA-ASAP	samples.	a,	Chromatin-based	uniform	manifold	
approximation	and	projection	(UMAPs)	colored	by	GoT-ChA-assigned	JAK2V617	genotypes	for	Pt-02	and	Pt-06	as	homozygous	
wildtype	 (WT;	 blue),	 homozygous	mutant	 (MUT;	 red),	 heterozygous	 (HET;	 yellow),	 and	 not	 assignable	 (NA;	 grey)	 prior	 to	
mitochondrial	 imputation.	 Cell	 numbers	 for	 each	 genotype	 are	 indicated	 per	 patient	 sample.	 b,	 Library	 fragment	 size	
distribution	for	samples	Pt-02	and	Pt-06,	illustrating	characteristic	periodicity	due	to	nucleosome	positioning.	c,	Scatter	plot	
showing	 the	 number	 of	 unique	 nuclear	 fragments	 versus	 TSS	 enrichment	 for	 samples	 Pt-02	 and	 Pt-06,	 with	 dotted	 lines	
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indicating	the	thresholds	used	for	identification	of	high-quality	cells	(TSS	enrichment	score	>	8	and	log10[unique	fragments]	>	
3.5).	d,	Lineage	tree	of	HSPCs	from	a	patient	with	essential	thrombocythemia	(ET)31.	The	phylogeny	was	built	from	21,430	clonal	
SNVs	detected	within	the	single-cell	expanded	clones	across	the	whole	genome	using	CellPhy169.	Terminal	nodes	are	colored	
based	on	the	mutation	status	of	the	JAK2	gene.	Cell	heteroplasmies	for	two	mitochondrial	mutations	are	shown	in	the	heatmap	
at	 the	right.	e,	Total	number	of	 cells	pre	and	post	mitochondrial	 imputation	of	genotyping	assignments	 for	sample	Pt-02.	 f,	
UMAPs	showing	the	gene	accessibility	scores	of	canonical	marker	genes	used	to	identify	progenitor	cell	type	for	each	cluster	for	
sample	Pt-02.	g,	Heat	map	of	differential	gene	accessibility	scores	(FDR	<	0.05	and	log2FC	>	1)	across	all	progenitor	subclusters	
for	Pt-02.	h,	Differential	protein	expression	between	wildtype	and	mutant	cells	within	HSPC	cluster	of	ruxolitinib-treated	sample	
Pt-06.	Black	dots	represent	differentially	expressed	(family	wise	error	rate	[FWER]	<	0.05	and	absolute	Dz-score	>	1;	Wilcoxon	
rank	sum	test	followed	by	Bonferroni	correction)	cell	surface	proteins.	i,	CD90	(THY1	gene)	chromatin	accessibility	scores	of	
HSPCs	(HSPC1	and	HSPC2	clusters)	per	patient	for	either	untreated	or	ruxolitinib-treated	patients	included	in	Fig.	5k.	
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