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T-cell receptor (TCR) repertoires provide a historical record of antigen
exposure. However, the dynamics of TCR repertoires in healthy indi-
viduals remain largely uncharacterised. How much of the repertoire is
under immune selection in healthy individuals? Do groups of sequences
under immune selection share similar dynamics due to convergent speci-
ficity? What is the relationship between dynamic similarity and sequence
similarity of TCRs? Here we develop a statistical framework for identi-
fying clonotypes under immune selection in time series repertoire data.
Applying this framework to serially sampled repertoires collected over
the course of a year from 3 healthy volunteers, we are able to detect hun-
dreds of TCRs undergoing strong immune selection whereby clonotype
frequencies can change by orders of magnitude over timescales as short
as a month. Clonotypes under immune selection belong to a handful of
distinct dynamic clusters each of which show highly coordinated tem-
poral behaviour suggesting a common immunogenic stimulus. Whilst
a subset of clonotypes within dynamic clusters show shared amino acid
motif usage, most do not, suggesting the same immunogenic stimulus elic-
its a diverse TCR response. Conversely, shared amino acid motif usage
alone identifies far fewer clonotypes under immune selection and these
clonotypes do not routinely exhibit correlated temporal behaviour. These
results highlight the potential of using information contained in the dy-
namics of TCR repertoires for identifying clonotypes responding to the
same immunogenic stimulus in a sequence agnostic way.
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Introduction

The T-cells of the adaptive immune system recognise antigens
via T-cell receptors (TCR) (/). The TCR is a heterodimer
composed of an o and a 5 chain, both of which are generated
following a highly variable somatic rearrangement process
known as V(D)J recombination (2). As this recombination
happens independently in each one of the ~ 10'! T-cells
in the human body, this generates a vast number of distinct
TCRs (referred to as the TCR repertoire) with an estimated
105 — 10® unique sequences at the level of the [ chain
alone (3-7). Multiplex PCR combined with deep amplicon
sequencing has been routinely used to provide quantitative
surveys of the the TCR repertoire (usually at the level of
the B chain) (3, 8—11). These surveys show that TCRS
clonotypes span multiple orders of magnitude in frequency,
with most clonotypes being very rare (6, 7). The frequency
of a clonotype depends on multiple factors, including the
generation probability of a given V(D)J rearrangement
(2, 12-14), thymic selection (/5, 16) and clonal expansion
of T-cells following antigen recognition (/7). The temporal
dynamics of clonotypes are therefore shaped by antigen
exposure history, including viral infections (/8), vaccines
(19-22) and immunotherapy (23-25). This raises the
prospect that TCR repertoires and their dynamics may be
able to be used for the purpose of disease detection (9, 26-28).

An important first step in exploiting TCR repertoires as
a detector of disease is developing a better understanding
of which TCR sequences are important in recognising and
responding to which diseases. A number of strategies have
been developed to identify TCRs responding to a given
antigen from a static repertoire snapshot. These include
approaches based on amino acid sequence similarity and
motif usage (29, 30), identifying sets of sequences that are
over-represented relative to their generation probabilities
(14, 31), and enrichment of disease associated public TCRs
in large case-control cohorts (9, 27). However, each of these
approaches have associated limitations. Methods based on
sequence similarity are limited by an incomplete understand-
ing of the mapping between MHC-peptide complexes and the
TCRs that bind them. Strategies based on identifying disease
associations in large case-control cohorts are restricted to
the small fraction of the sequences in the repertoire that
are highly public, potentially missing signal from the large
number of private clonotypes.

Longitudinal data in which repertoires are generated from
the same individual over time have the potential to overcome
some of these challenges by identifying clonotypes with
shared dynamic behaviour (e.g. those undergoing a synchro-
nised clonal expansion (32)). However, most longitudinal
analyses have been focused on detecting repertoire changes in
response to a specific immune stimulus (e.g. a vaccine) across
small numbers of samples collected over short timescales
(18-22). Because a common pathogen likely drives a highly
coordinated temporal response in the TCRs that recognise it,
analysing repertoire dynamics across longer periods of time
with many samples has rich information that can be used to
identify disease-related clonotypes in a sequence-agnostic
way. However, to achieve this requires a three key elements.
First, one requires highly quantitative diverse repertoires
sampled over many time points and generated in a standard
way. Second, one needs to be able to distinguish TCRs that
are under immune selection from those that are fluctuating
purely due to technical noise. Third, one requires robust ways
of grouping sequences exhibiting highly correlated dynamic
behaviour above what would be expected by chance.

Here we develop a statistical model of technical noise in TCR
repertoire data and use this to identify outlier clonotypes that
are under immune selection. We then develop a “dynamic
similarity” metric to rationally group clonotypes into clusters
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Fig. 1. Identifying clonotype trajectories under immune selection. A. Example trajectories from Subject03 showing a clonotype exhibiting stable (grey),
modest (pink), and large (red) temporal fluctuations in frequency. B. Variance in clonotype frequency across one pair of samples collected within 1 month
of each other versus mean frequency shows the linear relationship (data points and best fit line) consistent with a sample size N, substantially smaller
than sequencing depth (dashed line). Linear fit excludes data points with very low frequencies (left of the dotted line) to remove discrete number effects.
C. Distribution of L for simulated neutral trajectories (gray) and real data (red) across all values of k. Black solid line indicates the expected theoretical
distribution. D-F. Clonotype trajectories across the 3 subjects where coloured trajectories are those with strong evidence of being under immune selection
(FDR<0.1%). Colour indicates log-fold change (LFC) of the most extreme jump.

with a shared temporal behaviour. This approach allows us to
ask whether clonotypes within a dynamic cluster exhibit sim-
ilarities at the sequence level, and conversely, whether clono-
types with shared sequence features show similar dynamics.
Our study highlights the potential of quantitative longitudinal
TCR repertoire analysis for the detection of broader families
of public and private disease-associated TCRs and raises some
potential limitations of using purely static sequence similarity
based approaches when analysing full repertoires.

Results

Detecting clonotypes under immune selection. To ex-
amine the dynamics of TCRf repertoires over time in healthy
individuals we considered data from Chu et al. (//) which
consists of TCR/3 sequencing data from serial blood sam-
ples collected at baseline and 1, 2, 3, 5, 6, 7, and 12
months after, from three healthy female volunteers (Figure
1A, dashed lines). Repertoire data was generated using the
immunoSEQ assay (Adaptive Biotechnologies) with DNA de-
rived from ~ 10° peripheral blood mononuclear cells (PBMC)
(11). Plotting the frequency of clonotypes over time (“tra-
jectories”) reveals a rich range of dynamic behaviour (Figure
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1A). While some trajectories remain stable through time (grey
data points), others exhibit large fluctuations, changing by up
to 4 orders of magnitude over month-long timescales (pink
and red data points). However, without a quantitative under-
standing of technical noise from repertoire sequencing, it is
not clear to what extent these fluctuations are explained by
statistical variance versus immune selection.

The experimental process of obtaining frequencies for
each TCR clonotype effectively involves two sampling steps:
one due to PCR and the other due to sequencing. A sample of
blood containing 105 PBMCs is expected to contain between
450,000 — 700,000 rearranged TCR templates (33), a subset
of which will be successfully amplified during multiplex PCR.
Estimating clonotype frequencies from this amplified DNA
using read counts introduces further sampling noise due to fi-
nite read depth. To determine the relative contributions from
each of these two sampling processes, we carefully quanti-
fied levels of technical noise from samples collected within 1
month of each other (Figure 1B, Methods). Variance in clono-
type frequency due to sampling noise is expected to scale lin-
early with frequency with an amplitude of ~ 1/N, where N,
is the effective sample size, resulting from the combination
of both sampling steps. The variance observed from samples
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collected within 1 month of each other does indeed increase
linearly with clonotype frequency, with effective sample sizes
100,000 < N, < 300,000 — two orders of magnitude smaller
than the sequencing coverage for this data. The fluctuations
in frequency observed between samples collected within 1
month of each other closely matched the fluctuations observed
in technical replicates (Supplementary Figure S1). This indi-
cates that levels of technical noise are dominated by the finite
number of rearranged TCRS templates captured during the
multiplex PCR.

Having established that technical noise is dominated
by fluctuations consistent with an effective sample size
100,000 < N, < 300,000, we are able to develop a method
to rationally identify trajectories that fluctuate by more than
is expected due to sampling effects. We first downscale the
sequencing data to [N, to ensure that variation in read counts
dominates the technical noise (Methods). This enabled us to
test how extreme a clonotype’s change in frequency is from
one time point to the next by applying Fisher’s Exact Test to
the down-scaled read counts. This down-scaling is crucial to
avoid false positives resulting from assuming that the noise is
driven by sequencing depth.

In order to integrate information about fluctuations in fre-
quency across the entire longitudinal time-course, we consid-
ered the statistics of the most extreme jump in frequency along
its trajectory. To do this we considered a statistic, L, which
is the maximum of the —In p-values, across each of the &
recorded Fisher’s Exact Test p-values for a given clonotype:

L =max(—In([p1,..px))) )

Large positive values of L indicate trajectories that have
extreme jumps in frequency. To determine what value of L
likely identifies trajectories whose fluctuations are unlikely
to result from technical noise we developed an analytical ex-
pression for the distribution of L expected under neutrality
(Methods). To check that this analytical expression does in-
deed capture the distribution of L expected under the null
model, we simulated the trajectories of clonotypes across 8
time points in the absence of any immune selection (Meth-
ods). To closely match the real data, we sampled 100,000
— 300,000 clonotypes (modelling PCR) from an underlying
frequency distribution that closely matches the observed dis-
tribution (Supplementary Figure S2) and then generated read
counts for these clonotypes by subsequently sampling to a to-
tal depth of 10 million “reads” (modelling sequencing). These
sequencing counts were then down-scaled following the same
procedure as used for the real data. The observed distribu-
tion of L for these simulated data (Figure 1C, gray histogram,
Supplementary Figure S3) closely matches our analytical ex-
pression (Figure 1C, black line). However, when the same
procedure is performed on the real data, we observe a clear
tail of non-neutral clonotypes (Figure 1C, red histogram, Sup-
plementary Figure S3).

TCR repertoires are largely stable over 1 year. Applying
our framework to each subject we identified 30-140 clono-
types per subject whose trajectories showed evidence of im-

mune selection over a period of one year (FDR=0.1%, Fig-
ure 1D-F). Across each subject a total of 6,234, 5,235 and
8,157 clonotypes passed our filtering (Methods) meaning that
> 98% of clonotypes exhibit no evidence of changing fre-
quency over the course of a year at this level of statisti-
cal power. The 0.5-1.7% of clonotypes showing evidence
of being under immune selection sometimes show dramatic
changes in frequency (up to 4-orders of magnitude over a 1-
2 month time interval) and appear to change in coordinated
waves of expansion or contraction (Figure 1D-F).

Dynamic similarity and clonotype clusters. We reasoned
that T-cells responding to a common stimulus might show
highly coordinated dynamic behaviour. To assess how dy-
namically similar two clonotypes are through time we cal-
culated the Pearson’s correlation coefficient, r, between their
trajectories (Methods) and assigned a dynamic distance, d, be-
tween the trajectories using d = /1 — r. Trajectories exhibit-
ing highly correlated dynamic behaviour have small dynamic
distance (e.g. Figure 2A) while dissimilar trajectories have
a large distance (e.g. Figure 2B and C). Using this distance
metric we were able to build trees detailing the dynamic sim-
ilarities of all sequences under immune selection in a subject
(Figure 2D, Supplementary Figure S4). We observe a large
fraction of clonotypes which coalesce at low branch heights,
indicating a number of distinct clusters with highly similar
dynamic behaviour. To determine how robust these dynamic
clusters are, we considered an ensemble of 1,000 trees built by
randomly permuting the time series for each clonotype (Fig-
ure 2E and F). Permuted trees show a much smaller fraction of
clonotypes coalescing at low branch heights (Figure 2G) indi-
cating that the strong groupings observed in the real data are
unlikely to be a result of clustering noise. To determine a tree
height threshold for identifying dynamic clusters we consid-
ered the height which maximised the difference in the fraction
of clonotypes assigned to a cluster between the observed and
permuted data (Figure 2G and Supplementary Figure S5).

Using this approach we identified a total of 34 dynamic
clusters across the three subjects (Figure 3 and Supplemen-
tary Figure S4). The dynamic clusters we identify are com-
posed of between 2-36 clonotypes with the majority of rear-
rangements within a cluster being productive (Figure 3). In 11
out of the 34 dynamic clusters we observe a characteristic dy-
namics consisting of a rapid expansion in clonotype frequency
(increasing by factors of between 10 and 1000-fold over <1-2
months) followed by a slower decay (decreasing by ~10-fold
over 4-8 months).

Does dynamic similarity imply sequence similarity? We
next considered whether there was evidence of sequence-
level similarity for clonotypes exhibiting similar temporal be-
haviour (i.e. sequences within the same dynamic cluster).
Previous work has demonstrated that shared biological func-
tion can manifest in enrichment for certain specific sequence
motifs, especially in the complementarity-determining region
3 (CDR3) (20, 29, 30, 34, 35). We therefore used GLIPH2
(29, 30) to look for statistical enrichment of short amino acid
motifs within dynamic clusters. We find that 6 out of the
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E-F. Same as D, but corresponding to random permutations of each clonotype. G. The fraction of clonotypes assigned to a cluster as a function of tree
cutting height threshold. The real data is a strong outlier relative to permuted data. The chosen height threshold (point of maximum difference) is shown

by dashed line.

34 dynamic clusters do indeed contain at least one enriched
amino acid motif (p < 0.001, Fisher’s Exact Test), although
these motifs are only seen in a subset of clonotypes within
a cluster (Figure 3, Supplementary Figures S6, S7 and S8).
Consistent with these motifs being a result of convergent bio-
logical function, the position of enriched motifs in the CDR3
sequence appears to be conserved across most clusters (Fig-
ure 3, Supplementary Supplementary Figures S6, S7 and S8)
although more data is required to establish this conclusively.
We hypothesise that the CDR3 sequences with the same en-
riched amino acid motif at similar positions within dynamic
clusters are candidates for clonotypes which are recognising
the same MHC-peptide complex.

Does sequence similarity imply temporal similarity?
Next we sought to determine whether sequences with statis-
tically significant enrichment of motifs showed evidence of
shared dynamics. We reasoned that if the sharing of highly
improbable motifs implies a shared antigen specificity, se-
quences with shared motifs would also show highly corre-
lated dynamic behaviour. To test this we applied GLIPH2 to
the CDR3 sequences from all clonotypes showing evidence
of immune selection across each of the 3 individuals. This
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sequence-only based approach for identifying sequences un-
der immune selection identified a total of only 24 sequences
with statistically significant enrichment of 6 different motifs
(p < 0.001, Fisher’s Exact Test). Surprisingly, however, we
find that in only 2 of these 6 groups do a subset of the se-
quences belong to the same dynamic cluster (Figure 4 clusters
A and C). In the other 4 groups the sequences show little evi-
dence of shared dynamics: groups are composed of sequences
that derive from different dynamic clusters (Supplementary
Figure S4). This result highlights that, in some cases, se-
quences which share statistically significant motif usage may
not in fact share antigen specificity as their dynamics show
little evidence of being correlated.

Hitchhiking of non-productive rearrangements. Five of
the dynamic clusters identified consist of a productive CDR3
paired with a non-productive CDR3 (C8 in subject 1, CI,
C2, C6 and C9 in subject 2 and C4 in subject 3). We rea-
soned that these pairs are likely to be examples of lineages in
which V(D)J recombination resulted in a non-productive re-
arrangement with the cell subsequently producing a produc-
tive rearrangement by recombining the homologous chromo-
some (2). These pairs provide useful insights into system-

Dynamics of TCR3 repertoires from serial sampling of healthy individuals
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Fig. 3. Clonotypes exhibiting highly similar dynamic behaviour show shared sequence features. (A-C) The top 6 most significant dynamics clusters
(highlighted trajectories) across subjects 01, 02 and 03 respectively against the background of all sequences under immune selection in that subject (grey
trajectories). CDR3 amino acid sequences are annotated on the right-hand side and statistically significantly enriched motifs (GLIPH2) are highlighted in
bold colour.
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Fig. 4. Non-neutral clonotypes sharing sequence motifs only partially show similar temporal behaviour. Sequence-based clusters identified by
GLIPH2 on all non-neutral TCR sequences show a mixture of temporally coordinated and uncoordinated clonotypes.

atic errors in TCRf frequency measurements because it is
likely that the underlying frequency of both the productive
and non-productive CDR3 sequence in the pair is the same.
Despite TCRf sequencing approaches using spike-ins of syn-
thetic templates with known frequencies in order to reduce
biases (36), pairs of non-productive and productive CDR3s
can differ in their frequencies by a substantial factor (e.g. C1
in subject 2), suggesting that considerable biases may remain
likely resulting from differences in primer binding efficiencies
in the early rounds of PCR.

Discussion

Here we have developed a framework for identifying indi-
vidual TCR clonotypes that are under immune selection in
healthy individuals from longitudinal repertoire data. The
basis of our method is to quantify levels of technical noise
expected in the absence of immune selection and use this to
identify clonotypes whose fluctuations exceed those expected
due to statistical noise. By applying this framework to TCR
repertoires from three healthy individuals collected over a pe-
riod of a year across 8 serial samples, we show that the ma-
jority of the repertoire is highly stable. However, a minority
of clonotypes exhibit highly coordinated waves of immune se-
lection and in some of these waves, there is evidence of shared
antigen specificity.

Because the TCR repertoire is so diverse, the majority of
clonotypes exist at low frequencies and are sampled in mod-
est numbers of sequencing reads. In data such as these, it is
crucial to accurately understand the fluctuations expected due
to technical noise. We have shown that sequencing read count
data can underestimate the expected fluctuations in clonotype
frequencies. By carefully considering the frequency fluctua-
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tions observed across neighbouring time points and technical
replicates, we have shown that for these data fluctuations are
driven by the number of template molecules captured in the
initial stages of PCR rather than by sequencing depth. To ra-
tionally detect clonotypes that are systematically expanding
or contracting, estimates of the number of templates captured
are needed rather than raw sequencing coverage. For most
data this also implies that more accurate estimates of clono-
type frequencies require larger quantities of DNA at the out-
set of PCR rather than deeper sequencing. A similar frame-
work developed for RNA based RepSeq data (32) recently in-
ferred that technical noise is consistent with template copies
of between 10% — 107. This may indicate that the number of
templates captured in RNA based RepSeq data could be sub-
stantially higher than for DNA thus reducing technical noise.
However, it is not clear that these more accurately reflect true
clonotype frequencies as expression levels may vary substan-
tially from clonotype to clonotype.

The clonotypes that our framework identifies as being
under immune selection fall into clear dynamic clusters with
clonotypes showing highly similar temporal patterns. These
dynamic patterns often have a characteristic expansion-decay
profile which is captured over the course of a year (e.g. Cl
subject 3). Accurate estimation of the expansion / decay ki-
netics is challenging because of the non-uniform time inter-
vals between samples and because of it is often not possible
to observe the clonotypes at their pre-expansion levels due to
finite depth (e.g. C2 subject 1). However it appears that ex-
pansion is more rapid than decay. We find that the number of
unique TCRs in a dynamic cluster is smaller than the numbers
reported from vaccine studies (/9). This may be because the
unknown stimuli are less immunogenic than vaccines, or be-
cause many more clonotypes exhibiting similar dynamic be-
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haviour exist at frequencies below our detection limits.

Previous work has shown that certain CDR3 sequence
motifs have been linked to shared functional specificity of the
TCR (29, 30). We find a handful of examples where shared
dynamics also manifests in shared similarity at the sequence
level with conserved motifs at similar positions in the CDR3
sequence. However we also find many examples of sequences
exhibiting highly similar dynamics with no apparent sequence
level similarity. This observation is consistent with the fact
that shared motifs will only be observed in TCRs that bind the
same antigen, however a given stimulus (e.g. a virus) likely
presents many different antigens that are recognised by TCRs.
Indeed with improved data it may be possible to estimate how
many distinct antigens are eliciting an immune response by
looking for distinct clusters of CDR3 sequences within the
same dynamic cluster.

In some cases, pairs of sequences exhibiting highly sim-
ilar dynamic behaviour are composed of a non-productive se-
quence paired to a productive one. Previous single-cell studies
have found that a second V(D)J recombination can happen in
a T-cell after the first resulted in a non-productive rearrange-
ment, and that this is not a rare occurrence (2). The existence
of such pairs with highly similar dynamics observed in the
data here strongly suggests they are in the same clone and
would thus have the exact same underlying frequency. How-
ever, the estimated frequencies in these pairs can differ by an
order of magnitude. This provides evidence that, despite the
use of synthetic templates as an error correction strategy to re-
duce systematic biases (36), it is likely some systematic biases
remain in the frequencies reported from the Adaptive Biotech-
nologies platform.

Better characterisation of immune repertoire dynamics
in healthy individuals could be achieved using blood samples
collected with high temporal resolution (e.g. each month)
over many years from large numbers of healthy individuals.
For example, 10mL of peripheral blood could provide a sam-
ple of ~ 107 T-cells which would provide a resolution two or-
ders of magnitude better than in the data reported here. This
deeper characterisation of the repertoire (including potentially
linking some of the TCR« and TCR/3 chains) could then pro-
vide a more quantitative understanding of immune repertoire
dynamics in the absence of overt disease. This characterisa-
tion of the “healthy background” dynamics, combined with a
better understanding of which antigens CDR3 sequences are
recognising, could have potential as a powerful detector of
certain diseases.

Methods

Data. We analyse data generated by Chu et al. (/).
The dataset comprises of immunosequencing of DNA ex-
tracted from peripheral blood mononuclear cells (PBMC) of
3 healthy individuals (all 3 of them women, aged 18-45). For
each individual, blood was taken at 8 time points in the span
of 12 months (at starting date and after 1, 2, 3, 5, 6, 7, and
12 months). The dataset consist of read count matrices for
all unique nucleotide level CDR3 rearrangements sequenced,
along with information about the V, D and J genes used, when

known. The frequency of each rearrangement is calculated by
dividing the correpsonding read count by the total read count
for the sample. All samples were sequenced at a depth of 1 -3
%107 total reads. Technical replicate data was obtained from
Rytlewski et al (/0).

Filtering out contamination between samples. While
checking for the typical overlap between intra- and inter-
individual TCR repertoires, we found some evidence of con-
tamination between some of the samples, as shown in Sup-
plementary Figure S9. We observed that the last time point
of subject 01 showed a substantial overlap with all repertoires
from subject 03, and in particular time point 6 (8th row, 3rd
to last column in Supplementary Figure S9), indicating that
a fraction (roughly 3-4%) of the reads in time point 8 from
subject 01 comes from time point 6 in subject 03. To control
for this, we decide to remove all reads from time point 8 in
subject 01 that also appear at higher frequencies in time point
6 from subject 03.

We also observe smaller instances of potential contami-
nation in several samples, which on the 2D heatmaps look like
small clusters of points in the top left or bottom right corners
of the plot, with some level of correlation in between samples.
These features come from groups of shared rearrangements
that exists at high frequency in one sample, and appear at low
frequency in another sample, but with certain correlation on
the frequency values. We filter these instances out by finding
all rearrangements that appear in any pair of inter-individual
samples where the frequency in one sample is at least 100x
the frequency in the other one, and removing these rearrange-
ments from the low frequency sample.

These filtering steps remove 31,312 unique rearrange-
ments out of the observed ~ 9,120,000 across all 24 samples
(0.34%).

Quantifying technical noise and effective sample size.
When working with read count data, binomial or Poisson ap-
proaches are commonly used, with a core assumption that the
variance of the data will be consistent with a sample size equal
to the sum of all reads ( ~ 107 reads in these data). We tested
this assumption by exploring how the variance in frequency
of a clonotype (a?) scales with its estimated frequency (f).
For sampling noise the variance in frequency is expected to
be linearly related to the frequency via UJ% = f/N. where N,
is the effective sample size driving noise. To check this re-
lationship we bin clonotypes based on their frequency in one
of the time points (or replicates) and calculate bin means. We
can then estimate the variance in frequencies by considering
the variance in the frequencies of these clonotypes in the other
time point (or replicate). We can then estimate the effective
sample size by using

1
log UJ% =log f +log 2)

N’
and plotting the log of the variance in frequency as a function
of the log of the mean frequency as shown in Supplementary
Figure S1. The effective sample size can then be estimated
from the intercept of the best fit line on the plot. We performed
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this procedure first by considering technical replicates (Sup-
plementary Figure S1) and second by considering sequential
time points (main text Figure 1B).

An additional consideration we had to take when com-
paring different time points to estimate V. is that we expect
clonal expansion events over time whereby, for a given clone,
the frequency will change drastically between samples which
can cause some of the bins to have anomalously large vari-
ance (see outlier data points in Supplementary Figure S11).
To minimise the effects of clonotype expansions artificially
driving up estimates of the variance, we implement an ex-
treme outlier filtering step. We first bin all clonotypes based
on the average frequency across both samples f. Then, for
each bin of size n, we calculate an upper and lower threshold
of clone frequency beyond which we would expect to observe
zero clones from those bins, assuming the noise around f 18
consistent with a sample size of 200,000. We remove any
clonotype beyond these thresholds and then proceed to fit a
linear model to estimate N, as shown in Supplementary Fig-
ure S11.

Statistical test for detection of non-neutral clones
across the time series. For each comparison between sub-
sequent time points, we use the calculated N, as a downscal-
ing factor for repertoire read counts. We obtain a corrected
read count value by multiplying the frequency of each rear-
rangement by N, and rounding it to the closest integer. This
results in a dataset that is consistent with the assumptions for
many count based statistical methods and ensures that the vast
majority of the noise between samples is consistent with the
downscaled read count and controls the false positive rate.

We then perform Fisher’s Exact Test for the read counts
of all clonotypes present in at least one of the two samples,
filtering out any clonotype with less than 6 read counts across
both downscaled repertoires. We do this for all 7 pairwise
comparisons between subsequent time points in each individ-
uval, resulting in k = 1,2, ..., 7 p-values per clonotype, depend-
ing on how many time points each clonotype is detected in.

To summarise the results of all k& p-values correspond-
ing to a clonotype into a single overall significance score, we
calculate L = max (—In ([p1,...px])). This metric favours the
detection of trajectories where a sudden clonal expansion tak-
ing place between two time points results in a very low p-
value for that step, but it can also capture more subtle trajecto-
ries. Importantly, because p-values follow a standard uniform
distribution under the null, —Inp will follow an exponential
distribution with rate A = 1. As a result, we can derive a the-
oretical expectation for L as the expected distribution of the
maximum of k i.i.d. exponential distributions:

k(11— e L )k
p(L)=="1— 3

This null model allows us to obtain an aggregated p-
value that summarises the entire trajectory, being able to de-
tect non-neutral clones across the time series. We lastly cor-
rect for multiple testing using the Benjamini—-Hochberg pro-
cedure to obtain a False Discovery Rate (FDR). We select for
further analysis trajectories with a FDR< 0.1%.

Simulations to assess false discovery rate. To evaluate
the validity of our framework under the null, we simulated a
time series of 8 TCR repertoires that show no changes in fre-
quency over time. For each time point, we performed these
simulations by first drawing 100,000 — 300,000 "rearrange-
ments" from a reference set of rearrangements with distribu-
tion of true clone frequencies following a power law such as
p(f) = 1/f2. This step simulates the sampling of a finite
number TCR rearrangements from the blood and their cap-
ture in the first PCR cycles during library preparation. The
captured molecules are then "sequenced" to a depth of 107 to
obtain TCR repertoires and their read counts resembling real
data.

We apply all the steps of our analysis framework to the
simulated data: estimation of N, in subsequent time points
and corresponding downscaling of read counts, Fisher’s Ex-
act Test and aggregation of resulting p-values to obtain L.
By comparing the resulting distribution of L with its theo-
retical expectation under the null, we check that the model
is valid (Supplementary Figure S3 and it does not lead to a
higher False Positive Rate than expected (Supplementary Fig-
ure S10).

Measuring dynamic similarity. For all the clonotypes de-
tected as non-neutral at the chosen significance level in an in-
dividual, we calculated a distance matrix with a metric we de-
fine as dynamic distance d = /1 —r. r corresponds to Pear-
son’s correlation coefficient of the two vectors consisting of
the raw frequencies at all 8 time points (assigning a frequency
of 0 when a rearrangement is missing from a time point).
Other similarity metrics are possible however we opted using
one based on Pearson correlation as these have been previ-
ously used to detect similar trajectories in time series data e.g.
Tikhonov et al. ISME (2015).

Hierarchical clustering based on dynamic distance.
From the obtained dynamic distance matrices we performed
agglomerative hierarchical clustering, using single-linkage
criteria. This resulted in one dendrogram per individual.

To rationally choose a height threshold for tree-cutting
and obtaining distinct clusters, we performed a permutation
based analysis, as shown in Figure 2. For each individual,
we randomly permuted the trajectory of each clonotype, cal-
culated the dynamic distance matrix and built a dendrogram
by hierarchical clustering. Clusters derived from these den-
drograms will not reflect real groups of clonotypes, but the
background level of cluster formation for this type of data. By
using the percentage of clonotypes in a subject assigned into a
cluster as a metric, we studied the effect of varying tree cutting
height thresholds on this metric. The chosen height threshold
corresponds to the the height at which the difference between
the real dendrogram and the mean of the permuted dendro-
grams is largest.

Identification of sequence motif clonotype clusters. We
applied GLIPH2 (30) to the set of productive CDR3 rear-
rangements from each dynamic cluster. GLIPH2 identifies
for statistically entriched short amino acid motifs (2-5 amino
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acids) with respect to a reference set of CDR3 sequences, in
our case the collection of all unique productive CDR3 re-
arrangements in each individual. Enrichment is determined
by Fisher’s Exact Test, and we determine a threshold of p <
1073,

Code availability

All code used in this study is available on the Blun-

dell laboratory GitHub page:

https://github.com/

blundelllab/TCR-dynamics.
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Fig. S1. Technical replicates. Relationship between mean and variance in 4 technical replicates from Rytlewski et al. (70) (showing all possible pairwise
comparisons) suggests an effective sample size of ~ 200,000 TCR molecules, as N = 2 x 10— ntercept
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Fig. S2. Distribution of clone sizes across all time points. Reverse cumulative plots for the clone frequency distribution in each time points (different
shades of colour - lighter is earlier, darker is later) for all three individuals. All samples show a clear power law distribution, with almost no within-individual
variation, but a clear difference between individuals. A reference is shown for the power law distribution p(f) = 1/ 2.
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Fig. S3. Distribution of L for different numbers of available p-values (k) in each one of the 3 individuals (blue) and simulations (green). Values beyond
the upper limit of L > 15 have been condensed into the uppermost bin.
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Fig. S4. Hierarchical clustering based on dynamic distance identifies distinct dynamic clusters. Left. Dendrograms built from dynamic distance
matrices from each individual, with the chosen height threshold (dashed line) for tree cutting and resulting clusters (colours). Right. Trajectories of the
dynamic clusters, along with the trajectories of the outgroups (cluster 0, gray).
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Fig. S5. Finding a rational tree cutting height threshold. For the set of all non-neutral clonotypes in each individual, we performed 1,000 permutations
of their trajectories and built dynamic distance trees. By considering different tree cutting height thresholds (x-axis), we studied the total fraction of
clonotypes being assigned to a cluster (y-axis), and chose the height threshold at which the gap between the mean of the permutations (light green lines,
average in black) and the real data (dark green line) is maximum.

14 | Ayestaran etal. | Dynamics of TCRS repertoires from serial sampling of healthy individuals


https://doi.org/10.1101/2022.05.11.491566
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.11.491566; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Subject01
102
CSASSTGEIGNQPOHF
/ Nonproduct.ive
CASSQSVIGSTEAFF
CASRPFQUSTDIQYF
> CASSALGGDEQFF
g CANLLTGIASGNTIYE
S 4 CASSQGIGTLNEKLFF
310 L varan
e N
b AN Honproduct ive
c "\ CATSDLDGTVTGELFF
2 \\ CASSKEQUDTEAFF
(8] \Nonproductive
10°
0 100 200 300
Days from first sample
10?
>
3
% 4
5107
o
2
o
2
2
(8]
6 CASRLTGGVGTEAFF
10 CASSAGTGUNEKLFF

CASSEAGQUSVLNYGYTF
CASSPRPNSNQPQHF
CASSLMAGLUNTEAFF

0 100 200
Days from first sample

300

10

Clone frequency

S
S

0 100 200
Days from first sample

300

—— CASSQERGFGYEQYF

—— CASSTDGAQETQYF

nproductive

Nonproductive

—— CASSMGQGSRGGELFF
—— CASSLRTRLAGDNEQFF

available under aCC-BY 4.0 International license.

Clone frequency

Clone frequency

Clone frequency

S,
S

S
S

S,
S

S
S

S,
IS

S
&

casstoavNERLE
casnonPGoLEF
Nonproductive
CASSKGTGRYGYTF
| chsstzrucanLTE
[ onproductive
casseaceTyore
| CASNGLAGGPSGELFF
Nonproductive
// vonproductive
/ CASRPLSQGGSPLHF
CASSVGLGGEKLFF

100 200
Days from first sample

300

Nonproductive

CASSEEPRERGDNSPLHE
CASSTFRGTSGNTIYF

Nonssuveare
CASSQULGONTERFE

—— CASSSLFSYNEQFF

CASSFROSLKLEF
< onproduerive

100 200
Days from first sample

300

—casseeupomare
—Nonproductive

100 200
Days from first sample

300

Clone frequency

Clone frequency

Clone frequency

S,

S

o

10

S,

cassrorRGoTIYE
CASFIRSPSGTNEQFF
/ casRPGRGVYEQYF

Y, oammncasonss
£ CASSQDYRLANEQYF
Nonproduct ive
AW
\Nonproductive
0 100 200 300
Days from first sample
—— CASSTRDRL/CYTF
—— Nonproduct ive
——casstoonivovre
0 100 200 300
Days from first sample
CRSPSSSSGTGAVNTEAFF
0 100 200 300

Days from first sample

Fig. S6. Dynamic clusters in Subject 01 along with their CDR3 amino acid sequence (if productive) and GLIPH2 identified sequence motifs

highlighted in colour.
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Fig. S8. Dynamic clusters in Subject 03 along with their CDR3 amino acid sequence (if productive) and GLIPH2 identified sequence motifs

highlighted in colour.
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Fig. S9. Evidence of contamination between repertoires. Rows and columns correspond to subjects 01, 02 and 03, each one in temporal order. Upper
triangle: For every possible pair of samples, hexagonal 2D heatmap of the frequencies of overlapping TCR rearrangements on a nucleotide level. Lower
triangle: Jaccard index (size of intersection over size of union) for each pair.
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Fig. S10. Expected False Positive Rate (FPR) matches the empirical FPR in null simulations. Using the null distribution of L, we can obtain a p-value
per clonotype. For a given p-value threshold or o (Expected FPR), we count how many simulated clonotypes are identified as statistically significant (false
positives) and divide the number by the total number of clonotypes, resulting in the Observed FPR.
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Fig. S11. Effect of outlier removal on mean-variance scaling between two subsequent time points. Variance in clonotype frequency across one pair
of samples collected within 1 month of each other versus mean frequency shows the linear relationship (data points and best fit line) consistent with a
sample size Ne substantially smaller than sequencing depth (dashed line). Linear fit excludes data points with very low frequencies (left of the dotted line)
to remove discrete number effects. A. Clonal expansions between one time point and the next will result in unusual outlier data points that overestimate
the null variance for those bins. B. After filtering out extreme outliers, the linear fit is more unbiased.
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