1 Contrasting patterns of genetic admixture explain the phylogeographic history of

2 Iberian high mountain populations of midwife toads

- 3
- 4 Federica Lucati^{1,2*}, Alexandre Miró², Jaime Bosch^{3,4}, Jenny Caner², Michael Joseph
- 5 Jowers^{5,6}, Xavier Rivera⁷, David Donaire-Barroso⁸, Rui Rebelo¹ and Marc Ventura^{2*}
- 6

7	¹ Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of
, 8	Sciences, University of Lisbon, Lisbon, Portugal
9	
10	² Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Catalonia, Spain
11	
12	³ Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
13	
14	⁴ Research Unit of Biodiversity - CSIC/UO/PA, Universidad de Oviedo, Mieres, Spain
15	
16	⁵ Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/InBIO),
17	Universidade do Porto, Campus Agrario De Vairão, Vairão, Portugal
18	
19	⁶ National Institute of Ecology (NIE), Seocheon, Republic of Korea
20	
21	⁷ Catalan Society of Herpetology, Leonardo Da Vinci square 4-6, Barcelona, Catalonia,
22	Spain
23	
24	⁸ Calle Mar Egeo 7, Jerez de la Frontera, Cadiz, Spain
25	
26	
27	* Corresponding authors
28	E-mail: federicalucati@hotmail.com (FL)
29	E-mail: ventura@ceab.csic.es (MV)

30 Abstract

31	Multiple Quaternary glacial refugia in the Iberian Peninsula, commonly known
32	as "refugia within refugia", allowed diverging populations to come into contact and
33	admix, potentially boosting substantial mito-nuclear discordances. In this study, we
34	employ a comprehensive set of mitochondrial and nuclear markers to shed light onto
35	the drivers of geographical differentiation in Iberian high mountain populations of
36	the midwife toads Alytes obstetricans and A. almogavarii from the Pyrenees, Picos de
37	Europa and Guadarrama Mountains. In the three analysed mountain regions, we
38	detected evidence of extensive mito-nuclear discordances and/or admixture
39	between taxa. Clustering analyses identified three major divergent lineages in the
40	Pyrenees (corresponding to the eastern, central and central-western Pyrenees),
41	which possibly recurrently expanded and admixed during the succession of glacial-
42	interglacial periods that characterised the Late Pleistocene, and that currently follow
43	a ring-shaped diversification pattern. On the other hand, populations from the Picos
44	de Europa mountains (NW Iberian Peninsula) showed a mitochondrial affinity to
45	central-western Pyrenean populations and a nuclear affinity to populations from the
46	central Iberian Peninsula, suggesting a likely admixed origin for Picos de Europa
47	populations. Finally, populations from the Guadarrama Mountain Range (central
48	Iberian Peninsula) were depleted of genetic diversity, possibly as a consequence of a
49	recent epidemic of chytridiomycosis. This work highlights the complex evolutionary

50 history that shaped the current genetic composition of high mountain populations,

and underscores the importance of using a multilocus approach to better infer the

- 52 dynamics of population divergence.
- 53

54 Introduction

Patterns of population structure and genetic divergence within species 55 56 primarily result from their evolutionary history and contemporary dispersal capability, and these processes are in turn responsible of generating specific 57 phylogeographic signatures [1]. The description of these signatures return valuable 58 59 information on the mechanisms underlying spatial patterns of contemporary genetic diversity and structure, and this knowledge can ultimately help in the conservation 60 61 and management of species and populations under global change [2]. Organisms with limited dispersal capacity and a typically allopatric type of 62 speciation, such as many amphibians, generally present complex genetic signals at 63 64 lineage borders resulting in reticulate patterns [3-5]. A number of mechanisms are 65 involved in the generation of reticulate patterns in phylogeography, among them contact zones, hybridisation and introgression [6]. Such mechanisms, among others, 66 67 may result in the formation of discordant patterns of variation among genetic markers (i.e. mito-nuclear discordances, e.g. [4, 7, 8]). As a consequence, these 68

discordances represent a powerful source of insights into the evolutionary history ofspecies.

71 Quaternary climatic fluctuations had a major impact on worldwide biotas and organisms, reshaping the distribution of species and modelling their genetic structure 72 [9, 10]. In Europe, it is acknowledged that the Iberian Peninsula has served as one of 73 74 the most important refugia for temperate species during periods of climatic 75 instability [11]. Growing evidence has revealed that in this region, characterized by a 76 great variety of climatic and ecological conditions, multiple isolated refugia were present, which promoted genetic diversification and ultimately determined complex 77 phylogeographic patterns in a number of taxa (the "refugia within refugia" scenario; 78 79 [11, 12]). In this context, Iberian mountain ranges played a major role in favouring survival throughout the Pleistocene. The Iberian Peninsula has several mountain 80 ranges that permitted flexibility and survival of populations through altitudinal shifts, 81 82 allowing for movements up or down the mountains in search of suitable microclimates as the temperatures changed [11, 13]. Nevertheless, there is a lack of 83 knowledge on the phylogeographic history of European species with Iberian 84 distribution to understand the role of glacial refugia throughout the different 85 mountain regions within Iberia [11]. 86 The common midwife toad (Alytes obstetricans) is a small anuran widely 87 distributed in central and western Europe. It is a common species that inhabits a wide 88 variety of habitats between sea level and 2 400 meters above sea level (m.a.s.l.) in 89

90	the Pyrenees [14, 15]. Major threats to the species are related to habitat loss and
91	fragmentation through pollution, commercial and agricultural development,
92	introduction of non-native species, and more recently emergent diseases such as
93	chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium
94	dendrobatidis (Bd) [14-16]. Bd has led to episodes of mass mortality in A.
95	obstetricans, which is known to be highly susceptible to the pathogen [16-18].
96	Furthermore, fatal outbreaks of chytridiomycosis in Iberia were more frequent at
97	higher elevations [19].
98	Alytes obstetricans represents an excellent biological system to study
99	phylogeographic patterns derived from post-glacial expansion, such as contact zones
100	and hybridisation. The species shows strong genetic subdivisions in the Iberian
101	Peninsula, indicative of past population isolation [20]. Until recently, A. obstetricans
102	was defined by six divergent and geographically structured mtDNA haplogroups
103	(named A to F; [20, 21]), delineating as many genetic lineages that probably
104	interbreed in zones of secondary contact (Fig 1). Each of the six mitochondrial
105	lineages corresponded to a unique nuclear microsatellite clade, except for lineage B
106	that harboured two distinct microsatellite clusters [22]. More recently, the
107	subspecies almogavarii (mtDNA lineages E-F) was proposed as an incipient species
108	(i.e. A. almogavarii; [23]) by RAD-sequencing analysis, and mtDNA lineage E described
109	as a novel subspecies (A. a. inigoi) [24].
110	

111	Fig 1. Geographic location of sampling sites for Alytes obstetricans/almogavarii.
112	The three analysed mountain regions are circled in white. In the Pyrenees, dashed
113	lines delimit the three geographic sections (eastern, central and western Pyrenees).
114	For population codes and further information on sampling sites see S1 Table. The
115	inset map shows the distribution of the main lineages: orange - ND4 haplogroups E-F
116	(A. almogavarii), yellow - ND4 haplogroup B (A. o. obstetricans), blue - ND4
117	haplogroup A (A. o. pertinax), red - ND4 haplogroup C (A. o. boscai), green - ND4
118	haplogroup D (A. o. boscai), black - unclear (adapted from Dufresnes and Martínez-
119	Solano [23]).
120	
121	
122	Previous studies revealed a complex scenario of relationships and admixture
123	between lineages of A. obstetricans/almogavarii, evidencing the existence of contact
124	and hybrid zones at some lineage borders [20, 23, 25, 26]. Yet, there has been little
125	attempt on identifying the causes and consequences of such admixture.
126	Furthermore, none of these studies was specifically focused on high mountains,
127	which are well-known hotspots of genetic diversity and have been shown to play a
128	considerable role in separating well-differentiated intraspecific clades in numerous

- species (e.g. [4, 27]). Here, we employ a multilocus approach combined with
- 130 comprehensive sample collection across four of the defined mtDNA genetic lineages
- to analyse the geographical differentiation in *A. obstetricans/almogavarii*, placing

132	special focus on three high mountain regions in the Iberian Peninsula: Pyrenees, Picos
133	de Europa and Guadarrama Mountain Range. Specifically, we aimed to (1) describe
134	finer-scale geographical patterns of genetic diversity and structure in high mountain
135	populations of A. obstetricans/almogavarii, compare different scenarios of
136	population divergence and explore the role of glacial refugia; (2) identify putative
137	contact zones and assess patterns of admixture; and (3) better delineate the
138	geographic distribution of major genetic lineages. We also provide deeper analyses
139	on the genetic status of populations that have been hit by a recent chytridiomycosis
140	outbreak. To this end, we combined DNA sequence (mitochondrial and nuclear) and
141	microsatellite data for the first time in an A. obstetricans/almogavarii study. Thus,
142	herein we provide new insights on the recent evolutionary history and the present
143	processes that have shaped and are currently shaping Iberian populations of A.
144	obstetricans/almogavarii.

145

146 Materials and Methods

147 Sampling and DNA extraction

Sampling was conducted mainly in the period 2009–2018 across northern and
central Iberian Peninsula, as it is known to host most of the genetic diversity of the
species [20, 22]. We paid special emphasis on three mountain regions: Pyrenees,
Picos de Europa mountains (Cantabrian Mountains, NW Iberian Peninsula) and

152	Guadarrama Mountain Range (central Iberian Peninsula), although we also took
153	some additional samples from neighbouring lowland localities (Fig 1, Tables 1 and
154	S1). We sampled 51 sites in the Pyrenees (1010–2447 m.a.s.l.), 13 in Picos de Europa
155	(1120–2079 m.a.s.l.), nine in Guadarrama Mountains (1527–1980 m.a.s.l.), and 32
156	sites in lowland areas (52–992 m.a.s.l.), totalling 890 individuals from 105 sampling
157	sites (Table 1). Lowland populations were grouped according to their geographic
158	proximity to the analysed mountain regions (Table 1). A subset of samples was used
159	in a previous study [18].
160	

161 Table 1. Genetic diversity parameters as estimated from microsatellites for each

162 analysed mountain region and corresponding lowland areas.

	Alt.	N_{pops}	Ν	Na	Ar	PAAr	Ho	H_{E}	N_{e}	ND4 haps
Eastern Pyrenees	1010-2406	17	144	13.47	5.310	0.780	0.480	0.701	14-51	28(F)
Eastern Pyrenees – lowland	62-948	9	21	8.588	5.310	0.830	0.460	0.691	-	11(F)
Central Pyrenees	1211-2003	9	52	10.82	5.130	0.920	0.401	0.651	68	15(E), 4(B)
Central Pyrenees – lowland	567	1	2	-	-	-	-	-	-	2(E)
Central-western Pyrenees	1043-2447	25	284	14.12	5.240	0.990	0.377	0.708	12-84	61(B)
Central-western Pyrenees – lowland	992	1	1	-	-	-	-	-	-	1(B)
Picos de Europa	1120-2079	13	202	12.71	5.740	1.080	0.595	0.789	19-160	31(B)
Picos de Europa – lowland	464-928	3	3	-	-	-	-	-	-	3(B)
Guadarrama	1527-1980	9	112	7.529	3.940	0.580	0.442	0.613	5-15	25(A)
Guadarrama – lowland	52-830	18	57	14.53	6.580	1.080	0.620	0.805	70	36(A), 2(B)

163

164 Alt. – altitudinal range, N_{pops} – number of populations, N – sample size for

165 microsatellites, Na – mean number of alleles, Ar – allelic richness standardized for

166 sample size, PAAr – rarefied private allelic richness standardized for sample size, H_0 –

167 observed heterozygosity, H_E – expected heterozygosity, N_e – range of effective

168 population size, ND4 haps – occurrence and code (in parentheses) of mitochondrial

169 ND4 haplogroups identified in each deme.

171	Tissue samples were collected via tail clipping in the case of larvae and toe
172	clipping in the case of adults. Samples were stored in absolute ethanol and
173	maintained at -20 °C. Genomic DNA was extracted using QIAGEN DNeasy Blood &
174	Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol, or
175	following the HotSHOT method [28], in a final volume of 100 μ l for toe clips and 250
176	μl for tail clips.
177	

178 Nuclear and mitochondrial genes sequencing

179 We amplified five gene regions, including four mitochondrial fragments

180 (cytochrome b gene – cyt-b; 12S rRNA gene – 12S; 16S rRNA gene – 16S; and NADH

181 dehydrogenase subunit 4 gene and adjacent tRNAs – ND4) and one nuclear gene (β-

fibrinogen intron 7 – β -fibint7). Details on primers used and amplification conditions

183 are provided in S1 Appendix.

184 Resulting sequences were aligned using the ClustalW algorithm in MEGA 7

- 185 with default settings [29]. Phasing of the nuclear intron β -fibint7 was performed
- 186 following Gonçalves et al. [20]. Briefly, we used the program SeqPHASE [30] to format
- the input files, and the Bayesian algorithm implemented in PHASE 2.1.1 [31, 32] to
- 188 infer phased haplotypes. PHASE was run three times using default values, to check

189 for consistency of haplotype estimation across runs.

191 Microsatellite screening and estimation of genetic diversity

- 192 878 individuals from 102 localities were screened for 17 previously
- 193 characterised microsatellite loci combined in five multiplexes [21]. Fragments were

sized with LIZ-500 size standard and binned using Geneious 11.0.5 [33].

195 The presence of potential scoring errors, large allele dropout and null alleles

196 was tested using MICRO-CHECKER 2.2.3 [34]. We tested for linkage disequilibrium

- 197 between loci and for departures from Hardy-Weinberg equilibrium (HWE) in each
- 198 population and for each locus using GENEPOP 4.2 [35]. The Bonferroni correction was
- applied to adjust for multiple comparisons ($\alpha = 0.05$; [36]).
- 200 Genetic diversity parameters were calculated for populations with \geq five
- 201 genotyped individuals and for each analysed mountain region and corresponding
- 202 lowland areas. Observed (H₀) and expected heterozygosity (H_E) and mean number of
- 203 alleles (Na) were obtained with GenAlEx 6.5 [37]. Allelic richness (Ar) standardized for
- sample size and rarefied private allelic richness (PAAr calculated only at the genetic
- 205 cluster level) were calculated in HP-RARE 1.1 [38]. We estimated the inbreeding
- 206 coefficient (F_{IS}) within each population with GENETIX 4.05.2 [39].
- 207

208 **Phylogenetic analyses**

For ND4, we estimated genealogic relationships among haplotypes using
Haploviewer [40]. The optimal nucleotide-substitution model was determined by

211	jModelTest 2.1.3 [41], under the Akaike Information Criterion (AIC). The phylogeny
212	was estimated with RAxML 7.7.1 [42] using a Maximum Likelihood (ML) approach.
213	The program was run with a gamma model of rate heterogeneity and no invariant
214	sites (GTRGAMMA), applying 1 000 bootstrap replicates. The best tree was selected
215	for haplotype network construction in Haploviewer, based on all sequences retrieved
216	from GenBank and this study. Furthermore, genetic diversity parameters, namely
217	number of haplotypes (H) and polymorphic sites (S), as well as haplotype (Hd) and
218	nucleotide (Π) diversity indices, were estimated for the whole dataset and for each
219	analysed mountain region and corresponding lowland areas using DnaSP 6.11.01
220	[43].
221	In order to describe the affinities of the different genetic lineages described in
222	A. obstetricans/almogavarii, we constructed a species tree with the five partially
223	sequenced genes using the multispecies coalescent approach in *BEAST, as
224	implemented in BEAST 2.6.2 (S1 Fig) [44]. The substitution model for each marker
225	was determined by jModelTest. We set a strict molecular clock model and a Yule
226	speciation prior. The clock and tree models for mtDNA markers were linked. We
227	defined five groups in A. obstetricans/almogavarii, corresponding to the four main
228	population lineages identified in the haplotype network (A, B, E, F) and further
229	subdividing lineage B into two groups (central-western Pyrenees and Picos de
230	Europa; see Results). Since *BEAST does not take into account the possibility of gene
231	flow between lineages, samples from localities where more than one mtDNA

232	haplogroup was found were excluded from the analysis [20]. Samples of A. maurus
233	were used as outgroup. Two independent MCMC chains were run for 200 million
234	generations each, sampling trees and parameter estimates every 5 000. Tracer 1.6
235	[45] was used to check for stationarity and convergence of MCMC chains. A
236	maximum clade credibility tree was constructed in TreeAnnotator 2.6.2 and
237	visualized using FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree), discarding
238	the first 10% generations as burn-in, while the node heights were set to mean
239	heights.

240

241 Genetic structure

242 For microsatellites, population structure was inferred using different 243 approaches (S1 Fig): a) a Discriminant Analysis of Principal Components (DAPC) and a Principal Component Analysis (PCA), using the ADEGENET package 2.1.1 [46] in R 244 245 3.5.1 [47]; b) a Bayesian cluster analysis implemented in STRUCTURE 2.3.4 [48]; c) a neighbour-joining (NJ) tree using the program POPTREEW [49]; and d) a spatial-based 246 247 clustering approach implemented in the R package Tess3R 1.1.0 [50], which incorporates geographic coordinates in estimating sample ancestry coefficients. 248 Details on models and parameters used are outlined in S1 Appendix. 249 250 To further explore the genetic differentiation between the defined genetic units, we calculated pairwise F_{st} for both ND4 and microsatellites. Computations 251 252 were performed in Arlequin 3.5.2.2 [51] in the case of ND4 and in GenAlEx in the case

253	of microsatellites, with 1 000 permutations to assess statistical significance. Similarly,
254	to partition genetic variability at different hierarchical levels (among genetic clades,
255	among populations within clades and within populations), we conducted an analysis
256	of molecular variance (AMOVA) as implemented in Arlequin, using 10 000
257	permutations to assess significance of variance components [52]. To better
258	understand the spatial pattern of population differentiation detected in the Pyrenees
259	(see Results), we correlated genetic distances (F_{ST}) of Pyrenean populations either
260	with the Euclidean distance among populations, and with the geographic distance
261	suggested by PCA analysis, which followed a ring-like pattern around the Pyrenean
262	chain assuming no direct gene flow across the central Pyrenean axis (see e.g. [53] for
263	a similar approach). The analysis was performed in GenAlEx with 1 000 permutations,
264	including only populations with \geq five genotyped individuals (N = 29).

265

266 Effective population size

The sibship assignment method implemented in Colony 2.0.6.5 was used to calculate the effective population size (N_e) of populations with \ge 15 genotyped individuals (S1 Fig) [54]. This software uses a maximum likelihood method to conduct parentage and sibship inference to estimate N_e and can accommodate null alleles and other genotyping errors. The program was run with the parameters specified in Lucati et al. [55]. During sampling care was taken to minimize the effects of sampling

individuals belonging to the same clutch, by collecting samples from several spots

- within the same sampling site.
- 275
- 276 **Demographic history**

277 The approximate Bayesian computation (ABC) approach, as implemented in 278 the software DIYABC 2.1.0 [56], was used to reconstruct the history of divergence 279 among the genetic lineages identified in A. obstetricans/almogavarii. Only high 280 mountain populations were included in the analysis, as we were interested in 281 understanding the evolutionary history of the three high mountain areas described above (S1 Fig). We grouped populations into five groups according to their 282 283 geographic location. We also incorporated the information from previous studies 284 dealing with the phylogenetics and population structure of the different subspecies, which point to a shared origin between populations from the central and eastern 285 Pyrenees (mitochondrial ND4 haplogroups E and F in Gonçalves et al. [20] and 286 microsatellite clusters F1n and F2n in Maia-Carvalho et al. [22]): populations from the 287 288 Picos de Europa mountains (PEU) and the central-western Pyrenees (CWPY; 289 corresponding to subspecies A. o. obstetricans) formed two separate groups, 290 whereas populations from the central Pyrenees (CPY), eastern Pyrenees (EPY; corresponding to the putative incipient species A. almogavarii) and Guadarrama 291 Mountains (GUA; corresponding to subspecies A. o. pertinax) were subdivided into 292 293 three groups. We generated five different scenarios (Fig 2a): (1) null model with all

294	groups diverging simultaneously from a common ancestor, except for lineage CPY
295	that originates from EPY; (2) sequential splitting model directly following results from
296	STRUCTURE and DAPC analyses, where on the one hand populations from the
297	Pyrenees, and on the other GUA and PEU populations share a common origin; (3)
298	similar to the second one, but predicts a common origin of PEU and CWPY
299	populations, as suggested by ND4 haplotype network; (4) same as the previous
300	scenario, with a common origin between populations belonging to ND4 haplogroups
301	A and B, as suggested by *BEAST analysis; and (5) where the PEU lineage was created
302	by admixture of CWPY and GUA populations. We performed the computations both
303	combining microsatellites and ND4 data, and separately for microsatellites. Further
304	details on model specifications and run parameters are outlined in S1 Appendix and
305	S2 Table.
306	

307 Fig 2. Phylogeographic scenarios tested in DIYABC and best supported models. (a)

308 Scenarios tested in DIYABC considering the three analysed high mountain areas. (b)

309 The best supported scenarios, namely number 2 when considering only

310 microsatellites and number 5 when considering both mtDNA (ND4) and microsatellite

- markers, with the estimated divergence times (t1 t3) of each split. Population
- 312 groups were defined on the basis of their geographic distribution and the results
- 313 from clustering analyses: eastern Pyrenees (EPY, orange), central Pyrenees (CPY,

314 grey), central-western Pyrenees (CWPY, pink), Picos de Europa mountains (PEU,

315 yellow), and Guadarrama Mountain Range (GUA, blue).

316

317 **Results**

318 Sequence variation and genetic diversity

The nuclear DNA alignment (β -fibint7) included 20 sequences of 605 bp, while 319 for the mitochondrial dataset we obtained 219 sequences of 654 bp for ND4, 40 320 sequences of 325 bp for cyt-b, 42 sequences of 341 bp for 12S, and 40 sequences of 321 579 bp for 16S (S1 Table). With regard to ND4, overall haplotype (Hd) and nucleotide 322 323 (Π) diversities were 0.930 ± 0.008 and 0.020 ± 0.0008, respectively. Across the 324 analysed mountain regions, Guadarrama Mountains showed lower ND4 genetic 325 diversity values (Hd = 0.290 ± 0.109 , $\Pi = 0.001 \pm 0.0002$) compared to the other 326 regions (eastern Pyrenees: Hd = 0.770 ± 0.039 , $\Pi = 0.002 \pm 0.0003$; central Pyrenees: Hd = 0.724 ± 0.101 , $\Pi = 0.014 \pm 0.003$; central-western Pyrenees: Hd = 0.805 ± 0.027 , 327 $\Pi = 0.002 \pm 0.0002$; Picos de Europa: Hd = 0.602 ± 0.091, $\Pi = 0.003 \pm 0.001$). 328 329 For microsatellite loci, we did not find evidence of large allele dropout, 330 stuttering or null allele artefacts. Similarly, no significant linkage disequilibrium or departures from HWE across populations and loci were detected after applying the 331 Bonferroni correction. Observed (H_0) and expected heterozygosity (H_E) ranged from 332 333 0.197 to 0.794 and from 0.222 to 0.720, respectively (mean $H_0 = 0.473$, mean $H_E =$

334	0.530; S1 Table). Mean number of alleles (Na) and allelic richness (Ar) varied from
335	2.059 to 7.824 and from 1.270 to 5.620, respectively (mean Na = 4.440, mean Ar =
336	1.873), and the inbreeding coefficient (F_{IS}) ranged from -0.110 to 0.403 (mean =
337	0.157). Among the analysed mountain regions, Picos de Europa and the eastern
338	Pyrenees were the richest regions in terms of genetic diversity, whereas Guadarrama
339	Mountains was the poorest, with the central and central-western Pyrenees
340	presenting intermediate values (Table 1). With regard to lowland areas, populations
341	located in the Duero and Ebro basins (herein referred to as Guadarrama lowland
342	localities) were the most diverse, while eastern Pyrenean localities were the least
343	diverse.

344

345 **Phylogenetic analyses**

From the 219 individuals analysed for the ND4 gene we identified 34 346 347 haplotypes, of which 22 are newly described (Fig 3, S1 Table). Haplotypes were 348 defined by 61 polymorphic sites, of which 49 were parsimony informative. The 349 majority of newly described haplotypes were found in the Pyrenees (13), whereas only three and one haplotypes were detected in Picos de Europa and Guadarrama 350 Mountains, respectively; the remaining five haplotypes were found in lowland 351 localities. The haplotype network showed that haplotypes clustered into four well-352 differentiated haplogroups with a strong association with geography (Figs 3 and S2a): 353 354 haplogroup A included sequences from Guadarrama and corresponding lowland

355	areas (corresponding to populations of <i>A. o. pertinax</i>), haplogroup F included
356	sequences from the eastern Pyrenees (corresponding to populations of A.
357	almogavarii), haplogroup E corresponded to populations from the central Pyrenees
358	(A. a. inigoi), and haplogroup B (corresponding to populations of A. o. obstetricans)
359	included sequences from the central-western Pyrenees and Picos de Europa. Within
360	haplogroup B, sequences corresponding to central-western Pyrenean populations
361	were clearly separated from those from Picos de Europa. In addition, in four localities
362	we detected the presence of more than one haplogroup (Figs 3 and S2a, S1 Table):
363	haplogroups A and B were found to co-occur in population Fte. Nueva de Bardales
364	(T2), whereas both haplogroups B and E were found in populations Plano de Igüer
365	(PI), Balsa Pertacua (BP) and Ibón de los Asnos (61XR).
366	
367	Fig 3. Haplotype network of ND4 sequences analysed in <i>Alytes</i>
368	obstetricans/almogavarii. Each circle represents a unique haplotype and the circle
369	area is proportional to the number of sequences of a given haplotype. Blue dots
370	correspond to inferred unsampled haplotypes. Sequences depicted in white were

- 371 retrieved from GenBank. The analysed high mountain regions and corresponding
- 372 lowland areas are indicated by different colours: eastern Pyrenees (EPY, orange),
- 373 central Pyrenees (CPY, grey), central-western Pyrenees (CWPY, pink), Picos de Europa
- 374 mountains (PEU, yellow), and Guadarrama Mountain Range and corresponding
- 375 lowland areas (GUA, blue).

376

377	In order to describe the affinities between the different haplogroups, we built
378	a consensus tree with the five sequenced gene fragments using a multispecies
379	coalescent approach (species tree; *BEAST). The tree placed lineage E at the base of
380	the A. obstetricans/almogavarii lineages, with lineage A as sister to lineage B. Finally,
381	lineage B split into central-western Pyrenees and Picos de Europa groups (S3 Fig).
382	

383 Genetic structure and effective population sizes

All the clustering analyses performed on microsatellites recovered congruent 384 results (Figs 4, 5 and S2). Regarding DAPC analysis, the optimum number of clusters 385 386 was inferred to be 7 (Figs 4c, S2b and S4b). The inferred clusters were consistent with 387 the geographic location of populations. A closer look from K = 2 to K = 7 revealed a spatial hierarchical genetic structure (S4a Fig), with a first split between the central-388 western Pyrenees and all other populations, and a subsequent subdivision of this 389 second group into central Pyrenees-eastern Pyrenees and Guadarrama and 390 391 corresponding lowland populations–Picos de Europa. At K = 4, populations from the 392 Guadarrama Mountain Range split from lowland populations located in the Duero 393 and Ebro basins and Picos de Europa Mountains, whereas at K = 5 there was a split between the central and eastern Pyrenees. The following splits occurred within the 394 central-western Pyrenean group. According with DAPC analysis, the PCA grouped 395 396 populations according to their geographic distribution rather than by described

397	subspecies (Fig 4d). PC1 separated the Pyrenees from the Picos de Europa and
398	Guadarrama, whereas PC2 distributed Pyrenean populations along the Pyrenean
399	chain and contributed to the separation of the Picos de Europa and Guadarrama.
400	STRUCTURE analysis showed patterns of genetic differentiation similar to those
401	inferred by PCA, and identified K = 2 as the best clustering solution (Figs 4a and S5):
402	the first cluster grouped together all Pyrenean populations and the second cluster
403	included peninsular ones. A smaller peak was detected at K = 7 (Fig 4a, 5 and S5b), in
404	agreement with DAPC-inferred clusters, but segregating populations located in the
405	Duero and Ebro basins from Guadarrama Mountains, while splitting central-western
406	Pyrenean populations into two groups. This partitioning into seven clusters was also
407	supported by results of Tess3R analyses (S6 Fig). Furthermore, a higher level of
408	genetic admixture was detected in lowland populations than in highland populations
409	(Figs 5 and S6). More into detail, lowland A. o. pertinax populations generally
410	presented the highest degree of admixture, whereas in the Pyrenees moderate levels
411	of admixture were detected between A. almogavarii lineage E and A. obstetricans in
412	the west, as well as between the two A. obstetricans lineages, but not between the
413	two A. almogavarii lineages (Fig 5). In order to describe the segregation history
414	amongst the seven groups identified by STRUCTURE, we built a NJ tree based on net
415	nucleotide distances: the tree started at K = 3 with the separation of Guadarrama and
416	corresponding lowland populations from Picos de Europa and the Pyrenees, then at K
417	= 4 populations from the central and eastern Pyrenees split from central-western

418	Pyrenean populations, whereas the following splits occurred within the different
419	major groups (Fig 4b). We also built a second NJ tree inferred from microsatellite-
420	based D_A distances over all populations that identified five discrete lineages, which
421	match with ND4-inferred lineages, except that populations included in haplogroup B
422	formed two separate groups (S2d and S7 Figs). Nevertheless, the tree suggested that
423	the pairs of lineages central Pyrenees–eastern Pyrenees and Guadarrama–Picos de
424	Europa were more closely related with each other than with the lineage of central-
425	western Pyrenees, which in turn appeared more distant from the rest of the lineages.
426	
427	Fig 4. Results of clustering analyses of Alytes obstetricans/almogavarii populations
428	based on microsatellite data. (a) STRUCTURE barplots of membership assignment for K =
428 429	based on microsatellite data. (a) STRUCTURE barplots of membership assignment for K = 2 and K = 7. Each individual is represented by a vertical bar corresponding to the
429	2 and K = 7. Each individual is represented by a vertical bar corresponding to the
429 430	2 and K = 7. Each individual is represented by a vertical bar corresponding to the assignment probabilities to the K cluster. White lines separate populations and black lines
429 430 431	2 and K = 7. Each individual is represented by a vertical bar corresponding to the assignment probabilities to the K cluster. White lines separate populations and black lines separate clusters. (b) Neighbour-joining tree based on net nucleotide distances among
429 430 431 432	2 and K = 7. Each individual is represented by a vertical bar corresponding to the assignment probabilities to the K cluster. White lines separate populations and black lines separate clusters. (b) Neighbour-joining tree based on net nucleotide distances among the seven clusters inferred by STRUCTURE. Arrows indicate the sequence of
429 430 431 432 433	2 and K = 7. Each individual is represented by a vertical bar corresponding to the assignment probabilities to the K cluster. White lines separate populations and black lines separate clusters. (b) Neighbour-joining tree based on net nucleotide distances among the seven clusters inferred by STRUCTURE. Arrows indicate the sequence of differentiation when K increases. (c) Summary plot from Discriminant Analysis of Principal
429 430 431 432 433 434	2 and K = 7. Each individual is represented by a vertical bar corresponding to the assignment probabilities to the K cluster. White lines separate populations and black lines separate clusters. (b) Neighbour-joining tree based on net nucleotide distances among the seven clusters inferred by STRUCTURE. Arrows indicate the sequence of differentiation when K increases. (c) Summary plot from Discriminant Analysis of Principal Components (DAPC) for K = 7 genetic clusters. Dots represent individuals and genetic

- 438 Pyrenees (CWPY, pink), Picos de Europa mountains (PEU, yellow), and Guadarrama
 439 Mountain Range (GUA, blue).
- 440

441	Fig 5. Results of Ba	yesian clustering ana	lysis (STRUCTURE) for K = 7 microsatellite

- 442 groups for *Alytes obstetricans/almogavarii*. Sampled populations are represented by
- 443 pie charts highlighting the population cluster membership obtained in STRUCTURE.
- 444 The inset map shows the distribution of the main lineages: orange ND4 haplogroups
- 445 E-F (A. almogavarii), yellow ND4 haplogroup B (A. o. obstetricans), blue ND4
- 446 haplogroup A (A. o. pertinax), red ND4 haplogroup C (A. o. boscai), green ND4
- 447 haplogroup D (A. o. boscai), black unclear (adapted from Dufresnes and Martínez-
- 448 Solano [23]).
- 449

450

451	The test of significance of pairwise F_{ST} values between the seven lineages
452	defined by STRUCTURE was significantly different from zero (P < 0.01; S3 Table),
453	indicating significant genetic differences. ND4-based pairwise F_{ST} values ranged from
454	0.951 for eastern Pyrenees–Guadarrama Mountains to 0.089 for Guadarrama
455	Mountains–Guadarrama lowlands, whereas microsatellite-based pairwise F_{ST} values
456	ranged from 0.222 for Guadarrama Mountains–central-western Pyrenees to 0.060 for
457	Guadarrama lowlands–Picos de Europa. Accordingly, AMOVA analyses suggested
458	significant structure among the seven genetic lineages (P < 0.001; S4 Table). The

459	proportion of variation attributable to differences among lineages was lower in
460	microsatellites (26.171%) than in ND4 (84.945%), possibly as a result of gene flow and
461	the inability of mtDNA to detect it. Conversely, variation among individuals within
462	populations was low for ND4 (8.736%) and high for microsatellite (56.425%) markers,
463	as expected for polymorphic loci such as microsatellites.
464	In the Pyrenees, microsatellite genetic differentiation followed a ring-like
465	pattern, being maximal between lineages EPY (orange) and CWPY (pink; at opposite
466	extremities on PCA axis 2, Fig 4c-d), even though they are geographically proximate in
467	the central and eastern Pyrenees. To evaluate this hypothesis of ring-shaped isolation
468	by distance, we correlated genetic distances (F_{ST} obtained from microsatellites) of
469	Pyrenean populations to different types of geographic distance. We obtained a weak
470	isolation by distance pattern between genetic differentiation and Euclidean
471	geographic distance (Mantel's R = 0.185, P = 0.002; Fig 6). In contrast, we detected a
472	strong correlation between genetic differentiation and the geographic distance
473	suggested by PCA analysis (Fig 4c-d), which assumed no direct gene flow across the
474	central Pyrenean axis and thus between the two most genetically differentiated
475	lineages EPY and CWPY (Mantel's R = 0.683, P = 0.001; Fig 6).
476	
477	Fig 6. Isolation by distance analysis over Alytes obstetricans/almogayarii

477 Fig 6. Isolation by distance analysis over *Alytes obstetricans/almogavarii*

478 **population pairs from the Pyrenees.** Isolation by distance was calculated based on

479 (a) Euclidean geographic distance between all pairs of populations (Mantel's R =

0.185, P = 0.002) and (b) corrected geographic distance as suggested by PCA analysis,
i.e. following a ring-shaped distribution around the Pyrenean chain (Fig 4; Mantel's R
= 0.683, P = 0.001).

483

484

485The estimation of effective population sizes conducted in Colony returned, in486general, low values (S1 Table). Values ranged from five in the population Laguna de487Pájaros (LP) to 160 breeding individuals in the population Lago Ercina (ERC), with a488mean Ne of 43. The lowest values were found in populations from the Guadarrama489Mountains (Ne range = 5–15), while higher values were found in the Pyrenees490(eastern Pyrenees: 14–51, central Pyrenees: 68, central-western Pyrenees: 12–84)491and Picos de Europa (19–160).

492

493 **Demographic history**

DIYABC analyses suggested highest support for two different but compatible
scenarios of population divergence depending on the genetic markers used (i.e.
scenario 2 when using only microsatellites and scenario 5 when combining
microsatellites and ND4; Fig 2b, S5 Table). Both scenarios had non-overlapping 95%
confidence intervals and type I and II errors for the best supported models were low
(S5 Table), indicating high confidence in scenario choice. Model checking confirmed
that the best supported scenarios provided a good fit to the observed data (data not

shown). Furthermore, the mean mutation rate estimated for ND4 was found to be an

- order of magnitude higher than the literature value (1.96×10^{-7})
- substitutions/site/year; S6 Table), but still much lower than that estimated for
- 504 microsatellites (ranging from 1.28×10^{-4} to 3.89×10^{-4} and from 4.59×10^{-5} to 3.31×10^{-5} to 3.31
- ⁵⁰⁵ 10⁻⁴ for analyses conducted using only microsatellites and including both ND4 and
- 506 microsatellite markers, respectively).
- 507 The analysis focused on microsatellites indicated that scenario 2 (the
- 508 sequential splitting model based on results from clustering analyses) was the best
- 509 supported model (Fig 2b, S5 Table). According to this scenario, the first split led to
- 510 the separation of Pyrenean populations from peninsular ones. During the second split
- 511 there was the divergence of, on the one hand, central-western and central-eastern
- 512 Pyrenean populations, and on the other Picos de Europa and Guadarrama
- 513 populations. Finally, populations from the central Pyrenees originated from eastern
- 514 Pyrenean populations during the third split. The first split occurred 56 000–28 000
- years ago, and the second and third splits 36 800–18 400 and 25 200–12 600 years
- ago, respectively (S6 Table). The analysis based on the combination of microsatellites
- and ND4, however, suggested that Picos de Europa populations were generated by
- admixture of populations from the central-western Pyrenees and Guadarrama
- 519 (scenario 5; Fig 2b, S5 Table). Results indicated that the first split occurred 76 200–38
- 520 100 years ago, the second split 52 800–26 400 years ago and the admixture event 41
- 521 400–20 700 years ago (S6 Table).

522

523 **Discussion**

524	The Iberian Peninsula is an extraordinary model system to assess the multiple
525	historical vicariance events of species, the so called "refugia within refugia" model,
526	where mountain ranges have had a significant role [11, 12]. Such processes are
527	influenced by climatic and topographic conditions as well as through biological
528	processes between populations, which in turn reflect different and contrasting time
529	scales, historical and contemporary. To unravel such complex scenarios, a multilocus
530	approach is expected to reveal contrasting, often discordant findings that underline
531	intricate evolutionary processes [57]. Several recent studies targeting the Iberian
532	Peninsula and the Mediterranean biodiversity hotspot have focused on the processes
533	of niche divergence and admixture following secondary contact (e.g. Chamorro et al.
534	[58] and Martínez-Freiría et al. [59] with Mediterranean vipers, Antunes et al. [60]
535	with the fire salamander Salamandra salamandra, and Dufresnes et al. [61] with
536	Discoglossus and Pelodites frogs), highlighting the role of these areas as centres of
537	diversification and speciation. The results of the present study revealed a strong
538	association of the defined genetic lineages with geography by using a multilocus
539	analysis of genetic divergence in Iberian high mountain populations of A.
540	obstetricans/almogavarii. Furthermore, high mountain populations showed higher
541	levels of genetic distinctiveness than lowland populations (Fig 5), suggesting that

- 542 mountains may have driven population differentiation through long-term geographic
- 543 isolation, with lowlands more likely to be dispersal corridors for A.
- 544 *obstetricans/almogavarii,* as it has been described for other species (see e.g. [62,
- 545 63]).

546

547 The role of high mountains in genetic differentiation and

548 glacial refugia

549 This study describes the presence of seven different nuclear microsatellite 550 clusters, that are likely a result of recent microrefugial areas within the Pyrenees (Fig 5). Most of the recovered genetic structure was within Pyrenean populations, which 551 in turn were genetically more related to each other than with the other two high 552 mountain areas. Putative episodes of admixture within A. obstetricans/almogavarii in 553 the Pyrenees were suggested by previous phylogenetic analyses [3]. Following the 554 555 splits between major population lineages in A. obstetricans/almogavarii, which date 556 back to the Early Pleistocene (starting from 2.5 Mya; [20]), there have been several glacial-interglacial episodes that likely provided opportunities for diverging taxa to 557 558 come into contact and interbreed following range shifts tracking the climatic 559 fluctuations [12, 64]. Our findings show that Pyrenean high mountain populations have gone through relatively recent events of admixture, likely favoured by the 560 561 different glacial-interglacial episodes that characterised the Late Pleistocene.

562	Specifically, according to ABC analyses, the two lineages ascribed to A. almogavarii
563	(E-F, central and eastern Pyrenees), together with some populations of A. o.
564	obstetricans (central-western Pyrenean group) seem to have undergone a certain
565	degree of contact and admixture until divergence took place ~36 800–12 600 years
566	ago (Fig 2b). Despite the selected model, which proposes two independent admixture
567	events between the three lineages, the highly overlapping dates together with the
568	significant ring-shaped isolation by distance pattern (Fig 6; see below) suggest that
569	one single admixture event might have occurred within one main glacial refugia
570	where the three lineages coincided. In addition, contemporary signs of connectivity
571	between the two species were detected at lineage borders, as indicated by the
572	occurrence of a contact zone between ND4 lineage E and A. o. obstetricans in the
573	west (Figs 3, 5 and S2). Similarly, signs of admixture and extensive gene flow between
574	A. o. obstetricans and A. almogavarii in the western Pyrenees were previously
575	pointed out by allozyme markers [25, 26]. In contrast, in the central and eastern
576	Pyrenees no signs of connectivity were detected between ND4 lineage F and either
577	lineage E or A. o. obstetricans. This scenario of different contact zones telling
578	different stories is exemplified in ring species, i.e. a system formed by a region of
579	interconnected populations with both ends of the ring coming into contact without
580	apparent admixture [65, 66]. In the Pyrenees, the spatial distribution of the A.
581	obstetricans complex seems to fit with a postglacial colonisation pattern similar to
582	what has been described in ring diversification, where taxa at the western part of the

583	ring likely interbreed and those at the eastern side apparently don't, displaying a
584	continuum from slightly divergent neighbouring populations to substantially
585	reproductively isolated taxa (Figs 4d, 5 and 6). Ring diversifications represent cases of
586	population divergence around a geographical barrier in a ring-like manner [67] that
587	can result in cases of speciation in action (i.e. ring species) and have been cited as
588	evidence of evolution [68], with some of the most well-known cases being identified
589	in herptiles, such as the Ensatina eschscholtzii salamander complex [69] and the
590	western fence lizard Sceloporus occidentalis [70] in western North America. In light of
591	this, our results are not entirely in line with the distinction of A. almogavarii as a
592	different species, yet support a scenario of speciation in action, with lineage F
593	showing evidence for speciation and reproductive isolation [23], and lineage E
594	retaining some degree of connectivity with A. o. obstetricans. Nevertheless, we
595	cannot rule out that this pattern may be the result of geographic sampling gaps, and
596	additional surveys across hybrid zones between lineages E-F and A. o. obstetricans, as
597	well as further work using resistance distances (i.e. by taking elevation, slope and
598	land cover into account), would be required to fully test the ring species hypothesis.
599	Finally, with regard to the central-western Pyrenean group, the subdivision by
600	microsatellite analyses into two or three different genetic clusters (Figs 4 and S2),
601	points to a scenario of allopatric divergence after the recolonization of the Pyrenees
602	as a result of geographic barriers, with consequent reduction or disruption of gene
603	flow. Alternatively, this differentiation might have happened during one of the abrupt

604	cooling episodes of the Holocene (e.g. the 8 200 year-event; [71]), with consequent
605	isolation in separate glacial refugia. Range isolation and lineage divergence in
606	separate Pyrenean refugia during Pleistocene glacial cycles were also invoked e.g. for
607	the Pyrenean brook newt Calotriton asper [55], the ground-dwelling spider
608	Harpactocrates ravastellus [72], the rusty-leaved alpenrose Rhododendron
609	ferrugineum [73] and the snapdragon Antirrhinum [74], in line with evidence from a
610	number of other high mountain areas that served as glacial refugia during periods of
611	adverse conditions, such as the Andes, Himalaya and the Southern Alps in New
612	Zealand (see [64] for a review). From a conservation point of view, we suggest that
613	these areas should be treated as separate conservation and management units.
614	

615 Mito-nuclear discordances

616 The analyses of microsatellites distinguished two highly divergent A. o. 617 obstetricans lineages, one in the central-western Pyrenees and the other in Picos de 618 Europa (Figs 4 and S2), with the latter being more genetically related to the southern 619 populations (ascribed to A. o. pertinax; Figs 4d and S7). In contrast, these two lineages bear the same mtDNA (ND4) haplogroup ascribed to A. o. obstetricans 620 621 (haplogroup B; Figs 3 and S2a). One possible explanation is that the closer genetic affinity of the western and southern area populations rather than to the central-622 western Pyrenean lineage originated from extensive admixture with A. o. 623

624 obstetricans (the central-western Pyrenean group) as the maternal donor and A. o. 625 pertinax as the paternal donor (Fig 2b). A similar pattern was observed in S. 626 salamandra [75] and in crustaceans of the genus Daphnia [76]. A plausible scenario 627 could be that, during Late Pleistocene glacial periods (as suggested by results from DYABC modelling when combining both microsatellites and mtDNA; Fig 2), some A. o. 628 629 obstetricans populations remained confined in isolated refugia where they coincided with A. o. pertinax for a sufficient time so that genetic admixture could take place. 630 631 Similarly, range isolation during Pleistocene climatic fluctuations was suggested for 632 the cryptic *Pelodytes* anuran clade [77, 78], the Cabrera vole *Microtus cabrerae* [79] 633 and the scrub-legume grasshopper *Chorthippus binotatus binotatus* [80], where extant lineages likely diverged in separated refugia within the Iberian Peninsula. 634 Subdivided glacial refugia could have experienced events of admixture during the 635 succession of glacial and interglacial periods, with consequent fusion between 636 refugial lineages [81, 82]. 637 Mito-nuclear discordances with evidence for admixture or hybridisation are 638 not uncommon in amphibians (e.g. [4, 8, 60]) and have also been described in a wide 639 range of other animal species from north-central Iberian Peninsula, from arachnids 640 [83] to mammals [84]. Furthermore, the Cantabrian Mountains represent a peculiar 641 642 biogeographic region and a recognised hotspot of genetic diversity in amphibians, 643 being home to endemic refugial clades in a number of species with broad European

distribution [82, 85]. Finally, more recently, the Picos de Europa and A. o. pertinax

645	populations may have come into secondary contact and interbred following an
646	expansion phase, creating zones of admixture at lineage borders. Alternatively, the
647	discordance may stem from stochastic processes in the form of genetic drift, and the
648	phylogeographic structure detected in mtDNA (Figs 3 and S3) may have developed as
649	a result of low individual dispersal distances and/or population sizes [86], as
650	evidenced by our results and published literature (e.g. [87]). Further studies and
651	sequencing of more molecular markers are needed to test these hypotheses and
652	enrich our understanding of the phylogeography of A. obstetricans.
653	

654 Chytridiomycosis and population bottleneck

655 The genetic distinctiveness and limited genetic diversity of populations from 656 the Guadarrama Mountains herein detected (Figs 4 and S2, Table 1) are likely early signs of inbreeding depression induced by an emerging pathogen, i.e. the chytrid 657 fungus Batrachochytrium dendrobatidis [88]. It should be noted that our sampling 658 was performed approximately 10 years after an epidemic of the disease 659 660 chytridiomycosis, which hugely impacted this area in the period 1997–1999, causing several populations to decrease or even disappear [16, 89]. Accordingly, the only 661 662 sampled population in the affected area that did not show signs of chytridiomycosis was the one presenting the highest genetic diversity (Montes de Valsain, MV; S1 663 Table). Our findings complement those of Albert et al. [18] that detected evidence of 664 665 low genetic variability and strong population bottleneck in A. obstetricans from the

666	same mountain system. In addition to this, we report on the first estimates of
667	effective population sizes of these populations, which were among the lowest overall
668	($N_e = 5-15$; Table 1), raising concern for the long-term persistence of these
669	populations, which are small and isolated. Indeed, the closest neighbouring
670	populations are located more than 50 km away and are known to be small and not
671	genetically related [18, 90]. Furthermore, the Guadarrama Mountains constitute a
672	major barrier to gene flow in amphibians and a key feature shaping population
673	structure and promoting population divergence across taxa [62]. Our results are an
674	example of a disease acting as selective pressure in wild populations by inducing
675	genetic hallmarks of bottlenecks and inbreeding, as it has also been shown in other
676	species such as the black-tailed prairie dog (Cynomys ludovicianus), the mountain
677	yellow-legged frog (Rana muscosa) and the bobcat (Lynx rufus) (reviewed in [91]).
678	

Differences in the evolutionary horizon/resolution between

680 genetic markers

This study confirms previous findings in *A. obstetricans/almogavarii* clades [20] with the only difference that our species tree analyses recovered a different basal lineage (S3 Fig), a likely consequence of our limited inference power given that only two loci were used for species tree reconstruction. Results from ABC modelling based on either microsatellites or microsatellites + mtDNA resulted in time estimates

686	highly different from those of the species tree (Fig 2b), suggesting that the two
687	analyses are depicting different evolutionary events. In fact, while the species tree
688	has proven useful to estimate divergence times associated with the formation of
689	species/subspecies, ABC modelling was here employed to gain insights into the
690	colonisation of three high mountain regions in the Iberian Peninsula by the different
691	A. obstetricans/almogavarii taxa. Microsatellite markers, with their faster mutation
692	rate, are known to perform poorly for the estimation of ancient historical events [57,
693	92]. On the contrary, microsatellites provide substantially better estimations than
694	mtDNA for the most recent dynamics [57]. However, the combination of both
695	markers in our ABC modelling resulted in similar divergence times as those estimated
696	using microsatellites alone. It is thus possible that combining both markers may have
697	biased toward microsatellites and the estimation of recent historical events.
698	We need to stress that DIYABC modelling has some uncertainty. Firstly, this
699	approach is based on scenarios where no gene flow is permitted between
700	populations after they initially diverge. Only single events of admixture between
701	populations are considered, whereas recurrent gene flow due to dispersal cannot be
702	incorporated. However, population structure analyses were used to investigate
703	contemporary gene flow and identify patterns of admixture and contact zones at
704	lineage borders (e.g. Fig 5). Secondly, the tested models do not represent a
705	comprehensive range of all possible scenarios, but are instead based on a selection of
706	contrasting hypotheses that we considered were most likely to reflect our data. We

707	focused our analysis on simple contrasting models aimed at capturing the key
708	demographic events, avoiding overcomplex and redundant models, therefore the
709	selected models should be viewed as a starting point for evolutionary understanding.
710	This approach has proven useful to increase the ability of DIYABC to reveal the
711	correct model, as well as to better estimate the error and accuracy of parameter
712	estimates [93]. On the other hand, it has to be noted that estimates based on
713	mitochondrial data might be unreliable due to the erratic mutation rate of mtDNA
714	and to the fact that mtDNA does not evolve neutrally since transmission of
715	mitochondria is completely linked to maternal inheritance. Indeed, mtDNA-based
716	estimates have been found to mismatch the onset of species divergence in both
717	directions due to the stochasticity of coalescence [94].

718

719 Concluding remarks

720 Our multilocus phylogeography across the Iberian Peninsula revealed high 721 genetic structure correlated with geography and a complex pattern of lineage 722 admixture in high mountain populations of *A. obstetricans/almogavarii*. Our study 723 evidenced how each analysed mountain region underwent a peculiar phylogeographic history through the Late Pleistocene, which is consistent with the 724 "refugia within refugia" model [11, 12] and confirms previous studies on a number of 725 Iberian amphibian species (e.g. [22, 77, 85, 95, 96]). Results also support the 726 727 assumption that refugia within refugia may be hotspots of extensive mito-nuclear

728	discordances [82], highlighting the importance of multilocus approaches to infer the
729	dynamics of population divergence. Environmental change in the different mountain
730	systems may have an influence on selection, resulting in an increased divergence
731	among isolated populations, consequently leading to speciation [97]. The phenetic
732	differences between the subspecies of <i>Alytes</i> (especially <i>A. o. pertinax</i>) may be a
733	further indication of adaptation to some micro-environmental differences such as
734	streams vs still waters (known to influence coloration in <i>Alytes</i> , [98]), temperature
735	and solar radiation at different altitudes between the studied mountain systems.
736	

737 Acknowledgements

We thank Saioa Fernández-Beaskoetxea, Amparo Mora, Susana Marquínez, Fernando
Rivada, René A. Priego, Abel Bermejo and Matthew C. Fisher for field assistance, and
Eva Albert, Laura Méndez, Annie Machordom and Andrés Fernández-Loras for
laboratory assistance.

742 **References**

743 744	1.	Avise JC. Phylogeography: The history and formation of species. (ELS) iEoLS, editor. Cambridge, MA, USA: Harvard University Press; 2000.
745	n	Fordham DA, Brook BW, Moritz C, Nogués-Bravo D. Better forecasts of range
745 746	2.	dynamics using genetic data. Trends in Ecology & Evolution. 2014;29(8):436-43.
747	3.	Gonçalves H, Martínez-Solano I, Ferrand N, García-París M. Conflicting phylogenetic
748		signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura,
749		Discoglossidae, Alytes): Deep coalescence or ancestral hybridization? Molecular
750		Phylogenetics and Evolution. 2007;44(1):494-500.
751	4.	Pereira RJ, Martinez-Solano I, Buckley D. Hybridization during altitudinal range shifts:
752		Nuclear introgression leads to extensive cyto-nuclear discordance in the fire
753		salamander. Molecular Ecology. 2016;25(7):1551-65.
754	5.	Denton RD, Kenyon LJ, Greenwald KR, Gibbs HL. Evolutionary basis of mitonuclear
755		discordance between sister species of mole salamanders (Ambystoma sp.). Molecular
756		Ecology. 2014;23(11):2811-24.
757	6.	Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, divergence, and
758		the phylogeography-phylogenetics continuum. Proceedings of the National Academy
759		of Sciences. 2016;113(29):8025-32.
760	7.	Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance
761		in animals. Molecular Ecology. 2012;21(16):3907-30.
762	8.	Bisconti R, Porretta D, Arduino P, Nascetti G, Canestrelli D. Hybridization and
763		extensive mitochondrial introgression among fire salamanders in peninsular Italy.
764		Scientific Reports. 2018;8(1):1-10.
765	9.	Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature.
766		2000;405(6789):907-13.
767	10.	Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary.
768		Philosophical Transactions of the Royal Society of London B: Biological Sciences.
769		2004;359(1442):183-95; discussion 95.
770	11.	Gómez A, Lunt DH. Refugia within refugia: Patterns of phylogeographic concordance
771		in the Iberian Peninsula. In: Weiss S, Ferrand N, editors. Phylogeography of southern
772		European refugia. Amsterdam, Netherlands: Springer; 2007. p. 155-88.
773	12.	Abellán P, Svenning J-C. Refugia within refugia-patterns in endemism and genetic
774		divergence are linked to Late Quaternary climate stability in the Iberian Peninsula.
775		Biological Journal of the Linnean Society. 2014;113(1):13-28.
776	13.	Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and
777		speciation. Biological Journal of the Linnean Society. 1996;58(3):247-76.
778	14.	Bosch J, Beebee T, Schmidt B, Tejedo M, Martinez Solano I, Salvador A, et al. Alytes
779		obstetricans (errata version published in 2016). The IUCN Red List of Threatened
780		Species 2009: e.T55268A87541047.
781		doi:10.2305/IUCN.UK.2009.RLTS.T55268A11283700.en. 2009.
782	15.	Miró A, Sabás I, Ventura M. Large negative effect of non-native trout and minnows
783		on Pyrenean lake amphibians. Biological Conservation. 2018;218:144-53.

784	16.	Bosch J, Martínez-Solano I, García-París M. Evidence of a chytrid fungus infection
785		involved in the decline of the common midwife toad (Alytes obstetricans) in
786		protected areas of central Spain. Biological Conservation. 2001;97(3):331-7.
787	17.	Tobler U, Schmidt BR. Within- and among-population variation in chytridiomycosis-
788		induced mortality in the toad Alytes obstetricans. PLoS One. 2010;5(6):e10927.
789	18.	Albert EM, Fernández-Beaskoetxea S, Godoy JA, Tobler U, Schmidt BR, Bosch J.
790		Genetic management of an amphibian population after a chytridiomycosis outbreak.
791		Conservation Genetics. 2014;16(1):103-11.
792	19.	Walker SF, Bosch J, Gomez V, Garner TW, Cunningham AA, Schmeller DS, et al.
793		Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis
794		in Iberia. Ecology Letters. 2010;13(3):372-82.
795	20.	Gonçalves H, Maia-Carvalho B, Sousa-Neves T, Garcia-Paris M, Sequeira F, Ferrand N,
796		et al. Multilocus phylogeography of the common midwife toad, Alytes obstetricans
797		(Anura, Alytidae): Contrasting patterns of lineage diversification and genetic
798		structure in the Iberian refugium. Molecular Phylogenetics and Evolution.
799	24	2015;93:363-79.
800	21.	Maia-Carvalho B, Gonçalves H, Martínez-Solano I, Gutiérrez-Rodríguez J, Lopes S,
801		Ferrand N, et al. Intraspecific genetic variation in the common midwife toad (<i>Alytes</i>
802 802		obstetricans): Subspecies assignment using mitochondrial and microsatellite markers.
803 804	22.	Journal of Zoological Systematics and Evolutionary Research. 2014;52(2):170-5. Maia-Carvalho B, Vale CG, Sequeira F, Ferrand N, Martínez-Solano I, Gonçalves H. The
804 805	22.	roles of allopatric fragmentation and niche divergence in intraspecific lineage
805		diversification in the common midwife toad (<i>Alytes obstetricans</i>). Journal of
807		Biogeography. 2018;45(9):2146-58.
808	23.	Dufresnes C, Martínez-Solano Í. Hybrid zone genomics supports candidate species in
809	23.	Iberian <i>Alytes obstetricans</i> . Amphibia-Reptilia. 2019;41(1):105-12.
810	24.	Dufresnes C, Hernandez A. Phylogeographic advances in midwife toads (<i>Alytes</i>)
811		support the existence of a novel taxon endemic to the Central Pyrenees. Journal of
812		Zoological Systematics Evolutionary Research. 2021;59(8):2170-9.
813	25.	Arntzen JW, Garcia-Paris M. Morphological and allozyme studies of midwife toads
814		(genus Alytes), including the description of two new taxa from Spain. Contributions
815		to Zoology. 1995;65(1):5-34.
816	26.	García-París M. Variabilidad genética y distribución geográfica de Alytes obstetricans
817		almogavarii en España. Revista Española de Herpetología. 1995;9:133-8.
818	27.	Pöschel J, Heltai B, Graciá E, Quintana MF, Velo-Antón G, Arribas O, et al. Complex
819		hybridization patterns in European pond turtles (<i>Emys orbicularis</i>) in the Pyrenean
820		Region. Scientific Reports. 2018;8(1):1-13.
821	28.	Montero-Pau J, Gómez A, Muñoz J. Application of an inexpensive and high-
822		throughput genomic DNA extraction method for the molecular ecology of
823		zooplanktonic diapausing eggs. Limnology and Oceanography: Methods.
824		2008;6(6):218-22.
825	29.	Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis
826	26	version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33(7):1870-4.
827	30.	Flot JF. SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA
828		sequence alignments. Molecular Ecology Resources. 2010;10(1):162-6.

829	31.	Stephens M, Donnelly P. A comparison of bayesian methods for haplotype
830	51.	reconstruction from population genotype data. The American Journal of Human
831		Genetics. 2003;73(5):1162-9.
	.	
832	32.	Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype
833		reconstruction from population data. The American Journal of Human Genetics.
834		2001;68(4):978-89.
835	33.	Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious
836		Basic: An integrated and extendable desktop software platform for the organization
837		and analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.
838	34.	Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: Software
839		for identifying and correcting genotyping errors in microsatellite data. Molecular
840		Ecology Notes. 2004;4(3):535-8.
841	35.	Rousset F. GENEPOP'007: a complete re-implementation of the GENEPOP software
842		for Windows and Linux. Molecular Ecology Resources. 2008;8(1):103-6.
843	36.	Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43(1):223-5.
844	37.	Peakall R, Smouse P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic
845		software for teaching and research-an update. Bioinformatics. 2012;28(19):2537-9.
846	38.	Kalinowski ST. hp-rare 1.0: a computer program for performing rarefaction on
847	001	measures of allelic richness. Molecular Ecology Notes. 2005;5(1):187-9.
848	39.	Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous
849	55.	Windows TM pour la génétique des populations. Laboratoire Génome, Populations,
850		Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
850 851		1996-2004.
852	40	
	40.	Salzburger W, Ewing GB, Von Haeseler A. The performance of phylogenetic
853		algorithms in estimating haplotype genealogies with migration. Molecular Ecology.
854		2011;20(9):1952-63.
855	41.	Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: More models, new
856		heuristics and parallel computing. Nature Methods. 2012;9(8):772.
857	42.	Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
858		thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-90.
859	43.	Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins
860		SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular
861		Biology and Evolution. 2017;34(12):3299-302.
862	44.	Heled J, Drummond AJ. Bayesian inference of species trees from multilocus data.
863		Molecular Biology and Evolution. 2009;27(3):570-80.
864	45.	Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees.
865		BMC Evolutionary Biology. 2007;7(1):1-8.
866	46.	Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: A
867		new method for the analysis of genetically structured populations. BMC Genetics.
868		2010;11(1):94.
869	47.	R Core Team. R: A language and environment for statistical computing. Vienna,
870	-	Austria: R Foundation for Statistical Computing. <u>http://www.R-project.org/</u> . 2018.
871	48.	Pritchard JK, Stephens M, Donnelly P. Inference of population structure using
872	.0.	multilocus genotype data. Genetics. 2000;155(2):945-59.
0,2		

873	49.	Takezaki N, Nei M, Tamura K. POPTREEW: web version of POPTREE for constructing
874		population trees from allele frequency data and computing some other quantities.
875		Molecular Biology and Evolution. 2014;31(6):1622-4.
876	50.	Caye K, Jay F, Michel O, François O. Fast inference of individual admixture
877		coefficients using geographic data. The Annals of Applied Statistics. 2018;12(1):586-
878		608.
879	51.	Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform
880		population genetics analyses under Linux and Windows. Molecular Ecology
881		Resources. 2010;10(3):564-7.
882	52.	Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from
883		metric distances among DNA haplotypes: Application to human mitochondrial DNA
884		restriction data. Genetics. 1992;131(2):479-91.
885	53.	Dufresnes C, Litvinchuk SN, Leuenberger J, Ghali K, Zinenko O, Stöck M, et al.
886		Evolutionary melting pots: a biodiversity hotspot shaped by ring diversifications
887		around the Black Sea in the Eastern tree frog (Hyla orientalis). Molecular Ecology.
888		2016;25(17):4285-300.
889	54.	Jones OR, Wang J. COLONY: A program for parentage and sibship inference from
890		multilocus genotype data. Molecular Ecology Resources. 2010;10(3):551-5.
891	55.	Lucati F, Poignet M, Miró A, Trochet A, Aubret F, Barthe L, et al. Multiple glacial
892		refugia and contemporary dispersal shape the genetic structure of an endemic
893		amphibian from the Pyrenees. Molecular Ecology. 2020;29(15):2904-21.
894	56.	Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, et al. DIYABC
895		v2.0: A software to make approximate Bayesian computation inferences about
896		population history using single nucleotide polymorphism, DNA sequence and
897		microsatellite data. Bioinformatics. 2014;30(8):1187-9.
898	57.	Emerson BC, Hewitt GM. Phylogeography. Current Biology. 2005;15(10):R367-R71.
899	58.	Chamorro D, Martínez-Freiría F, Real R, Muñoz AR. Understanding parapatry: How do
900		environment and competitive interactions shape Iberian vipers' distributions?
901		Journal of Biogeography. 2020.
902	59.	Martínez-Freiría F, Freitas I, Zuffi MA, Golay P, Ursenbacher S, Velo-Antón G. Climatic
903	551	refugia boosted allopatric diversification in western Mediterranean vipers. Journal of
904		Biogeography. 2020;47(8):1698-713.
905	60.	Antunes B, Velo-Antón G, Buckley D, Pereira R, Martínez-Solano I. Physical and
906	00.	ecological isolation contribute to maintain genetic differentiation between fire
907		salamander subspecies. Heredity. 2021:1-14.
908	61.	Dufresnes C, Pribille M, Alard B, Gonçalves H, Amat F, Crochet P-A, et al. Integrating
909	01.	hybrid zone analyses in species delimitation: Lessons from two anuran radiations of
910		the Western Mediterranean. Heredity. 2020;124(3):423-38.
911	62.	Sánchez-Montes G, Wang J, Ariño AH, Martínez-Solano Í. Mountains as barriers to
912	02.	gene flow in amphibians: Quantifying the differential effect of a major mountain
913		ridge on the genetic structure of four sympatric species with different life history
913 914		traits. Journal of Biogeography. 2018;45(2):318-31.
914 915	63.	
	05.	Li Y, Zhang X, Fang Y. Landscape features and climatic forces shape the genetic structure and evolutionany bistory of an eak species (<i>Quarcus chanii</i>) in East China
916 017		structure and evolutionary history of an oak species (<i>Quercus chenii</i>) in East China.
917		Frontiers in Plant Science. 2019;10:1060.

918 919	64.	Wallis GP, Waters JM, Upton P, Craw D. Transverse alpine speciation driven by glaciation. Trends in Ecology & Evolution. 2016;31(12):916-26.
920	65.	Alcaide M, Scordato ES, Price TD, Irwin DE. Genomic divergence in a ring species
921	05.	complex. Nature. 2014;511(7507):83-5.
922	66.	Irwin D, Wake D. Ring species. In: Kliman RM, editor. Encyclopedia of evolutionary
923	00.	biology. 3. Oxford: Academic Press; 2016. p. 467–75.
924	67.	Monahan WB, Pereira RJ, Wake DB. Ring distributions leading to species formation: a
925	07.	global topographic analysis of geographic barriers associated with ring species. BMC
926		Biology. 2012;10(1):1-15.
927	68.	Irwin DE, Irwin JH, Price TD. Ring species as bridges between microevolution and
928	00.	speciation. Genetica. 2001;112-113:223-43.
929	69.	Kuchta SR, Wake DB. Wherefore and whither the ring species? 2016;104(1):189-201.
930	70.	Bouzid NM, Archie JW, Anderson RA, Grummer JA, Leaché AD. Evidence for
931	70.	ephemeral ring species formation during the diversification history of western fence
932		lizards (<i>Sceloporus occidentalis</i>). Molecular Ecology. 2021.
933	71.	Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU. Holocene climatic
934	, 11	instability: A prominent, widespread event 8200 yr ago. Geology. 1997;25(6):483-6.
935	72.	Bidegaray-Batista L, Sánchez-Gracia A, Santulli G, Maiorano L, Guisan A, Vogler AP, et
936	,	al. Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography
937		and palaeodistribution modelling of an endemic spider. Molecular Ecology.
938		2016;25(9):2046-64.
939	73.	Charrier O, Dupont P, Pornon A, Escaravage N. Microsatellite marker analysis reveals
940		the complex phylogeographic history of <i>Rhododendron ferrugineum</i> (Ericaceae) in
941		the Pyrenees. PLoS One. 2014;9(3):e92976.
942	74.	Liberal IM, Burrus M, Suchet C, Thebaud C, Vargas P. The evolutionary history of
943		Antirrhinum in the Pyrenees inferred from phylogeographic analyses. BMC
944		Evolutionary Biology. 2014;14(1):146.
945	75.	Donaire-Barroso D, Rivera X. La salamandra común Salamandra salamandra
946		(Linnaeus, 1758) en el subcantábrico: Origen, dispersión, subespecies y zonas de
947		introgresión. Butlletí Societat Catalana de Herpetología. 2016;23:7-38.
948	76.	Thielsch A, Knell A, Mohammadyari A, Petrusek A, Schwenk K. Divergent clades or
949		cryptic species? Mito-nuclear discordance in a <i>Daphnia</i> species complex. BMC
950		Evolutionary Biology. 2017;17(1):227.
951	77.	Díaz-Rodríguez J, Gehara M, Marquez R, Vences M, Goncalves H, Sequeira F, et al.
952		Integration of molecular, bioacoustical and morphological data reveals two new
953		cryptic species of <i>Pelodytes</i> (Anura, Pelodytidae) from the Iberian Peninsula. Zootaxa.
954		2017;4243(1):1-41.
955	78.	Díaz-Rodríguez J, Gonçalves H, Sequeira F, Sousa-Neves T, Tejedo M, Ferrand N, et al.
956		Molecular evidence for cryptic candidate species in Iberian Pelodytes (Anura,
957		Pelodytidae). Molecular Phylogenetics and Evolution. 2015;83:224-41.
958	79.	Barbosa S, Pauperio J, Herman JS, Ferreira CM, Pita R, Vale-Goncalves HM, et al.
959		Endemic species may have complex histories: within-refugium phylogeography of an
960		endangered Iberian vole. Molecular Ecology. 2017;26(3):951-67.

961 962	80.	Noguerales V, Cordero PJ, Ortego J. Inferring the demographic history of an oligophagous grasshopper: Effects of climatic niche stability and host-plant
963		distribution. Mol Phylogenet Evol. 2018;118:343-56.
964	81.	Canestrelli D, Bisconti R, Sacco F, Nascetti G. What triggers the rising of an
965		intraspecific biodiversity hotspot? Hints from the agile frog. Scientific Reports.
966		2014;4:5042.
967	82.	Dufresnes C, Nicieza AG, Litvinchuk SN, Rodrigues N, Jeffries DL, Vences M, et al. Are
968		glacial refugia hotspots of speciation and cyto-nuclear discordances? Answers from
969		the genomic phylogeography of Spanish common frogs. Molecular Ecology.
970		2020;29:986-1000.
971	83.	Domènech M, Crespo LC, Enguídanos A, Arnedo MA. Mitochondrial discordance in
972		closely related Theridion spiders (Araneae, Theridiidae), with description of a new
973		species of the <i>T. melanurum</i> group. Zoosystematics Evolution. 2020;96:159.
974	84.	Escoda L, Castresana J. The genome of the Pyrenean desman and the effects of
975		bottlenecks and inbreeding on the genomic landscape of an endangered species.
976		Evolutionary Applications. 2021.
977	85.	Recuero E, Garcia-Paris M. Evolutionary history of Lissotriton helveticus: Multilocus
978		assessment of ancestral vs. recent colonization of the Iberian Peninsula. Molecular
979		Phylogenetics and Evolution. 2011;60(1):170-82.
980	86.	Irwin DE. Phylogeographic breaks without geographic barriers to gene flow.
981		Evolution. 2002;56(12):2383-94.
982	87.	Godet C, Clauzel C. Comparison of landscape graph modelling methods for analysing
983		pond network connectivity. Landscape Ecology. 2021;36(3):735-48.
984	88.	O'Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, et al. Recent Asian
985		origin of chytrid fungi causing global amphibian declines. Science.
986		2018;360(6389):621-7.
987	89.	Bosch J, Fernández-Beaskoetxea S, Garner TW, Carrascal LM. Long-term monitoring
988		of an amphibian community after a climate change- and infectious disease-driven
989	00	species extirpation. Global Change Biology. 2018;24(6):2622-32.
990 001	90.	Bosch J. Sapo partero común (<i>Alytes obstetricans</i>). In: Pleguezuelos JM, Márquez R,
991		Lizana M, editors. Atlas y libro rojo de los anfibios y reptiles de España. Madrid,
992 993		Spain: Dirección General de Conservación de la Naturaleza-Asociación Herpetologica Española; 2002. p. 82–4.
995 994	91.	McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR. Effects of emerging
995	91.	infectious diseases on host population genetics: a review. Conservation Genetics.
996		2017;18(6):1235-45.
997	92.	Cornuet JM, Ravigne V, Estoup A. Inference on population history and model
998	52.	checking using DNA sequence and microsatellite data with the software DIYABC
999		(v1.0). BMC Bioinformatics. 2010;11:401.
1000	93.	Cabrera AA, Palsbøll PJ. Inferring past demographic changes from contemporary
1001		genetic data: A simulation-based evaluation of the ABC methods implemented in
1001		DIYABC. Molecular Ecology Resources. 2017;17(6):e94-e110.
1003	94.	Ebdon S, Laetsch DR, Dapporto L, Hayward A, Ritchie MG, Dincă V, et al. The
1004	-	Pleistocene species pump past its prime: Evidence from European butterfly sister
1005		species. bioRxiv. 2021.
-		-

1006 1007 1008 1009	95. 96.	Vences M, Hauswaldt JS, Steinfartz S, Rupp O, Goesmann A, Künzel S, et al. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus <i>Rana</i> . Molecular Phylogenetics and Evolution. 2013;68(3):657-70. Vences M, Sarasola-Puente V, Sanchez E, Amat F, Hauswaldt JS. Diversity and
1005	50.	distribution of deep mitochondrial lineages of the common frog, <i>Rana temporaria</i> , in
1011		northern Spain. Salamandra. 2017;53:25-33.
1012	97.	Uy JAC, Borgia G. Sexual selection drives rapid divergence in bowerbird display traits.
1013		Evolution. 2000;54(1):273-8.
1014	98.	Polo-Cavia N, Oliveira JM, Villa AJR, Márquez R. Background colour matching in a wild
1015		population of Alytes obstetricans. Amphibia-Reptilia. 2016;37(3):253-60.
1016	99.	Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using
1017		the software STRUCTURE: A simulation study. Molecular Ecology. 2005;14(8):2611-
1018		20.
1019		

Supporting information

1021	S1 Fig. Summary of A. obstetricans/almogavarii samples incorporated into each
1022	main analysis. (a) Geographic location of populations included in each analysis. For
1023	population codes see Fig 1. The inset map shows the distribution of the main
1024	lineages: orange - ND4 haplogroups E-F (<i>A. almogavarii</i>), yellow - ND4 haplogroup B
1025	(A. o. obstetricans), blue - ND4 haplogroup A (A. o. pertinax), red - ND4 haplogroup C
1026	(A. o. boscai), green - ND4 haplogroup D (A. o. boscai), black - unclear (adapted from
1027	Dufresnes and Martínez-Solano [23]). (b) Markers used in each analysis, with the
1028	corresponding number of samples and populations. Effective population sizes were
1029	calculated only for populations with \geq 15 genotyped individuals. In the case of
1030	demographic history, only high mountain populations were included in the analysis.
1031	
1032	S2 Fig. Results of phylogenetic and clustering analyses for Alytes
1033	obstetricans/almogavarii. (a) Geographic distribution of the four mtDNA (ND4)

- 1034 haplogroups recovered in the analysis (blue: mtDNA haplogroup A, yellow: mtDNA
- 1035 haplogroup B, grey: mtDNA haplogroup E, orange: mtDNA haplogroup F). In four
- 1036 populations (T2, 61XR, BP and PI) we detected the presence of more than one
- 1037 haplogroup. (b) Results from Discriminant Analysis of Principal Components (DAPC)
- and (c) STRUCTURE for K = 7 microsatellite groups (see Fig 4). (d) Geographic
- 1039 distribution of the five genetic groups identified by microsatellite-based neighbour-

1040	joining analysis (see S7 Fig). White circles indicate populations with no data available
1041	for either ND4 or microsatellites. For population codes see Fig 1. The inset map
1042	shows the distribution of the main lineages: orange - ND4 haplogroups E-F (A.
1043	almogavarii), yellow - ND4 haplogroup B (A. o. obstetricans), blue - ND4 haplogroup A
1044	(A. o. pertinax), red - ND4 haplogroup C (A. o. boscai), green - ND4 haplogroup D (A.
1045	o. boscai), black - unclear (adapted from Dufresnes and Martínez-Solano [23]).
1046	
1047	S3 Fig. Alytes species tree produced in *BEAST based on one nuclear gene (β -
1048	fibint7) and four mitochondrial fragments (ND4, cyt-b, 12S and 16S). Labels on
1049	branch tips correspond to the distinct ND4 haplogroups identified (blue: mtDNA
1050	haplogroup A, pink: mtDNA haplogroup B (central-western Pyrenean populations),
1051	yellow: mtDNA haplogroup B (Picos de Europa populations), grey: mtDNA haplogroup
1052	E, orange: mtDNA haplogroup F). Posterior probabilities of lineage divergence are
1053	indicated on branch labels.
1054	
1055	S4 Fig. Resulting plots from Discriminant Analysis of Principal Components (DAPC)
1056	across all Alytes obstetricans/almogavarii populations. (a) Summary plots for K = 2-7
1057	genetic clusters. At K = 2, genetic clusters are represented as density curves. At K = 3-
1058	7, dots represent individuals and genetic clusters are shown as inertia ellipses.
1059	Legend labels indicate the different genetic clusters: eastern Pyrenees (EPY, orange),
1060	central Pyrenees (CPY, grey), central-western Pyrenees (CWPY, pink), Picos de Europa

1061	mountains (PEU, yellow), and Guadarrama Mountain Range (GUA, blue). (b)
1062	Distribution of BIC (Bayesian Information Criterion) values according to the number
1063	of clusters. The red arrow indicates the number of clusters chosen for DAPC analysis.
1064	The optimal number of clusters was assessed using the <i>find.clusters</i> function and
1065	determined as the K value above which BIC (Bayesian Information Criterion) values
1066	decreased substantially.
1067	
1068	S5 Fig. Results of Bayesian clustering analyses in STRUCTURE for microsatellites. (a)
1069	Mean (± SD) log probability of the data [Ln Pr(XIK)] over 10 runs, for each value of K.
1070	(b) ΔK values as a function of K, calculated according to Evanno et al. [99].
1071	
1072	S6 Fig. Results of Tess3R analyses for microsatellites. (a) Map depicting the
1073	distribution of ancestry coefficients inferred through Tess3R for K = 7 clusters. Black
1074	dots indicate the populations analysed. Colour codes as for STRUCTURE results. More
1075	saturated colours indicate a greater proportion of ancestry to either cluster. (b)
1076	Distribution of cross-validation scores according to the number of clusters. The red
1077	arrow indicates the number of clusters chosen for Tess3R analysis.
1078	
1079	S7 Fig. Neighbour-joining tree based on D_A distances for microsatellite markers.
1080	Branch colours delineate the seven genetic clusters inferred by STRUCTURE (see Figs
1081	4a and 5), while colour shades around population codes correspond to the distinct

mtDNA (ND4) haplogroups (blue: mtDNA haplogroup A, yellow: mtDNA haplogroup
B, grey: mtDNA haplogroup E, orange: mtDNA haplogroup F; see Fig 3). In four
populations (T2, 61XR, BP and Pl) we detected the presence of more than one
haplogroup. For population codes see S1 Table.

1086

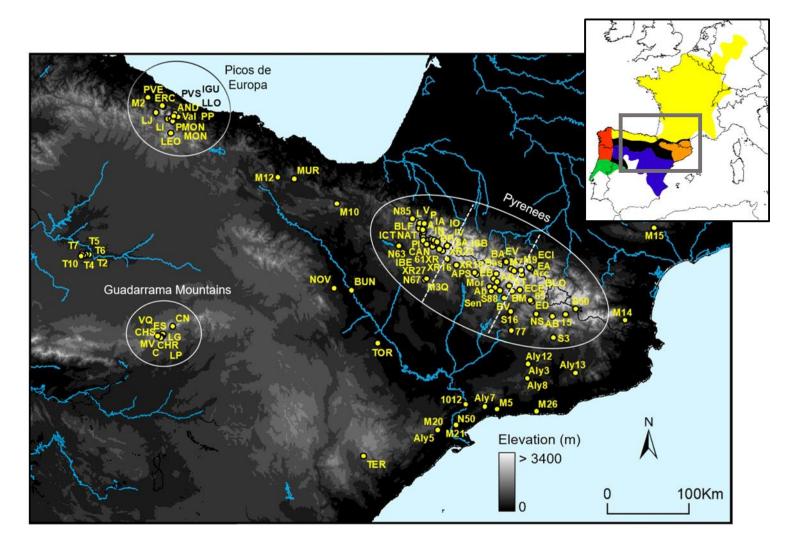
1087 S1 Table. Geographic information and standard genetic statistics of *Alytes*

1088 *obstetricans/almogavarii* sampling localities. Populations are grouped according to

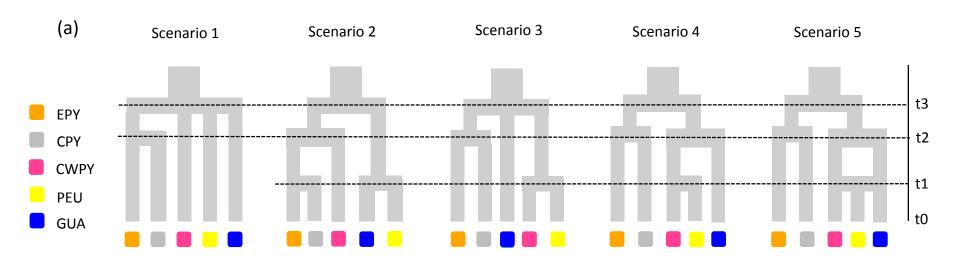
- 1089 the genetic group of interest (EPY: eastern Pyrenees, CPY: central Pyrenees, CWPY:
- 1090 central-western Pyrenees, PEU: Picos de Europa mountains, GUA: Guadarrama
- 1091 Mountain Range). Lat. latitude, Long. longitude, Alt. altitude in meters, N –
- 1092 sample size for microsatellites, Na mean number of alleles, Ar allelic richness
- 1093 standardized for sample size, H_0 observed heterozygosity, H_E expected
- 1094 heterozygosity, F_{IS} inbreeding coefficient, N_e effective population size, N ND4 –
- sample size for ND4, ND4 haps occurrence and code (in parentheses) of
- 1096 mitochondrial ND4 haplogroups identified in each population (see Fig 3), N cyt-b –
- 1097 sample size for cyt-b, N 12S sample size for 12S, N 16S sample size for 16S, N β -
- 1098 fibint7 sample size for β -fibint7.
- 1099

1100 S2 Table. Parameters used in DIYABC analysis and respective priors for the best

- 1101 **supported scenarios.** The best supported scenarios were scenario 2 when
- 1102 considering only microsatellites (simple sequence repeats SSRs) and scenario 5


1103	when including both mtDNA (ND4) and microsatellite markers. See Fig 2 for more
1104	information on tested scenarios. N – effective population size for each analysed
1105	deme (EPY – eastern Pyrenees; CPY – central Pyrenees; CWPY – central-western
1106	Pyrenees; PEU – Picos de Europa Mountains, GUA – Guadarrama Mountains), ra –
1107	admixture rate, t – time of events in generations (t $_1$ – time to the most recent split; t $_2$
1108	– time to the intermediate split; t_3 – time to the most ancient split). Microsatellite
1109	(SSRs) and mitochondrial (ND4) parameters: mean μ – mean mutation rate, individual
1110	locus μ – individual locus mutation rate, mean <i>P</i> – mean coefficient <i>P</i> , individual locus
1111	P – individual locus coefficient P , SNI – Single Nucleotide Insertion rate, mean k –
1112	mean coefficient k , individual locus k – individual locus coefficient k . Microsatellite
1113	loci were divided in two groups depending on the motif length (tri- and
1114	tetranucleotide loci). Conditions: sequence data were simulated under a Tamura Nei
1115	(TN93) mutation model.
1116	
1117	S3 Table. Microsatellite-based (below diagonal) and ND4-based (above diagonal)
1118	pairwise estimates of $F_{\mbox{\scriptsize ST}}$ between the seven genetic groups identified by
1119	STRUCTURE in Alytes obstetricans/almogavarii (see Fig 5). All P values < 0.01.
1120	
1121	S4 Table. Analysis of molecular variance (AMOVA) for mitochondrial (ND4) and
1122	nuclear (microsatellites) markers based on the seven genetic groups identified by
1123	STRUCTURE in Alytes obstetricans/almogavarii (see Fig 5). All P values < 0.001.

1124


1125	S5 Table. Posterior probability of tested scenarios and 95% confidence intervals (CI)
1126	estimated with DIYABC analysis when considering only microsatellites and when
1127	including both mtDNA (ND4) and microsatellite markers. Type I and II errors for the
1128	best supported scenarios are indicated. See Fig 2 for more information on tested
1129	scenarios.
1130	
1131	S6 Table. Posterior parameters (median and 95% confidence intervals) and
1132	RMedAD (Relative Median Absolute Deviation) estimated with DIYABC analysis for
1133	the best supported scenarios when considering only microsatellites (simple
1134	sequence repeats – SSRs; scenario 2) and when including both mtDNA (ND4) and
1135	microsatellite markers (scenario 5). See Fig 2 for more information on tested
1136	scenarios. N – effective population size for each analysed deme (EPY – eastern
1137	Pyrenees; CPY – central Pyrenees; CWPY – central-western Pyrenees; PEU – Picos de
1138	Europa Mountains; GUA – Guadarrama Mountains), ra – admixture rate, t – time of
1139	events in generations (t_1 – time to the most recent split; t_2 – time to the intermediate
1140	split; t_3 – time to the most ancient split), mean μ – mean mutation rate, mean P –
1141	mean coefficient P, mean k – mean coefficient k, $Q_{2.5}$ – quantile 2.5%, $Q_{97.5}$ – quantile
1142	97.5%.
1143	

1144 **S1 Appendix. Supporting methods.**

Fig 1

Figure

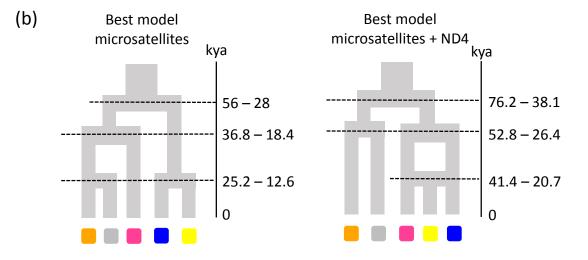
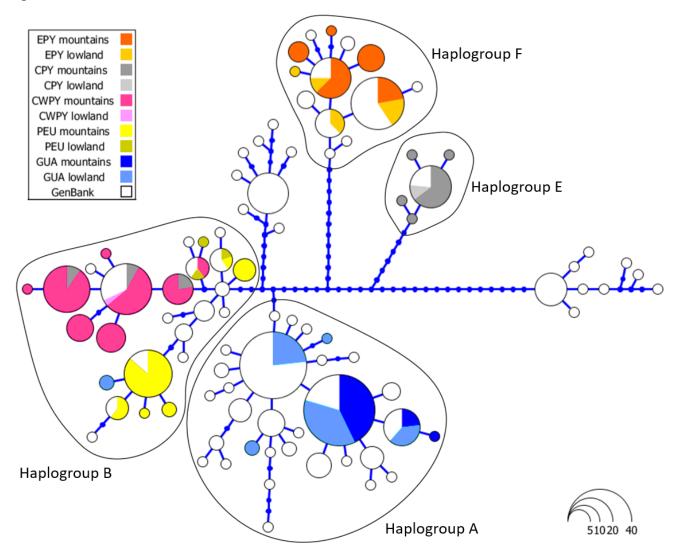



Fig 2

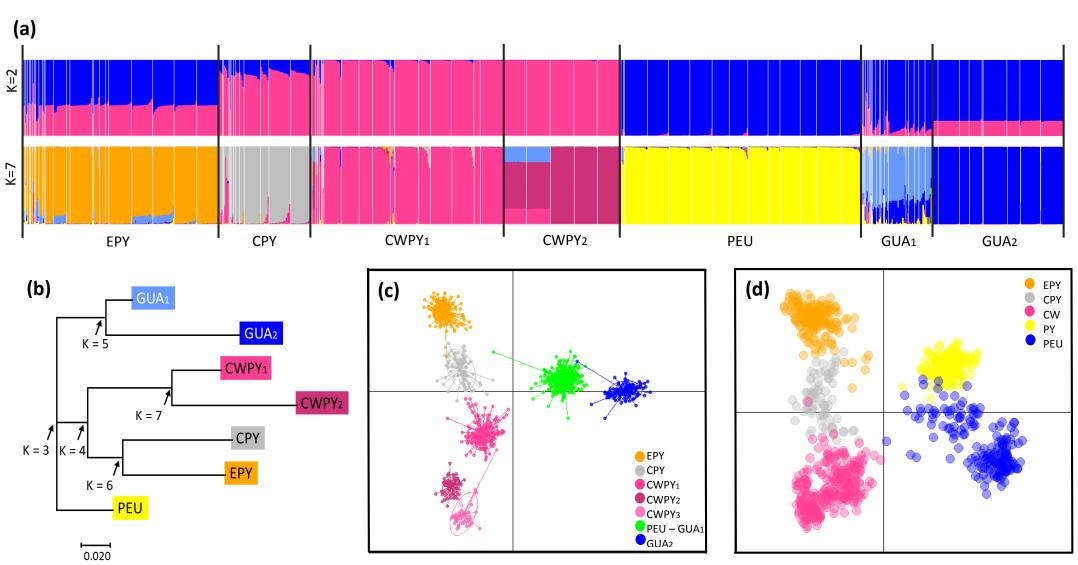


Fig 4

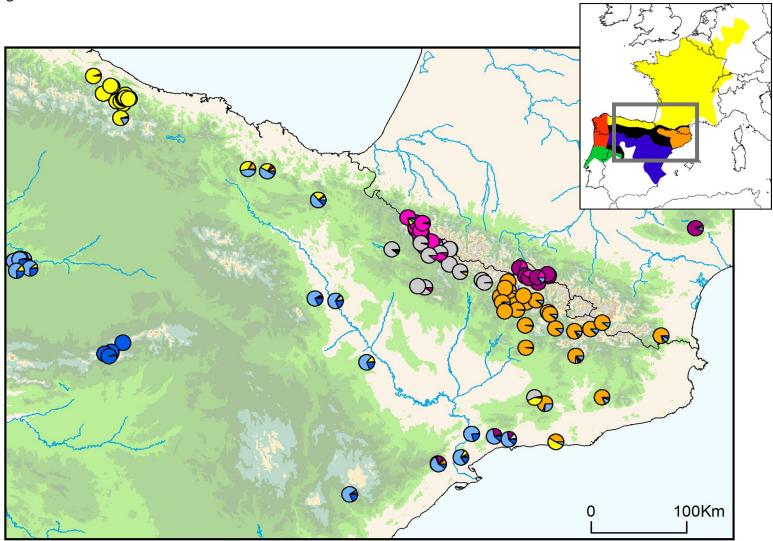


Fig 5

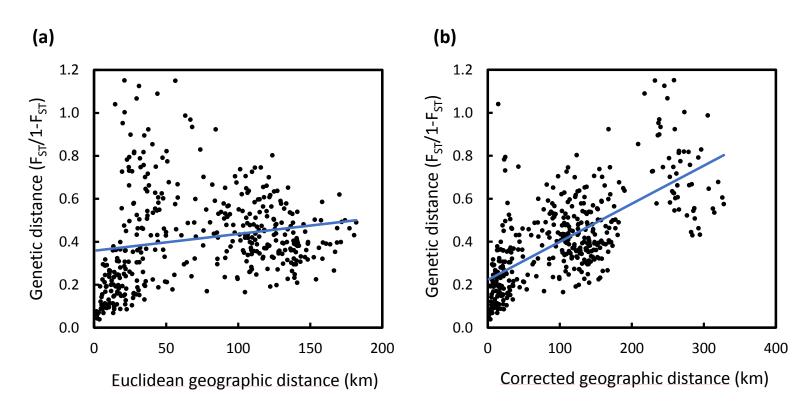


Fig 6

Supporting Information - Compressed/ZIP File Archive

Click here to access/download Supporting Information - Compressed/ZIP File Archive Supporting information.zip