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Abstract 

Cells respond to environments by regulating gene expression to exploit resources optimally. Recent advances 

in technologies allow the ability to gather information of cellular states of its components, measuring 

abundances of transcripts, their translation, the accumulation of proteins, lipids and metabolites. These highly 

complex datasets reflect the state of the different layers in a biological system. Multi -omics is the integration of 

these disparate methods and data to gain a clearer picture of the biological state. Multi -omic studies of the 

proteome and metabolome are becoming more common as mass spectrometry technology continues to be 

democratized. However, knowledge extraction through integration of these data remains challenging. Here we 

show that connections between omic layers can be discovered through a combination of machine learning and 

model interpretation. We find that model interpretation values connecting proteins to metabolites are valid 

experimentally and reveal also largely new connections. Further, clustering the magnitudes of protein control 

over all metabolites enabled prediction of gene five gene functions, each of which was validated 

experimentally. We accurately predicted that two uncharacterized genes in yeast modulate mitochondrial 

translation, YJR120W and YLD157C.We also predict and validate functions for several incompletely 

characterized genes, including SDH9, ISC1, and FMP52. Our work demonstrates that multi-omic analysis with 

machine learning (MIMaL) views multi-omic data through a new lens to reveal new insight that was not 

possible using existing methods.  
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Main 

There are various methods to integrate multi-omic datasets, reviewed in the context of single-cell data in Miao 

et al. 20211. Multi-omic integration strategies currently are employed within three general disciplines: (1) 

disease subtyping, especially in the context of cancer heterogeneity, (2) biomarker discovery, and (3) 

discovery of biological insights2. In the context of biological insights, multi-omics integration has been 

accomplished using several statistical approaches, such as Bayesian, exemplified by PARADIGM3 and 

iClusterPlus4, or correlation-based approaches such as CNAmet5. These approaches have uncovered 

pathways involved in cancer prognosis3, drug selectivity of cancer lines6, and novel candidate oncogenes5. 

There is a need for new strategies that leverage the interactions between omics layers to produce more 

knowledge than the sum of the two datasets.  

Machine learning is a promising approach for discovering relationships between datasets. Machine learning 

techniques have found success in the integration of multi-omic datasets7 for particular prediction tasks. Some 

examples of this include supervised methods predicting cancer prognosis8, cellular state in E. coli9, patient 

survival outcomes for cancer types10, or patient drug response11. Unsupervised methods have also been 

developed for the discovery of biomarkers12 and the subtyping of cancers13. Each of these approaches rely on 

an early, intermediate, or late integration strategy, as described in Picard et al. 202114. The integration of multi-

omic data through hierarchical prediction between omic layers is relatively unexplored, though at least one 

previous paper described prediction of metabolomic changes from proteomic changes 15.  

Here we establish multi-omic integration using a tree-based regression model trained to predict metabolite 

changes from proteomic changes (Figure 1A). This allowed us to reveal new connections between proteins 

and metabolites using SHAP16, a machine learning model interpretation method. New connections from SHAP 

were experimentally verif ied to represent the amount of control a protein’s quantity exerts over a given 

metabolite. Many of these protein-metabolite connections are distant based on known genetic and metabolic 

interactions. Finally, summarizing the strength of these protein control values across all metabolites reveals 

new connections between experimental conditions. In the case where conditions are single gene knockouts, 

this clustering reveals new functions of both characterized and uncharacterized mitochondrial proteins. 

Data was obtained from a previous multi-omic study in yeast17 consisting of the proteome and metabolome of 

wild-type or one of 174 single gene knockout yeast strains grown under fermentation and respiration 

conditions, for a total of 348 multi-omic profiles after computing change relative to wild-type controls. In total, 

the overall dataset consisted of 3,690 proteins and 273 metabolites. After imputation, data was split into 

training (n=313), and test (n=35) datasets. Multiple different models for each metabolite were explored (Figure 

1B) and their performance was determined by mean squared error and R2 between test data model predictions 

and true values. The Extra Trees model was chosen as it had among the best average performance across 

metabolites (Figure 1B) and decision tree-based models have specialized model interpretation methods. 

Positive R2 scores between true and predicted quantities of metabolites in the test set were observed for nearly 

all identif ied metabolites (Figure 1C).  

To determine the learned relationships between the proteome and metabolites, TreeSHAP was used to 

calculate the contribution of each protein input to the predicted level of each of the metabolites across the 

entire dataset. One well predicted metabolite, citric acid (R2 = 0.695) was chosen as an example (Figure 1D, 

1E). The proteins with the greatest SHAP value magnitude for mef1Δ under respiration were Aat2 (25.46% of 

total magnitude) and Ald5 (4.19%) and Idh2 (3.96%) (Figure 1F). Unlike previous works that directly measure 

metabolite-protein interactions18, we cannot infer the nature of the interaction. We asked whether these 

connections reflect metabolic control by proteins by quantifying citrate in single gene knockout s trains. Citrate 

production in AAT2 and ALD5 homozygous deletion mutants were compared to the BY4743 wild-type and a 
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MEF1 deletion mutant (Figure 1F) and significantly different levels of production were seen between wild type 

and aat2Δ (Student’s T-test p-value =7.22E-4), and wild type and ald5Δ (Student’s T-test p-value = 1.53E-3), 

matching the relationships predicted by the SHAP values. This result suggests that SHAP values from model 

interpretation may reveal protein control (ProC) over a metabolite to a greater degree than correlations 

(Supplemental Figure 1).  

To further explore the relationship between proteins with the highest average ProC over citrate, GO term 

enrichment was performed (Figure 2). This analysis revealed several functional pathways that predict citrate 

(Supplemental Table 1, A-D) related to TCA cycle, stress responses, and respiration, providing further 

validation that these connections are biologically valid. This may also reflect the logic of the machine learning 

algorithm and SHAP, choosing as ProCs proteins most reflective of these functional pathways and their 

correlated proteins. 

Given that our approach discovers hundreds of new connections between proteins and metabolites, we asked 

whether these connections are largely new or known. As expected, the top discovered connections for citrate 

(Supplemental Figure 2A) were mapped onto known positive genetic and metabolic interaction networks 

(Supplemental Figure 2B). AAT2, IDH1, IDH2, and ALD5 were close to citrate, being either one metabolic 

step, or one positive genetic interaction distance from an enzyme that acts directly on citrate. The remaining 

connections were more distant, representing new protein connections to citric acid. Notably, OAC1, BAT1, 

YPK1, and PHO81 all lay at the median or above in calculated distance across all proteins and metabolites 

(Supplemental Figure 2C).  

Dimension reduction and clustering of ProC could reveal similarities between the input samples that were not 

apparent from the omic profiles alone. Because the data used here are from single gene knockouts including 

uncharacterized genes, this experiment tried to predict functions of the genes based on similar ProC profiles. 

YDL157C and YJR120W are two genes of unknown function associated with the mitochondria. Clustering of 

knockouts across metabolites (Figure 3A-B) revealed that these two knockouts frequently cluster with gene 

knockout strains related to mitochondrial translation (Supplemental Table 2). In vivo pulse-chase radiolabeling 

of mitochondrial translation in wild type and ydl157cΔ and yjr120wΔ revealed changes in mitochondrial 

translation (Figure 3C, Supplemental Figure 3, A-B).  ydl157cΔ had a global reduction of mitochondrial 

translation and absence of YJR120W resulted in a dysregulation of translation. In yjr120wΔ, Var1, Cox2, Cox3, 

and Atp6 are down regulated, with more pronounced downregulation seen for Cox3 and Atp6. Cytb however 

was upregulated. This alteration in translation might reflect previously suggested interactions of YJR120W. 

YJR120W is upstream of ATP2 on the yeast chromosome, and the deletion of YJR120W was previously noted 

to alter ATP2’s expression.17 Atp2 is a part of the F1 sector of the F1Fo ATP synthase, which regulates the 

mitochondrial translation of ATP6 and ATP819. In line with these observations, deletion of YDL157C severely 

impaired respiratory growth, while the effect of the deletion of YJR120W was less pronounced (Supplemental 

Figure 3C).  

Although the connections between translation and YDL157C and YJR120W were not discovered in the original 

paper that reported this data, closer inspection of correlation between proteome profiles resulting from gene 

knockouts may have revealed this relationship. We wondered if our summary strategy of ProC values could 

reveal new gene connections that would not be apparent from an omic profile similarity alone. To further test 

the relationships predicted by the clustering network, three additional clusters were analyzed for their 

connections to incompletely characterized genes. The first of these clusters included YJL045W, now annotated 

as SDH9 as it is a paralog of SDH1. Unexpectedly, sdh9Δ was found to lack direct connections to sdh1Δ under 

respiration conditions in the final trimmed network but rather had the greatest connection to Pil1, a key protein 

in eisosomal structure20. The eisosome is a membrane structure involved in membrane transport. One 

transporter associated with the eisosome is Can1, an arginine transporter whose deletion confers r esistance to 
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the toxic, non-proteinogenic amino acid canavanine21. Disruption of the eisosome through deletion of PIL1 has 

also been shown to provide resistance to canavanine22. To test the connection between SDH9 and the 

eisosome, the growth of deletion strains of SDH9, SDH1, CAN1, PIL1, and another connection to PIL1, ISC1, 

were tested on synthetic complete media (SC) without arginine + canavanine.  All tested strains, other than 

sdh1Δ, which had a growth defect on SC -arg (Supplemental Figure 4A), were shown to grow in the presence 

of canavanine better than wild type (Figure 3D). Additionally, all strains but pil1Δ showed significantly higher 

viability when exposed to very high concentrations of canavanine over 72 hours (Supplemental Figure 4B). 

However, as sdh1Δ showed a growth defect on SC -arg, the link between SDH1 and eisosomal function 

remains ambiguous.  

We wondered why SDH9, a gene annotated to function in complex II, would convey resistance to canavanine.    

To test the link between SDH1 and SDH9, respiratory responses were quantif ied; we used succinate as a 

source of electrons to complex II and SDH9Δ showed a response more similar to wild type than SDH1Δ. 

Oxygen consumption rate (OCR) spiked in SDH9Δ when exposed to succinate, while this was not observed in 

SDH1Δ. (Figure 3E). The different responses to succinate demonstrate the distinctiveness of the two 

succinate dehydrogenases and suggest unique functions for each. 

Also of note is the resistance of isc1Δ to canavanine. Isc1 is an enzyme involved in sphingolipid hydrolysis to 

ceramides23 and is activated by cardiolipin24. Proteins involved in cardiolipin biosynthesis are significantly 

enriched in the cluster containing isc1Δ and pil1Δ (Supplemental Table 1E). This supports an interplay 

between cardiolipin, ceramides, and the eisosome as suggested in the literature 24,25, which should be explored 

further in future studies. 

The final two clusters analyzed include another uncharacterized gene in both respiration and fermentation 

conditions, FMP52. fmp52Δ was found to have the greatest connection weight to fmp40Δ. Fmp40 is an 

AMPylator involved in the oxidative stress response26. In addition, Fmp52 had the second greatest connection 

weight to Aim25, a protein of unknown function involved in the oxidative stress response27. Based on these 

connections, it seemed likely that fmp52Δ would have an altered response to oxidative stress and therefore 

show a difference in resistance to oxidative stressors, such as hydrogen peroxide. To test this hypothesis, cells 

under respiration and fermentation conditions were exposed to hydrogen peroxide and their viability was 

determined after 30 minutes (Figure 3F, 3G, Supplemental Figure 5A). The resistance to hydrogen peroxide 

was significantly higher in both FMP40 and FMP52 deletion strains compared to WT controls. Under 

fermentation conditions, there was a significant difference between the resistance of fmp40Δ and fmp52Δ, 

while under respiration conditions there was no significant difference. This coincides with the weight of the 

connections between FMP40 and FMP52 in the network; the weight of the edge connecting them is 

substantially larger in the respiration cluster. As a separate test, fmp40Δ and fmp52Δ were grown under 

respiration conditions in a zone-of-inhibition assay with hydrogen peroxide. A similar result was found, with 

both the fmp40Δ and fmp52Δ lawns growing closer to the source of hydrogen peroxide (Supplemental Figure 

5B). 

To compare the performance of this clustering method with proteomic correlations, we looked at the 

representation of known genetic and physical interactions among the top selected connections ( Supplemental 

Table 3) from the clustering analysis and the correlations between proteomes of knockout strains. As an 

example, of the 873 known genetic and physical interactions between the genes represented by the knockout 

strains under fermentation conditions, 45 were uniquely represented across all proteomic correlations, 31 

shared by correlations and clustering, and 85 uniquely represented by clustering analysis (Supplemental 

Figure 6). 
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In conclusion, we have shown that SHAP model explanation values can reflect true biological relationships 

between the proteome and metabolome, demonstrated the novel application of SHAP model explanation 

values in the integration of multi-omic data, and illustrated the utility of this method through the characterization 

of several uncharacterized yeast genes. We foresee this method being useful as a new multi -omic integration 

technique that provides unique insight into the relationships between multi -omic levels. Additionally, the data 

we have generated may act as a reference to better understand orphan mitochondrial proteins.  

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491527
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 1. MIMaL workflow, model interpretation, and demonstration of biological applicability.  (A) MIMAL is a 

multi-omic integration method utilizing machine learning model interpretation with cluster analysis to uncover unknown 

relationships between samples. (B) Comparison of the model performance with average mean squared error across 5 

folds from 5-fold cross validation. ExtraTrees was selected for further analysis due to performance and specialized 

interpretation algorithms for decision tree based methods. (C) Performance of ExtraTrees models in predicting fold 

change in each metabolite from proteomic data, measured by R2 between predicted and experimental metabolite values 

for each held out test set. (D) Example of true versus predicted quantity of one metabolite, citric acid, with each point 

representing one sample, i.e. knockout strain under fermentation or respiration conditions. (E) SHAP forceplot for 

MEF1delta under respiration conditions where red and blue bars represent protein quantities that increase or decrease 

the prediction value of citric acid relative to the baseline, respectively. (F) Quantification of citric acid in strains selected 

f rom SHAP analysis. Strains were grown under respiration conditions, metabolites were extracted in methanol, and citric 

acid quantities were measured using targeted MS/MS. Citrate quantities reflect predictions made from SHAP.
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Figure 2. Correlated Proteins to Top 20 SHAP Values.  The proteins represented by the SHAP values with the greatest 

average magnitude were selected for further analysis by determining their correlated proteins, to better explain the 

selection of these protein quantities as markers for the prediction of citric acid through the ExtraTrees model. Proteins 

were grouped through their shared correlations and SHAP value. Groups were examined through GO term enrichment 

analysis of biological processes (Supplemental Table 1, A-D). Each group was labeled by a summary reflective of the 

other terms.  
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Figure 3. MIMaL clustering, interpretation, and validation.  (A) Overview of the method to find connections between 

conditions using dimensionality reduction, clustering, and network analysis. SHAP values were calculated for all proteins 

across all knockouts. UMAP was used to reduce dimensionality to 10 dimensions, the first two are displayed graphically. 

UMAP dimensions were clustered with OPTICS. UMAP and OPTICS were repeated 1000 times for each metabolite. (B) A 

graph was constructed where each edge is linearly proportional to the count of co-clustering across the 69,000 clustering 

repetitions and with a minimum cutoff for including edges. (C) Autoradiographic image of gel assessing mitochondrial 

translation in wild type and ydl157c∆ cells were treated with cycloheximide and using 35S-methionine for 15 minutes 

(pulse) at 30°C. The labeling was stopped by adding excess cold methionine and the temperature was increased to 37°C 

to induce protein destabilization (chase for a total of 90 min).  (D) Resistance to canavanine stress. Strains were grown on 

synthetic complete media minus arg +2.5 µg/ml canavanine for 18 days. ISC1 and SDH9 knockout strains were 

connected to pil1∆, which was previously shown to resist canavanine stress like can1∆ (positive control). Both isc1∆ and 

sdh9∆ showed resistance to canavanine compared to wild type. (E) Oxygen consumption in responses to succinate as the 

sole carbon source measured by seahorse respirometry. Responses to succinate were significantly different (p -value = 

0.001, Tukey’s HSD) between SDH1 and SDH9 knockouts. (F) The strains fmp40∆ and fmp52∆ were tested for resistance 

to hydrogen peroxide stress under respiration (F) and fermentation (G) conditions and compared using image analysis of 

drop dilution assays (Supplemental Figure 3G). Differences between all strains was significant (p-value = 0.001, Tukey’s 

HSD) under fermentation conditions, and significant (p-value = 0.001, Tukey’s HSD) between wild-type and the others 

under respiration conditions. Drop dilution image colors are inverted to enhance visibility. 
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Supplemental Figure 1.  Correlations and SHAP Values as Measures of ProC Over Citric Acid (A) Mean absolute 

SHAP values for each protein are plotted with each protein’s Spearman correlation with citric acid. The top ten magnitude 

SHAP proteins are labeled. (B) Ranking of proteins by mean absolute SHAP values and absolute Spearman correlations 

are compared. Although Aat2 is both the top rank for SHAP and correlation, the other top ranked SHAP proteins lay 

considerably lower, illustrating that the discovery of ProC of metabolites through SHAP discovers relationships beyond 

simple correlations. (C) Correlation of citric acid and protein values with members of the top ProC for citric acid. The 

usage of a linear correlation between proteins and a metabolite as a ProC can be inaccurate due to examples where the 

correlation is false, highlighted in red.(D) Correlation of SHAP values with citrate levels. Higher correlations are seen 

between SHAP and citrate than looking at direct protein folds. (E) Correlation of protein values with SHAP contributions of 

members of the top ProC for citric acid. While correlated, the SHAP values show a non-linear relationship with protein 

concentrations at the outliers, adjusting the relationship to better predict citrate.  
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Supplemental Figure 2. MIMaL Reveals New Connections Between Proteins and Metabolites.  (A) Top 10 SHAP 

values for citric acid across all conditions, sorted by mean magnitude SHAP by each protein. (B) A network consisting of 

the metabolic pathways present in S. cerevisiae was constructed from data obtained from Biocyc. Connections between 

proteins through metabolites have a weight of 6. Positive genetic interactions among all ORFs in yeast were downloaded 

f rom Saccharomyces Genome Database and added to the network with a weight of 10. Distance to citrate was calculated 

using the Dijkstra algorithm, and can be represented by 3+(# genetic interactions)*10 + (# metabolic reactions)*6. (C) The 

overall distribution of distances were plotted as a histogram. The network was organized by distance to citrate and the 

proteins representing the top 10 SHAP values for citric acid prediction were highlighted, along with their paths to citric 

acid. (D) A representation of the total number of nodes and connections between each category.  
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Supplemental Figure 3. Additional Evidence Supporting Mitochondrial Translation MIMaL connections. Wild type 
and ydl157c∆ (A) or yjr120w∆ (B) cells were treated with cycloheximide and mitochondrial translation products were 

labeled with 35S-methionine for 15 minutes (pulse) at 30°C. The labeling was stopped by adding excess cold methionine 

and the temperature was increased to 37°C to induce protein destabilization (chase for a total of 90 min). Loading controls 

are included. Differences in translation between the strains ref lect the connection between YJR120W and the 

mitochondrial ribosome genes such as MRP1. (C) Each strain was tested for their ability to grow under respiration 

conditions by comparing spotting on YPD and YPG. 
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Supplemental Figure 4. Additional Evidence Supporting Eisosomal MIMaL connections. (A) Growth of strains 

related to pil1∆ on SC -arg. (B) Resistance to canavanine was tested in strains related to pil1∆ by exposure to high 

concentrations of canavanine over 72 hours. Growth of each strain was tested before and after exposure and quantified 

using imagej. Significant differences (p-value <= 0.024, Tukey’s HSD) in growth were seen between wild-type and all 

other strains, except pil1∆.   
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Supplemental Figure 5. Additional Evidence Supporting Oxidative Stress Response MIMaL connections. (A) The 

strains fmp40∆ and fmp52∆ were tested for resistance to hydrogen peroxide stress under fermentation and respiration 

conditions. Resistance was quantified by calculating the ratio of growth before hydrogen peroxide treatment to growth 

af ter hydrogen peroxide treatment. Growth was quantified by measuring the greyscale of a circular area f rom the center of 

each drop (Supplemental Information).   (B) Resistance to hydrogen peroxide was assessed by a zone of inhibition 

assay on YPG for fmp40∆ and fmp52∆. Growth closer to the source of hydrogen peroxide is seen in both fmp40∆ and 

fmp52∆ when compared to wild type.  
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Supplemental Figure 6. MIMaL Recapitulates Unique Set of Known Connections. (A) From the set of all connections 

between knockouts across all metabolites, the most important were selected by calculating a linear regression between 

the weight and the rank of the value. All connections with a weight above 8210 were kept for further analysis. (B) Weights 

calculated from MIMAL were compared with proteome-proteome correlations from the Y3K dataset for both respiration 

and fermentation. (C) Connections between knockouts were compared with correlations between knockouts in identifying 

known relationships between genes. A set of all known positive and negative genetic interactions and physical 

interactions was compared with the set of connections and correlations. A unique set of interactions was recapitulated 

f rom both MIMaL and correlations. 
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ONLINE METHODS 

 

Yeast protein-metabolite machine learning  

A total of 873 proteins were measured in all samples. Missing protein values were imputed using the sklearn 

function KNNImputer with setting n_neighbors=2, resulting in all 3,690 protein quantities being used as input 

for the modeling task. Metabolite data was imputed using the same setting, producing 273 complete metabolite 

columns.  

 

Machine Learning and Model optimization 

The data was split into 313 random examples for training and 35 examples for testing. Multiple types of models 

were first tested 5-fold cross validation with the default parameters, and the average mean squared error 

(MSE) across the five folds was compared (see jupyter notebook on github ‘compare -models.ipynb’). Tested 

models were implemented in sklearn including: a dummyRegressor baseline, LinearRegression, Lasso, 

ElasticNet, Ridge, Support vector regression wrapped in MultiOutputRegressor, AdaBoost 28 wrapped in 

multiOutputRegression with 500 estimators, GradientBoostingRegressor with 500 estimators wrapped in 

MultiOutputRegressor, ExtraTreesRegressor with 500 estimators, and RandomForestRegressor with 500 

estimators29. All of these models except the dummy, elasticNet, and Lasso performed similarly according to the 

metric MSE; we selected extraTreesRegression because we wanted the interpretability of a tree model and the 

speed of training extraTrees.  

 

One multi-output regression extra trees model was optimized using 5-fold cross validation with the 313 training 

examples by gridsearch (see jupyter notebook on github “extratrees-gridsearch.ipynb”) with the following 

parameters: 'max_depth': [10,30, 50, 70,None], 'min_samples_leaf': [1,2,5], 'min_samples_split':[2,5,10], 

'max_features': ['log2', 'auto', 'sqrt'], 'n_estimators': [500, 1000, 1500]. The best model parameters for the polar 

metabolomics model used all the default parameters except max_depth=50 and n_estimators=500. Those 

parameters were then used to train a single output extraTrees model for each of the 273 polar metabolites. 

The trained model was used to make predictions on the 35 examples in the test set, and those true and 

predicted values were used to compute regression metrics. The R2_score and mean_square_error functions in 

sklearn summarized performance across all the metabolites. 

 

Yeast Protein-Metabolite SHAP Analysis 

SHAP values were calculated for each knockout for each metabolite model using TreeExplainer. Only 

identif ied metabolites that had a positive R2 score comparing the true versus predicted quantity were included 

in subsequent analysis. This excludes roughly 200 additional unidentified metabolites.  

 

Correlations between each protein quantity across all single knockout samples was calculated using 

Spearman’s rho and significance was adjusted using Bonferroni Correction. For  citric acid, the top 20 mean 

magnitude SHAP contributor proteins were chosen for further analysis. A network was created with citric acid 

as the central node, linked to each SHAP contributor protein. Each SHAP contributor protein was then linked to 

each correlated protein with an adjusted p-value < 0.05 and a |ρ|>0.7. Finally, correlations between correlated 

proteins were labeled with edges. Enrichment analysis was performed using ClueGO on each group of SHAP 

contributor proteins sharing positive correlations and their positively correlated proteins. 

 

Citrate quantification by direct infusion MS/MS 

Yeast strains were grown overnight in YPD at 30°C. After growth, OD595 was measured and cells were 

washed with PBS. YPDG was inoculated to an initial OD595 of 0.01 and grown at 30C for 24 hours. After 

growth, OD595 was measured and the equivalent of 0.37 OD595 at 1ml was harvested from each. These cells 

were pelleted, washed with PBS, pelleted, frozen with LN2, and stored at -80C. To extract metabolites, each 
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pellet was resuspended in 185 ul 75% methanol, placed at 100C for 5 minutes, vortexed for 30 seconds, and 

cooled on ice. Cell debris was pelleted and supernatant was used for citrate quantif ication.  

 

Mass spectrometry was performed on a Thermo Scientif ic Exploris 240, using a Thermo Scientific Nanospray 

Ion Source. One ul of each extract was directly infused into the mass spectrometer. To quantify citrate, 

targeted MS/MS was performed, targeting the ion at 191.0192 m/z. The measured intensity of the fragment at 

111.008 m/z was integrated across 811 scans to determine total citrate present in each sample. Data analysis 

was performed using pyteomics. 

 

Clustering Metabolite Control of Knockout Yeast to Predict Gene Function 

 

SHAP values of the knockouts were clustered using a combination of  Uniform Manifold Approximation and 

Projection (UMAP)30 and Ordering Points To Identify Cluster Structure (OPTICS)31 to determine clustering and 

likely function of unknown mitochondrial genes.  For UMAP, dimensionality of data (n_components) was set at 

10, neighbors (n_neighbors) was set to 3, minimum distance (min_dist) was set to 0, and the distance metric 

(metric) was manhattan. For OPTICS, minimum samples (min_samples) was set to 2. All o ther parameters 

were set to their defaults. 

 

To generate the final clusters and account for the stochasticity of UMAP, UMAP and OPTICS clustering was 

repeated 1000 times for each metabolite.  The clusters generated from each repetition were compared by 

creating a network with each node representing one of the knockouts and each weighted edge representing 

twice the number of times the knockouts clustered together of the 1000 repetitions.  

 

The weighted edges, representing the membership of clusters, were combined across known, non-repeated 

metabolites with a model performance of R2>0. To determine a subset of most relevant connections, a linear 

regression was calculated between the edge weight and the rank of the edge when sorted in descending order. 

All edges with a weight that lay above the linear regression (a weight of 8210) were included as the relevant 

connections. Nodes were clustered in Cytoscape using the Markov Cluster Algorithm (MCL Cluster in 

clusterMaker). Layout of the network was calculated using the Prefuse Force Directed Layout.    

Known Connections network 

To create the yeast metabolic network, a list of reactions, enzymes, compounds, and enzymatic reactions was 

downloaded from Biocyc32. These datasets were combined to create a metabolic network consisting of all 

known pathways and their associated enzymes. The following nodes and associated edges were removed 

from the network due to their ambiguity and relative abundance across reactions: "PROTON", "WATER", 

"ATP", "ADP", "PPI", "Pi", "Protein-L-serine-or-L-threonine", "Protein-Ser-or-Thr-phosphate", "AMP", "NAD", 

"NADH", "CO-A", "NADP", "NADPH", "CARBON-DIOXIDE", "GLT”, "S-ADENOSYLMETHIONINE”, "OXYGEN-

MOLECULE", "ACETYL-COA", "AMMONIUM", "ADENOSYL-HOMO-CYS”, "Nucleoside-Triphosphates", 

"Peptides-holder", "RNA-Holder", "Cytochromes-C-Oxidized", "Cytochromes-C-Reduced", "GDP", "Ubiquitin-C-

Terminal-Glycine", "General-Protein-Substrates".  Edges between enzymes and compounds were assigned a 

weight of 3. 

A list of all known S. cerevisiae positive genetic interactions was downloaded from Saccharomyces Genome 

Database (SGD). Every ORF absent from the network, i.e. those whose protein does not catalyze a metabolic 

reaction, were added as nodes and edges with a weight of 10 were created to link ORF nodes  with known 

positive interactions. Weighted closest distance to citrate was calculated for every node using Dijkstra’s 

algorithm. The closest distance can be summarized as 3 + 6*(metabolic distance) + 10*(positive interaction 

distance) 
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Comparison of Clustering to Proteome Profile Correlation 

A list of all possible pairwise combinations of the 174 proteins represented by the knockout strains was 

generated. A set of all known genetic and physical interactions for the 174 genes was downloaded from the 

Saccharomyces Genome Database. For each pairwise combination, it was determined if the pair was 

correlated through proteomic data, connected through clustering analysis, and if it had known genetic or 

physical interactions. The overlap of correlations and clustering connections with known interactions was 

determined and plotted using matplotlib-venn. 

Yeast strains and genetics 

All strains used for translation assays were isogenic to Saccharomyces cerevisiae W303 MAT a {leu2-3,112 

trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} obtained from Euroscarf and are listed in Supplementary Table 4. 

Chromosomal modifications were made by PCR-based amplification of cassettes followed by integration via 

homologous recombination, according to Janke et al33 and applying lithium acetate transformation according to 

Gietz and Woods34. All plasmids and oligonucleotides used for this approach are listed in Supplementary 

Table 5. Transformants were validated via growth on selection media and PCR-based confirmation of locus-

specific integration. 

Strains for the other assays were in BY4743 background for the citrate quantification or BY4741 for the 

canavanine and hydrogen peroxide assays. All strains were obtained from Horizon Discovery and are listed in 

Supplementary Table 4.  

 

Translation Assay - Media and culturing conditions 

Strains were cultivated at 30°C and 170 rpm shaking. Full media (YEP) contained 1% yeast extract (Bacto, BD 

Biosciences), 2% peptone (Bacto, BD Biosciences) and 2% glucose, 2% galactose or 2% glycerol as carbon 

source. Synthetic complete (SC) media consisted of 0.17% yeast nitrogen base (Difco, BD Bioscience). 0.5% 

(NH4)2SO4, 20 mg/l adenine, 20 mg/l uracil, 20 mg/l arginine, 15 mg/l histidine, 30 mg/l leucine, 30 mg/l lysine,  

15 mg/l tryptophan, 30 mg/l isoleucine, 20 mg/l methionine, 50 mg/l phenylalanine, 20mg/l threonine, 20 mg/l 

tyrosine, 150 mg/l valine and carbon sources as indicated above. All components were separately prepared in 

distilled water, autoclaved (25 min, 121°C, 210 kPa, except histidine and tryptophan, which were sterile filtered 

using 0.2 µm filters) and mixed before use. For solid media, 2% agar was admixed.  

In vivo labeling of mitochondrial translation products 

[35S]-methionine-based in vivo labeling of mitochondrial translation products was performed according to 

Carlström et al35 with slight modifications. Cells were grown in SC medium containing galactose as carbon 

source (SC-Gal) to mid-logarithmic phase (approx. OD600 = 1.5 -2) and washed three times in 5 ml H2O. 

Strains were subsequently washed once in 5 ml SC-Gal media without amino acids and a volume 

corresponding to OD600 = 4 was harvested and resuspended in 1.5 ml SC-Gal media without amino acids. 

Amino acids were admixed (18 µg of each amino acid, without methionine) and incubated for 10 min at 30°C, 

600 rpm shaking. To stop cytosolic translation, cycloheximide was added to a final concentration of 150 µg/mL 

and incubated for 2.5 min at 30°C, 600 rpm shaking. 3 µl of [35S]-methionine (10 mCi/ml) were added to start 

the labeling reaction. For pulse-labeling, 200 µl aliquots were harvested after 5, 10 and 15 min, mixed with 50 

µl of Stop solution (1.85 M NaOH; 1 M β-mercaptoethanol; 20 mM PMSF) and 10 µl of 200 mM cold 

methionine, and placed on ice. To follow stability of newly synthesized mitochondrial proteins, 40 µl of 200 mM 

cold methionine was added to the remaining cell suspensions and incubated at 37°C, 600 rpm (chase). 
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Thereby, 200 µl samples were harvested 30, 60 and 90 min after addition of  cold methionine, mixed with stop 

solution as described above and placed on ice. 

SDS-PAGE and Immunoblotting 

Trichloroacetic acid was added to [35S]-methionine-labeled samples with a final concentration of 14%, 

incubated for 30 min on ice and subsequently centrifuged for 30 min, 20.000 g at 4°C. Supernatants were 

carefully removed and pellets rinsed once in 1 ml 100% acetone. After further centrifugation for 30 min at 

20.000 g at 4°C, supernatants were removed and pellets resuspended in 75 µl sample buffer (50 mM Tris-HCl, 

2% SDS, 10% glycerol, 0.1% bromophenol blue, 100 mM DTT; adjusted to pH 6.8). Subsequently, samples 

were incubated for 10 min at 65°C, 1400 rpm shaking. 30 µl of the sample were loaded on 16%/0.2% SDS 

polyacrylamide/bis-acrylamide gels. After separation, proteins were transferred to a nitrocellulose membrane, 

which was stained with Ponceau S. Protein standard bands (PageRulerTM Plus Prestained Protein Ladder, 

ThermoFisher) on the nitrocellulose membrane were marked with diluted [35S]-methionine solution and the 

membranes were applied for autoradiography. Detection was performed with a Fujif ilm FLA-9000 

phosphorimager. 

Membranes were subsequently applied for immunoblotting, using Mrp136, Mrpl3637 and Tom70 (kind gift from 

Prof. Rapaport, University of Tübingen) specific antibodies, as well as anti-rabbit secondary antibody (Sigma, 

A0545). 

Drop dilution assay 

To monitor cellular growth, yeast strains were cultivated in YEP media containing either glucose or glycerol to 

mid-logarithmic phase (approx. OD600 1.5-2). Cultures were washed three times in YEP media without carbon 

source and a volume corresponding to OD600 = 1 was harvested. Samples were resuspended in 1 ml YEP 

media without carbon source and three serial 1:10 dilutions thereof were created. 3 µl of cell suspensions were 

spotted on YEP agar plates either containing glucose or glycerol as carbon source. Plates were incubated for 2 

days at 30°C and photographed with a VWR GenoPlex system. 

Canavanine Drop Dilution 

Cultures were grown for 18 hours in 1ml YPD for BY4741 or YPD + G418 for the knockout strains. Cultures 

were centrifuged at 3000 rcf for 3 minutes and pellets were resuspended in 3ml YPG. After 24 hours, the 

cultures were pelleted, washed with SC -Arg +glycerol and adjusted with SC -Arg +glycerol to an OD660 of 0.1 

and plated onto SC - Arg +glycerol or SC - Arg +glycerol +canavanine at 0.25 μg/ml  plates with dilutions of 1, 

1:10, 1:100, 1:1000, 1:2000, 1:4000, 1:8000, and 1:16,000. Plates were incubated at 30°C and pictures were 

taken after 1 week and again at 18 days. Images of colony formation were captured using ImageLab software 

with a Bio-Rad GelDoc. 

Canavanine Viability 

Cultures were grown for 18 hours in 1ml YPD or YPD + G418. Cultures were centrifuged at 3000 rcf for 3 

minutes and pellets were resuspended in 3ml YPG. After 24 hours, the cultures were pelleted, washed with SC 

-Arg +glycerol and adjusted with SC -Arg +glycerol to an OD660 of 0.2. 100 μl was adjusted with SC -Arg 

+glycerol to an OD660 of 0.1 and plated onto YPD plates with dilutions of 1, 1:10, and 1:100 and refrigerated 

at 3°C for 72 hours. The remaining culture was adjusted to an OD660 of 0.1 with SC -Arg +glycerol +1200 

μg/ml canavanine(final concentration 600 μg/ml) and incubated with shaking at 30°C for 72 hours. Cultures 

OD660 were centrifuged, washed, and adjusted to 0.1 OD with SC -Arg +glycerol. Cultures were then plated 
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onto the previously refrigerated YPD plates at dilutions of 1, 1:10, and 1:100. Plates were incubated at 30°C for 

18 hours. Images of colony formation were captured using ImageLab software with a Bio -Rad GelDoc. 

Hydrogen Peroxide Viability 

Cultures were grown for 18 hours in 2ml YPD or YPD + G418. 1ml of each culture was centrifuged at 3000 rcf 

for 3 minutes and pellets were resuspended in 3ml YPG and incubated for 24 hours at 30°C. To the remaining 

preculture, 2ml YPD was added and incubated at 30°C for 5 hours. For each set of cultures after incubation, 

the cultures were pelleted, washed with YPD or YPG and adjusted with YPD or YPG to an OD660 of 0.2. For 

fermentation, 100 μl of each culture was added to 100µl YPD or YPD + 128 mM hydrogen peroxide. For 

respiration, 100µl of each culture was added to 100µl YPG or YPG +1024 mM hydrogen peroxide. Cultures 

were exposed to hydrogen peroxide for 30 minutes. After treatment, cells were plated onto YPD plates at 

dilutions of 1, 1:10, 1:100, 1:1000. Plates were incubated for 18h at 30°C.  Images of colony formation were 

captured using ImageLab software using a bio-rad GelDoc. 

Quantification of Images 

To quantify the growth of the drop dilution assays, images were exported in the TIF format at a DPI of  600. 

ImageJ was used to measure the brightness (R+G+B)/3 of circles 0.015 in^2. Six circles were used as a 

background and circles measuring the drops were centered. Circles were drawn after each measurement to 

mark each location (Supplemental Data). To calculate growth ratios, the average background measurement 

was subtracted from each brightness measurement. Then the experimental brightness was divided by the 

control brightness for each strain to calculate a ratio of growth. Average ratios were plotted in  seaborn and 

differences between strains were compared using ANOVA and Tukey’s Post Hoc test.  

Hydrogen Peroxide Zone of Inhibition 

Cultures were grown for 18 hours in 1ml YPD or YPD + G418. 1ml of each culture was centrifuged at 3000 rcf 

for 3 minutes and pellets were resuspended in 3ml YPG and incubated for 24 hours at 30°C. The OD660 was 

adjusted to 1 for each culture. 1ml of culture was plated onto 25ml YPG plates and allowed to dry. To create 

the hydrogen peroxide gradient, a central section of each plate was removed using a 1ml pipette tip. 100µl 3% 

hydrogen peroxide was added to the central hole and allowed to diffuse. Plates were incubated for 1 week at 

30𝆩C. Images of lawn formation were captured using ImageLab software using a bio-rad GelDoc. 

Seahorse Assay 

To prepare the seahorse plate, 50 ul of poly-L-lysine (0.1 mg/ml) was added to each well and allowed to sit for 

2 hours. The solution was aspirated and washed with 100ul sterile water. The coated plate was stored at 3C 

until ready for the assay. On the day of the assay, the plate was brought to room temperature and 80 ul of 

seahorse media was added to each well. An additional 100 ul of seahorse media were added to wells acting as 

baselines. Injections were prepared to have a final concentration of 5mM ethanol or succinate, 1uM FCCP, 

1uM rotenone, and 1uM antimycin A. 

To prepare cells for the seahorse assay, cells were grown overnight in 1 mL YPD. After growth to stationary 

phase, cells were pelleted and resuspended in 4 mL YPG. Cells were grown for  25 hours. Cells were pelleted 

and resuspended in seahorse media (6.6g/l YNB + NH4SO4) to a final OD660 of 0.38. Each sample was 

diluted an additional 1:5 in seahorse media and 100 ul of culture were placed into each well of the prepared 

seahorse plate. The plate was centrifuged at 250 rfc for 3 minutes and incubated at 30C for 30 minutes.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.11.491527doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.11.491527
http://creativecommons.org/licenses/by-nc/4.0/


 

Plates were measured on a Seahorse XF-96. A total of 18 measurements of the oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR) were taken over 96 minutes, with 10 technical replicates for 

each strain. Six initial measurements were taken as a baseline, six measurements were taken after the 

injection of succinate, three measurements after the injection of FCCP, and three final measurements after the 

injection of rotenone/antimycin A. Data collected was analyzed using Agilent Wave and pandas and plotted 

using seaborn and matplotlib. 

Code and data availability 

The code and data are available at https://github.com/jessegmeyerlab/MIMaL.  

Supporting data is available from zenodo (https://doi.org/10.5281/zenodo.6537297). 
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Supporting data: https://doi.org/10.5281/zenodo.6537297  

 

Supporting Information 1. H2O2 Curve. This folder contains images of yeast colonies from left to right, 

BY4741, fmp40Δ, fmp52Δ, and set4Δ after treatment with several concentrations of hydrogen peroxide under 

both respiration and fermentation conditions. 

 

Supporting Information 2. Canavanine Viability. This folder contains images of yeast drop dilution colonies 

of strains, from left to right, BY4741, isc1Δ, can1Δ, sdh1Δ, sdh9Δ, and pil1Δ on YPD plates after 24h. Rows 1, 

3, and 5 were treated for 72h with canavanine. Black circles mark areas used for quantif ication by measuring 

grayscale for Supplemental Figure 4 C. Original pictures are in the folder originals. 

 

Supporting Information 3. Canavanine Drop Dilution. This folder contains images of yeast drop dilution 

colonies of strains, from left to right, BY4741, isc1Δ, can1Δ, sdh1Δ, sdh9Δ, and pil1Δ on SC -arg plates with or 

without 2.5ug/ml canavanine after one week or 18 days. Rows represent 1:10 dilutions from top to bottom. 

 

Supporting Information 4. H2O2 Zone of Inhibition. This folder contains images of yeast lawns from each 

strain, BY4741 (1, 5, 9, 13), fmp40Δ (2, 6, 10, 14), fmp52Δ (3, 7, 11, 15), and set4Δ (4, 8, 12, 16) after growth 

on YPG with hydrogen peroxide added to the center of each plate.  

 

Supporting Information 5. H2O2 Viability. This folder contains images of yeast drop dilution colonies of 

strains, from left to right, BY4741, fmp40Δ, fmp52Δ, and set4Δ and repeated on YPD (fermentation folder) or 

YPG (respiration folder) plates after 24h. The right half were treated for 30 minutes with hydrogen peroxide. 

Black circles mark areas used for quantif ication by measuring grayscale for Figure 3 F,G. Original pictures are 

in the folder originals. 

 

Supporting Information 6. Cytoscape Network. This file is the full network for Supplemental Figure 2 C. 

This includes labels and distances for all nodes.  
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Supplemental Tables: 

 

Supplemental Table 1. GO enrichment. These tables consist of significantly enriched GO terms for each 

group of correlated proteins listed in Figure 2 and of the cluster containing PIL1Δ_resp in Figure 3 B. For each 

table, the GO ID, Term, Ontology Source, term p-value, term corrected p-value, group p-value, group corrected 

p-value, GO level, GO group, percentage of associated genes, number of associated genes, and the 

associated gene names are listed. The first tab contains the GO terms associated with the ncRNA group. The 

second tab contains the GO terms associated with the Electron Transport Chain group. The third tab contains 

the GO terms associated with the Stress Response group. The fourth tab contains the GO terms associated 

with the TCA Cycle group. The fifth tab contains the GO terms associated with the pil1Δ_resp cluster. 

 

Supplemental Table 2. Network Clusters. This table contains the membership of each condition, i.e. 

knockout strain under fermentation or respiration, to each cluster present in  Figure 3 B. 

 

Supplemental Table 3. Selected Connections. This table contains the list of all connections and associated 

weights selected through the linear regression method (Supplemental Figure 4A) and displayed in Figure 3 

B. 

 

Supplemental Table 4. Yeast Strains Used in this Study. This table consists of the names of all S. 

cerevisiae strains used in this study, along with their genotype, and their source. 

 

Supplemental Table 5. Oligonucleotides and PCR templates used for chromosomal modification and 

respective control experiments. This table lists the modification intended by each listed oligonucleotide, the 

oligonucleotide’s sequence, and the PCR source for each oligonucleotide. 
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