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Abstract

Moving from association to causal analysis of neuroimaging data is crucial to advance our under-

standing of brain function. The arrow-of-time (AoT), i.e., the known asymmetric nature of the

passage of time, is the bedrock of causal structures shaping physical phenomena. However, almost

all current time series metrics do not exploit this asymmetry, probably due to the difficulty to

account for it in modelling frameworks. Here, we introduce an AoT-sensitive metric that captures

the intensity of causal effects in multivariate time series, and apply it to high-resolution functional

neuroimaging data. We find that that causal effects underlying brain function are more clearly

localized in space and time than functional activity or connectivity, thereby allowing us to trace

neural pathways recruited in different conditions. Overall, we provide a mapping of the causal

brain that challenges the association paradigm of brain function.

Keywords: Causality, brain function, arrow-of-time, brain dynamics.

Introduction1

The advent of functional neuroimaging has provided us with unique insight into the complex2

spatiotemporal structure of brain function1. This organization is classically characterized on the3

basis of association assessments such as functional connectivity2 that was shown to reflect, e.g.,4
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cognitive status3,4 and disease5–7. However, the usefulness of this approach has been increasingly5

questioned as it bears crucial limits in understanding neural communication and pathways8,9.6

Therefore, it is crucial to move from association to causal frameworks to improve the interpretation7

of functional neuroimaging datasets10.8

Various approaches have been proposed to extract causal structure from functional imaging time9

series. They include dynamic causal modelling11,12, multivariate autoregressive modelling13,14,10

Granger causality15,16, and more application-oriented variants of these17. Most, however, do not11

directly exploit the known asymmetric nature of the passage of time, also called the arrow-of-12

time 18 (AoT, Fig. 1A). Since the cause and effect pattern fundamentally builds upon the AoT, we13

hypothesize that defining AoT-sensitive metrics of neuroimaging time series will provide unique14

insights into the causal structure of brain function.15

Figure 1: Identifying causal effects in neuroimaging time series using the arrow-of-time. A- Since cause precedes
effect, causal effects in multivariate time series cannot be identified from metrics that are blind to the AoT. Such
symmetric metrics, e.g., mean or average correlation over time points, are equal in forward and backward data. In
contrast, asymmetric metrics are different in forward and backward data as they are sensitive to the arrow-of-time,
thereby bearing the potential of capturing causal effects. B - We use fMRI time series acquired during resting state
and seven different tasks. The AoT signature is evaluated in these time series using Eq. (2), and the amplitude of
the causal effect is assessed by comparison against null time series with no causal effects.
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To test this, we introduce a new AoT-sensitive multivariate metric and apply it to high-16

resolution functional magnetic resonance imaging (fMRI) time series from the Human Connectome17

Project19 (HCP). This metric is a multivariate extension of a previously defined measure20, and18

relies on the comparison of residuals of linear models identified from forward vs backward time19

series. More precisely, we define τ , the AoT strength, as the difference between non-Gaussianity20

of the residuals of multivariate autoregressive models of forward time series and backward time21

series (Fig. 1B & Eq. (2), details in Materials and Methods). These residuals are expected to be22

less Gaussian when computed from forward time series21, hence we expect τ to be positive. This23

metric is applied on fMRI data from 100 subjects in the resting state and when performing seven24

different tasks, thereby providing the AoT strength in each brain region, each condition, and as a25

function of time during paradigms.26

We find that in almost all conditions, the AoT strength averaged over brain regions is positive,27

i.e., the AoT is detected in fMRI time series and shapes their dynamics. Then, we show that28

patterns of brain regions acting as causal triggers or targets are more localized in space and time29

as compared to classical activity or connectivity patterns, complementing the ‘networked-brain’30

paradigm that has emerged in recent years22. Finally, the temporal fluctuations of τ during a31

task paradigm allowed us to identify a causal pathway of neural activations supporting the task.32

Overall, our results provide unique insight into the causal structure of brain function by leveraging33

the asymmetric nature of the passage of time to which almost all classical functional neuroimaging34

metrics are blind23.35

Results36

The AoT characterizes cognitive status37

We first evaluate τ in all conditions as a function of the number of time points used. The AoT38

strength was computed for each brain region across 100 folds in which subjects were randomly39

ordered and their time courses were concatenated. The median across folds was taken as an40

estimate of regional AoT strength, and averaging was then performed across regions to derive a41

whole-brain AoT heuristic, referred to as τ̄ . Fig. 2 (top) shows τ̄ as a function of the total amount42
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of considered samples and for all paradigms. In the resting state case (left panel), τ̄ progressively43

increased as more time points were included, and started to plateau from ns = 8000 samples, at44

τ̄ ≈ 0.01. Thus, when sufficient data is available, the AoT is detected in resting-state fMRI time45

series, confirming the presence of an underlying causal structure.46

Figure 2: The arrow-of-time is detected in functional magnetic resonance imaging time series. Top - Estimated AoT
strength across regions (τ̄) as a function of the number of available samples at rest (left) and for seven different tasks
(center, right), with central lines denoting the mean over regions of interest, and surfaces the standard error of the
mean. Bottom - Distribution of τ across regions using ns = 8000 time points for estimation in non-causal surrogate
data (shown here, for indicative purposes, when derived from resting state time courses), at rest, and in seven tasks.
Emot.: emotion. WM: working memory.

For task paradigms (middle and right panels), τ̄ also progressively stabilized as more samples47

were used, but the asymptotic values differed from case to case: while no sizeable τ̄ was detected48

for the gambling (purple) and emotion (yellow) tasks, it was negative for the social task (pink),49

and positive for the others at varying intensities. The largest AoT was obtained for the motor task,50

at τ̄ ≈ 0.02. Thus, whole-brain AoT strength also varies as a function of the cognitive task being51

performed. The negative AoT found in the social task is surprising and suggests that a model52

assumption has been violated, e.g., the presence of an important non-observed variable, or spatial53

variation in hemodynamic delays.54

For subsequent analyses, we focused on the results obtained using n∗s = 8000 samples, as AoT55

convergence is observed with this amount of data. Fig. 2 (bottom) shows estimated AoT strength56
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τ across regions as a violin plot for each paradigm, as well as when quantified from surrogate data57

having underwent amplitude-adjusted phase randomization24, i.e., non-causal null data. In the58

null case, τ was close to zero for all regions, spanning a narrower range of values than for any59

paradigm. With the exception of the emotion and gambling tasks, while median τ across regions60

was close to zero, mean τ was not, denoting that the aforementioned whole-brain causal effects are61

induced by a subset of brain areas.62

Mapping the causal brain63

To determine which brain regions exhibit a significant AoT, we compared them to their re-64

spective non-causal null distributions24. Fig. 3A shows the results at rest (left), and for the motor65

task when analyzing full recordings (center) or only task epochs (i.e., having excluded baseline66

periods, right). Fig. 3B summarizes network contributions to causal effects in all paradigms where67

Figure 3: Distinct regional arrow-of-time patterns are observed across paradigms. A - At rest (left), for the full
motor task (middle) and when only motor task epochs are considered (right), significant regions in terms of AoT
strength. τm (τM ): minimum (maximum) value of τ , τ− (τ+): lower (upper) significance threshold at p = 0.05
using Bonferroni correction. B - For each analyzed paradigm, respective contribution of each of seven canonical
networks25, shown separately for positive-valued and negative-valued τ . All areas (including non-significant ones)
are included in this representation. The size of a pie chart is proportional to overall AoT strength in the paradigm
at hand.
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contributions to positive and negative τ were distinguished. From Eq. (2), it is observed that a68

positive τ corresponds to the presence of a causal sink, i.e., the variable is the target of the causal69

effect. By symmetry, we associate negative values of τ to the presence of a causal source, i.e., the70

variable triggers the causal effect (details on the interpretation of positive and negative AoT values71

are found in the Materials and Methods).72

At rest, 184 regions (43.91%) showed a significant AoT, with a mild right lateralization, and73

positive-valued τ dominated (130 to 54 negative values). The most influential areas primarily74

spanned the temporal, prefrontal and parietal cortices, and belonged to the default mode and75

fronto-parietal control networks. Some canonical hubs of these high-level networks showed little76

significance, such as the posterior cingulate cortex. During the motor task, 284 regions (67.78%)77

displayed significant causal effects, with no lateralization, and positive values still dominated (214 to78

70 negative values). Contributions from the limbic and somatomotor networks were seen in addition79

to the default mode and fronto-parietal control ones. When excluding baseline moments, 33380

regions (79.47%) became significant, with no evident lateralization, and positive values continued81

to be more prominent (237 to 96 negative ones). Contributions within the somatomotor cortical82

stripe became stronger, and some other areas with marked negative values were also newly resolved83

with regard to the two above cases, such as a low-level visual region (R218, VIS18 ) and a prefrontal84

region (R178, PFC13 ). Overall, these result support the presence of stronger causal mechanisms85

when a subject engages into the motor task as compared to the resting state.86

More broadly across all task paradigms (Fig. 3B), negative-valued τ was consistently primarily87

observed within the visual network, indicating that it always acts as a causal trigger (note that this88

effect is not observed at rest). This network was also dominant in terms of positive contributions89

for the working memory and the relational tasks, indicating that it also acts as a causal target in90

these tasks.91

From causal maps to neural mechanisms92

The differences found between full and task-only recordings (Fig. 3A, middle-right) hint at93

strong temporal fluctuations of the AoT. To ascertain this, we performed a sliding window analysis94

on the motor task paradigm with a window width of W = 20 time points slid by one sample95
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until a full AoT strength time course is computed for each region, and using data from all 10096

subjects (Fig. 4A, top). Obtained results were contrasted to the activity time courses temporally97

smoothed with a moving average filter of length W , and to dynamic functional connectivity time98

courses generated using identical window settings and Pearson’s correlation coefficient as functional99

connectivity measure. In this latter case, we derived a regional measure by summing all functional100

connections of an area to the rest of the brain within each temporal window.101

Figure 4: The arrow-of-time identifies spatiotemporally localized causal effects in the motor task. A - Measures of
causal effects (τ , top), activity (middle), and connectivity (bottom) during the motor task paradigm. The paradigm
consists of movement epochs (left and right hands and feet, tongue), separated by resting blocks. B - Detailed view
of causal effects in left hemispheric brain regions showing the strongest causal effects in the interval highlighted in
panel A (tongue movement). Positive values suggest that the region acts as a sink for causal effects, while negative
values suggest that the region acts as a source of causal effects. C - Visualization of the four brain regions in panel
B, together with a putative causal pathway recruited when the subjects start moving their tongue.

As expected, clear increases in activity occurred during each of the task epochs in motor regions102

subserving hand, foot or tongue movement. Connectivity of a given region to the rest of the103

brain was consistently either positive (denoting a temporally stable regime with more prominent104

correlation to the rest of the brain), or negative (more prominent anti-correlation). On the whole,105

activity and connectivity fluctuations were relatively diffuse in time (spanning full task epochs)106

and in space (involving many different areas). In contrast, causal effect time courses were highly107

localized in space (typically only applying to individual regions at any given time point), and108

occurred within shorter time intervals with fast transition from positive (causal target) to negative109
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(causal source) values.110

Fig. 4B exemplifies the evolution of causal effects when transiting from baseline to the first111

tongue movement epoch (see highlighted area in panel A, bottom), for the four left hemispheric112

brain regions with the largest extent of temporal fluctuations of τ within this interval. Consistent113

with the paradigm’s demands, these regions were motor (SM12 and SM14, for tongue movement),114

visual (VIS24, for parsing the provided instructions), and prefrontal (PFC13, to trigger movement115

execution). When the visual cue is provided to the subjects, VIS24 becomes a causal sink. Shortly116

afterwards, PFC13 becomes a sink, as visual information is treated frontally to make the decision117

to move. This information is then transmitted to the rest of the brain, as PFC13 becomes a causal118

source (see the temporally localized negative values in its time course), while SM14 and, later on,119

SM12 become sinks. Finally, SM14 further transmits the information and becomes a source to120

trigger motion. Fig. 4C schematically summarizes these observations.121

Discussion122

Here, we introduced a new AoT-sensitive metric that captures causal effects in multivariate time123

series. Applied to fMRI data, we showed that causal effects (i) shape brain function in all conditions,124

(ii) are highly localized in space and time, and (iii) reflect underlying neural mechanisms. These125

results are found to be robust to head motion, to the use of a different metric of non-Gaussianity, and126

to varying processing strategies (see Supplementary Material). While causality has been assessed127

in neuroscience and neuroimaging using other methods17,26–28, this is to the best of our knowledge128

the first use of the AoT to interrogate causality in neuroimaging data, thereby providing a new129

and natural description of the causal brain.130

The AoT provides a new perspective into the causal structure of time series131

The term ‘arrow-of-time’ has been coined by Sir A. Eddington almost a century ago to express132

this one-way property of time which has no analogue in space 18. Rather surprisingly, identifying133

the AoT from time series is not trivial and most current AoT detection methods rely on deep134

learning29–31. Other approaches instead exploit simpler features such as the distribution20 or the135

independence32 of linear model residuals in forward and backward time series. The latter measures,136
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from which we defined τ in Eq. (2), also come with a natural interpretation in terms of causality137

as they leverage causal inference theory to detect the AoT21,32. Therefore, the interpretation of138

τ in terms of causality comes with all causal inference assumptions and guarantees, which is not139

necessarily the case of other causality detection methods used in neuroimaging studies that encode140

different forms of causality23,33.141

Identifying causal effects rather than association effects in multivariate time series comes with142

estimation challenges. For example, it is seen from Fig. 2 (see also Supplementary Material for143

further evidence) that at least∼ 1000 fMRI time points are required to identify stable AoT patterns.144

In contrast, stable patterns of functional connectivity, i.e., of correlation, can be identified from145

as little as around 100 fMRI time points34. Exploiting the non-Gaussianity of time series through146

kurtosis also requires cautious estimation of group effects as this metric relates to outliers in a147

distribution. For this reason, we took several precautions to maximize the stability of our maps:148

we evaluated our group (original and null) results from the median over folds (thus accounting149

for the selection of different subjects and making our results more generalizable), and adopted150

the most efficient sample selection scheme after evaluating several candidates (see Supplementary151

Material). Resorting to non-Gaussianity of linear models was important in order to unambiguously152

identify causal structures; indeed, linear-Gaussian approaches usually only lead to a class of possible153

models, a.k.a. Markov equivalence class, equivalent in their conditional correlation structure and154

from which no unique causal structure can be inferred21,35.155

The association brain vs the causal brain156

The current perception of brain function has been built from association metrics of func-157

tional neuroimaging data, thus probing the ‘association brain’. For example, functional con-158

nectivity2,36,37, canonical resting-state networks1,25, and most representations of brain dynamics159

such as (innovation-driven) co-activation patterns38,39, dynamic modes40, or sliding window-based160

states41–43 are defined from association metrics, e.g., correlation, which are blind to causality. By161

leveraging advances in causal inference, we defined a simple metric that exploits time series asym-162

metry induced by causal effects. This shift of the methodological paradigm lays the ground to a163

shift of canonical representations of brain function and dynamics. Furthermore, a causal represen-164
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tation of brain function also comes with promises for the cognitive and clinical use of neuroimaging165

data as the causal brain is expected to reflect underlying neural mechanisms9, as illustrated in166

Fig. 4B/C. Recent neuroimaging endeavours further substantiate this potential: after training a167

deep learning network to distinguish between temporal segments of forward and backward fMRI168

time series, Deco et al. 31 not only observed a variable AoT strength (inferred from classification169

accuracy on unseen data) across cognitive states, but also between healthy subjects and patients170

suffering from bipolar disorder, attention deficit hyperactivity disorder or schizophrenia. In an-171

other study leveraging the same framework on electrocorticography data, de la Fuente et al. 44 also172

revealed that deep sleep and ketamine-induced anesthesia lowered the differences between forward173

time series and their inverted counterparts, i.e., decreased AoT strength.174

Our results show that the topology of the the causal brain exhibits strong differences as com-175

pared to the association brain. Specifically, the dynamic tracking of the AoT in Fig. 4A revealed176

how remarkably localized it was with regard to functional activation and connectivity. While these177

two common measures reflect the overall simultaneity in activation across regions, when informa-178

tion has already arrived and been locally amplified (for instance, somatomotor areas in our motor179

task example), our AoT metric captures the arrival and departure of information. It thus more180

finely pinpoints the spatial entry and exit points of neural pathways, as well as their exact tem-181

porality. As a consequence, time-averaged representations of the causal brain might be harder to182

interpret as they destroy the rich temporal structure of causal effects (Fig. 3A). In particular, fur-183

ther work will be required to efficiently characterize the causal brain, e.g., through causal networks184

accounting for its specificities. Finally, the present association vs causal brain dichotomy differs185

from the one between functional and effective connectivity2. Indeed, using the current causal in-186

ference nomenclature, most functional and effective connectivity measures would be classified as187

association measures (see, e.g., the discussion on the nature of Granger causality in Pearl et al.23,188

Chap. I).189

Limitations and further considerations190

The proposed characterization of causal effects comes with the assumptions and limitations191

of the modelling framework in Eqs. (1)-(2). In particular, we limit our assessment to linear and192
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non-Gaussian causal effects. This is motivated by the indeterminacy inherent to linear-Gaussian193

assessments21, but does not mean that causal effects cannot be Gaussian. Future work will explore194

whether relaxing these assumptions, e.g., using convergent cross mapping45 or other nonlinear195

approaches46, provides new insights into the causal brain. Robustness to violation of causal suf-196

ficiency, i.e., the presence of non-observed variables, would also need to be further assessed47,48,197

potentially by including additional experimental variables of interest such as a record of the visual198

cue or electrophysiological variables. Then, comparisons across paradigms must be interpreted with199

caution as while the total number of samples was the same, the length of the paradigms was differ-200

ent. Thus, a distinct number of subjects contributed to the estimates in each case. This directly201

relates to the question of individual as opposed to population-wise causal effects, and further work202

will explore the potential of the causal brain as a subject-level marker49,50. Finally, our framework203

is directly applicable to other neuroimaging modalities, e.g., electro- or magneto-encephalography,204

but also outside of neuroimaging to any multivariate time series dataset.205

Conclusion206

Together, our findings suggest that a causal assessment of neuroimaging data indeed provides207

new insights into the neural mechanisms underlying brain function. More precisely, our mapping208

of the causal brain hints at key differences as compared to association paradigms of brain function209

during rest and task, e.g., in terms of spatial and temporal localization. In light of this, brain210

imaging studies have an opportunity to move beyond classical association paradigms and unveil211

information contained in neuroimaging data to which current metrics are blind.212

Materials and Methods213

Data acquisition and preprocessing214

We considered S = 100 unrelated healthy subjects from the Human Connectome Project S900215

data release (46 males, 54 females, mean age = 29.1 ± 3.7 years). We used fMRI recordings216

acquired at rest and during 7 tasks (emotion, gambling, language, motor, relational, social, working217

memory), for which ethical approval was obtained within the HCP. Our analyses focused on the first218

of two available resting state sessions, and on each available task session, purely on the left-right219
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phase encoding direction runs. Right-left phase encoding data were examined in supplementary220

analyses (see Supplementary Material).221

To generate regional fMRI time courses, for each run of interest, minimally preprocessed data222

from the HCP19,51 were taken as input. Nuisance signals were first removed from the voxel-wise223

fMRI time courses, including linear and quadratic trends, the six motion parameters and their224

first derivatives, as well as the average white matter and cerebrospinal fluid signals and their first225

derivatives. In our main analyses, the global signal was also included as a confounding variable.226

In additional analyses (see Supplementary Material), we contrasted the obtained results to those227

without global signal regression, and also examined the impacts of performing scrubbing as a final228

preprocessing step. Voxel-wise time courses were averaged within each region of a parcellation229

containing 400 cortical52 and 19 subcortical51,53 areas, for a total of R = 419 parcels, and eventually230

z-scored. To complement these analyses, we also considered cortical atlases containing 200 and 800231

regions52 (see Supplementary Material).232

AoT quantification233

To quantify AoT strength across brain regions, we extend a univariate metric defined previ-234

ously20 to the multivariate case. First, we fit a first-order multivariate autoregressive model to235

concatenated fMRI time series population-wise54, both in the forward and in the backward direc-236

tions as shown in Eq. (1):237

 xt = Af · xt−1 + εft Forward model

xt = Ab · xt+1 + εbt Backward model
(1)

where xt is of size R× 1, Af and Ab each have size R×R, and the residuals εft and εbt are of size

R×1. The model parameters are estimated using ordinary least squares55, and successive samples

that originate from separate subjects (owing to the concatenation step) are excluded. Then, the

presence of causal effects in different brain regions is assessed by comparing non-Gaussianity of

forward and backward residuals. This was motivated by the fact that residuals of linear models of

true cause-effect links (in this case, the forward model) are more non-Gaussian than the residuals

of the reversed linear models (in this case, the backward model)21. Concretely, with T the total
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number of time points, we define Ef , {εft }t=1,...,T and Eb , {εbt}t=1,...,T as the forward and

backward error distributions. Regional AoT strength τ(i) is then estimated as:

τ(i) = [K(Ef (i))−K(N (0, 1))]2︸ ︷︷ ︸
Forward non-Gaussianity

− [K(Eb(i))−K(N (0, 1))]2︸ ︷︷ ︸
Backward non-Gaussianity

∀i ∈ {1, . . . , R} (2)

where K(·) denotes the kurtosis of a distribution, and N (0, 1) stands for the standard normal238

distribution. In the case of a marked AoT, non-Gaussianity of residuals is larger in the forward239

than in the backward model, and τ(i) is positive. Region i is then a causal sink, primarily receiving240

information from the rest of the brain. By symmetry, we say that if τ(i) is negative, brain region241

i is a causal source. Note, however, that a negative value of τ suggests that one model assumption242

has been violated, e.g., due to the presence of an unobserved variable, or due to different delays in243

hemodynamic responses, and interpretation of negative values of τ(i) should be cautious. Finally,244

we also devised an alternative metric relying on the Kullback-Leibler divergence to quantify AoT245

strength (see Supplementary Material for details).246

Regional AoT patterns247

Using n∗s samples, regional AoT patterns were extracted for each paradigm of interest. For the248

compatible tasks, the same process was also conducted after the removal of baseline epochs. To do249

so, individual binarized paradigm time courses (0=rest, 1=task) were convolved with the canonical250

haemodynamic response function from SPM12, and resulting time points with a value larger/lower251

than 0.5 were treated as task/rest samples. Of note, since less samples are then available per252

subject, the obtained AoT estimates gather data from a more extended set of subjects compared253

to the full recording case.254

To study the contribution of separate networks to the AoT patterns, each cortical brain region255

was assigned to one of seven canonical whole-brain resting state networks25 through a majority256

voting procedure. Positive- and negative-valued AoT contributions were separately quantified.257
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Significance assessment258

To assess AoT significance, comparison was performed to null data for which causal effects were259

destroyed. For this purpose, for each paradigm at hand, amplitude-adjusted phase randomization24
260

was applied to the original time courses to generate nn = 100 null realizations. We considered this261

surrogate procedure in order to destroy causal effects while preserving the original auto-correlation262

structure and sampling distribution, including potential non-Gaussian effects. For each set of null263

data, using n∗s samples, AoT strength was calculated across 100 folds, and the median was taken as264

an estimate of null regional AoT strength. The mean and standard deviation were quantified for265

each regional null distribution, and τ was deemed significant if it exceeded the Bonferroni-corrected266

2.5
R

th or (100− 2.5
R )th null percentiles (τ− and τ+ in Fig. 3, respectively).267

Software availability268

All the scripts used in this work were implemented and tested in MATLAB, versions 2014b,269

2020b and 2021a (MathWorks, Natick, MA, USA). They can be freely downloaded from the fol-270

lowing link: https://github.com/TiBiUan/AoT Benchmarking.git. For figure generation, we used271

the cbrewer and BrainNet Viewer 56 (version 1.7) utilities.272
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[50] Van De Ville, D., Farouj, Y., Preti, M.G., Liégeois, R., Amico, E.. When makes you unique: Temporality
of the human brain fingerprint. Sci Adv 2021;7(42):eabj0751. doi:10.1126/sciadv.abj0751.

[51] Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., et al. The
minimal preprocessing pipelines for the human connectome project. Neuroimage 2013;80:105–124.

[52] Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.N., Holmes, A.J., et al. Local-global parcella-
tion of the human cerebral cortex from intrinsic functional connectivity mri. Cereb Cortex 2018;28(9):3095–3114.
doi:10.1093/cercor/bhx179.

[53] Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. Whole brain segmentation:
automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33(3):341–55. doi:10.1016/
s0896-6273(02)00569-x.
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