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Gut microbiota can adapt to their host environment by rapidly acquiring new mutations.
However, the dynamics of this process are difficult to characterize in dominant gut species in
their complex in vivo environment. Here we show that the fine-scale dynamics of genome-wide
transposon libraries can enable quantitative inferences of these in vivo evolutionary forces.
By analyzing >400,000 lineages across four human Bacteroides strains in gnotobiotic mice, we
observed positive selection on thousands of previously hidden mutations – most of which
were unrelated to their original gene knockouts. The spectrum of fitness benefits varied
between species, and displayed diverse tradeoffs over time and in different dietary conditions.
These results suggest that within-host adaptations arise from an intense competition between
numerous contending mutations, which can strongly influence their emergent evolutionary
tradeoffs.

Main Text

The mammalian gut is home to a diverse microbial community comprising hundreds of coexisting
strains. High rates of turnover endow these communities with a capacity for rapid evolutionary
change. Time-resolved sequencing has started to illuminate this process, with several recent studies
in mice (1–5) and humans (6–12) documenting genetic variants sweeping through local populations of
gut bacteria on timescales of weeks and months. This strain-level variation can alter metabolic
phenotypes (2, 13–15), influencing the breakdown of drugs (16) and the invasion of external strains
(4, 17). Yet despite their importance, the evolutionary drivers of this in vivo adaptation – and their
dependence on the host environment – are only starting to be uncovered.

Traditional sequencing approaches have a limited ability to address these questions, since they can
only observe the handful of lineages that manage to reach appreciable frequencies within a host. By
this time, successful lineages have often acquired multiple distinct mutations (4, 6, 12). This makes it
difficult to resolve their underlying fitness benefits, or the pleiotropic tradeoffs that they encounter in
different host conditions (2). It also prevents us from observing the other contending mutations that –
through a combination of luck and merit – were outcompeted before they were able to reach
appreciable frequencies within their host.

Barcoded lineage tracking provides a powerful alternative, enabling quantitative fitness
measurements of thousands of independent mutations within a single population (18). However,
existing methods for high-throughput isogenic barcoding require specialized genetic tools, and have
previously been limited to laboratory strains of yeast (18, 19) and E. coli (20). Here we show that
similar evolutionary inferences can be obtained from genome-wide transposon insertion sequencing
(Tn-Seq) libraries (21–25), which are routinely employed in functional genomics settings. Tn-Seq
libraries are traditionally used to identify conditionally essential genes in various bacterial species and

1

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491573
http://creativecommons.org/licenses/by-nc/4.0/


environments (21–23, 26), including several recent in vivo studies in gnotobiotic mice (15, 24, 27, 28).
Here we sought to exploit this same technique as a crude form of barcoding, by focusing on the vast
majority of Tn insertions in genes without obvious growth defects. We reasoned that the fine-scale
dynamics of these lineages could provide a scalable approach for measuring in vivo evolutionary
forces in complex communities like the gut microbiota.

To test this hypothesis, we reanalyzed data from a previous transposon screen of multiple commensal
gut bacteria in gnotobiotic mice (27). Tn-Seq libraries of four human Bacteroides strains –
B. cellulosilyticus (Bc), B. ovatus (Bo), and two strains of B. thetaiotaomicron (Bt-VPI and Bt-7330) –
were combined with 11 other species and gavaged into 20 individually caged mice. Mice were were
maintained on either a low-fat/high-plant polysaccharide diet (LF/HPP), a high-fat/high-sugar diet
(HF/HS), or alternating sequences of the two (HLH/LHL) for 16 days, with Tn-Seq measurements
performed on fecal samples collected at three timepoints (Fig. 1A). Wu et al (27) used these data to
show that ∼10-30% of gene knockouts displayed a consistent fitness cost in at least one of the diets
during the first 16 days of colonization. After excluding the Tn insertions in these and other “fitness
determinant" genes, we identified a collection of ∼60,000-150,000 mutants in each library that were
suitable for high-resolution lineage tracking (SI Section 1). By monitoring the relative frequencies of
these Tn lineages over time, we sought to quantify the additional evolutionary forces that acted within
these populations during the first two weeks of colonization.

Consistent with previous observations in other bacterial species (1–4), we found that a handful of
lineages expanded to intermediate frequencies (>1%) in vivo by day 16 (Fig. 1B-E), indicating rapid
positive selection on a subset of the lineages. Most of these lineages expanded in multiple
independent mice, but other Tn insertions in the same gene did not (Fig. S1). This suggests that their
fitness benefits did not derive from the original Tn insertion, but rather from secondary mutations that
accumulated in the library prior to colonization. The consistency across mice contrasted with the
variation we observed across the different Bacteroides species: the highlighted lineages in Fig. 1B-D
accounted for ∼50% of the population in Bt-7330 and Bo on day 16, but comprised a much smaller
fraction in Bc and Bt-VPI. This shows that the rates of adaptation in the murine gut can vary between
similar gut species, and even between strains of the same species.

These differences between species were much less pronounced on day 4, with no lineage reaching
>5% frequency, and most remaining <0.01% (Fig. 1B-D). While low read counts make it difficult to
follow these lineages individually, we reasoned that their collective behavior could still encode
information about the evolutionary forces operating on these shorter timescales. As a first step, we
focused on the subset of lineages that were present at a given frequency f0 in the initial library, and
examined the distribution of their frequencies at day 4 (Fig. 1G-J). In the simplest evolutionary null
model (SI Section 3), the typical frequencies of these neutral lineages would decline due to
competition with fitter mutations in the population, as well as from stochastic fluctuations from genetic
drift and sequencing noise (Fig. 1F).

The observed distributions were largely consistent with this prediction. We found that these
aggregated dynamics were remarkably similar across mice in the same diet, and to a lesser degree,
between diets as well. However, we once again observed dramatic differences between the various
Bacteroides species. By day 4, most lineages remained close to their initial frequencies in Bo and
Bt-VPI, while the majority of lineages substantially declined in Bc and Bt-7330. These differences
could not have been caused by genetic bottlenecks, since we found that many of the same lineages
were consistently present – and often expanded – in multiple independent mice (Fig. 2A). These
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Figure 1: Collective behavior of Tn lineages reveals rapid in vivo evolution in gnotobiotic mice.
(a) Schematic of Tn-Seq experiment in Ref. (27). Mutant libraries of 4 Bacteroides strains were in-
troduced into gnotobiotic mice and sequenced over time in different diets. (b-e) Individual frequency
trajectories of the 10 largest lineages at day 16 in each of two representative mouse from the HF/HS
(orange) or LF/HPP (blue) diets. (f) Schematic of the simplest evolutionary null model (SI Section 3),
where neutral lineages decline due to competition with fitter lineages in the population and stochastic
fluctuations from genetic drift and sequencing noise. (g-j) Distribution of lineage read counts on day
4 for a subset of the lineages with similar initial frequencies in the input library. Colored lines show
the distributions for each of the four mice in (b-e). Grey distributions show the null expectation from
sequencing noise alone (SI Section 3).
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correlations indicate that the collective behavior in Fig. 1G-J must have been driven by positive
selection within these populations during the first four days of colonization.

To quantify this adaptive landscape more systematically, we turned to a cross-validation approach that
took advantage of the replicated experimental design. We ranked each lineage by its average fold
change in a “discovery” cohort of mice on a given diet, and compared this to its relative fitness in a
separate “validation” cohort from the same diet (Fig. 2B; SI Section 4). We reasoned that if the
expanding lineages were driven by selection on preexisting variants, then their fitness in the validation
cohort should be consistently positive as well. Fig. 2C shows an example of this approach for the Bc
populations in the HF/HS diet between days 0 and 4. While individual lineages were noisy as
expected, we nevertheless observed a clear enrichment in positive relative fitness among the top
∼15,000 lineages. This suggests that >10% of all lineages in Bc experienced strong positive
selection during the first four days of colonization (Fig. S2). Moreover, this cohort of putatively
adaptive lineages continued to expand over days 4-16 (Fig. 2E), suggesting that their collective fitness
benefits were not confined to this initial time interval.

In principle, these in vivo fitness benefits could be caused by the gene-knockout effects of the original
Tn insertions. Under this hypothesis, we would expect that the other lineages with insertions in the
same gene should also expand over the same time interval (Fig. 2B). Surprisingly, however, we
observed no strong correlation between the relative fitnesses of the putatively adaptive lineages in Bc
and the fitnesses of their corresponding “gene complements" (Fig. 2C-D, SI Section 4). This suggests
that their in vivo fitness benefits were caused by secondary mutations that accumulated in the library
prior to colonization. Our analysis shows that the fitness benefits of these mutations are large by
evolutionary standards (>10% per day), and are comparable to the “fitness determinants” detected in
the original transposon screen (Fig. S3). We also observed considerable variation in fitness within the
subset of adaptive lineages (Figs. 2C,E and S4) suggesting that their benefits derived from different
underlying mutations.

Similar signatures were present in the other Bacteroides species, though the number and magnitudes
of the fitness benefits were somewhat different (Figs. 2F, S5, S6). For example, the number of
strongly expanding lineages in Bt-VPI was lower than in Bc. Many of these lineages were also
clustered in the same genes (Fig. 2G), suggesting that their fitness benefits were caused by their
original Tn insertions. However, even in this case, we found that loss-of-function variants accounted
for only a small fraction of the putatively adaptive lineages, since thousands of other lineages
expanded by smaller amounts (Fig. S4). Bo and Bt-7330 (Fig. S5) showed similar trends. In each of
these cases, we found that the largest lineages at day 16 were enriched among the putatively
adaptive mutations at day 4. Interestingly, however, these eventual winners were not necessarily the
fittest lineages early on, suggesting that further mutations or environmental shifts were required to
reach their dominant frequencies. This highlights how chance and competition among numerous low
frequency variants can play an important role in determining which mutations rise to appreciable
frequencies within a host.

We next examined how this adaptive landscape varied over time and in different dietary conditions.
We observed that the relative fitnesses of individual lineages were remarkably consistent across the
HF/HS and LF/HPP diets during the first four days of colonization (Figs. 3A,H-K and S7). This shows
that the thousands of adaptive lineages in Fig. 2C,F were not specific to host diet. Intriguingly, the in
vivo relative fitnesses in Bc were also highly correlated with in vitro fitnesses measured in several
media (Fig. S8), suggesting that they were also not specific to the complex features of their host
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Figure 2: Positive selection on thousands of lineages that are unrelated to their original gene
knockouts. (a) Joint distribution of day 4 read counts for a subset of Bc lineages in two representative
mice. Lineages were chosen to have similar initial frequencies in the input library (grey regions). (b)
Schematic of cross-validation approach for detecting adaptive lineages. (c,f) Relative fitness in the
validation mice for the fittest 20,000 lineages in the discovery cohort in Bc (c) and Bt-VPI (f). Symbols
denote individual Tn lineages, while lines denote running averages of 100 lineages (blue) or their
corresponding gene complements (purple) (SI Section 4). Triangles indicate the 10 largest lineages in
the HF/HS mice on day 16. (d, g) Relative fitness of putatively adaptive lineages vs their corresponding
gene complement. (e, h) Putatively adaptive lineages continue to expand over time. Colored lines show
the total frequency of ranks 1-1,000, 1,000-10,000, and 10,000-20,000 (light blue to dark blue), as well
as the remaining lineages (black) in different mice.
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environment.

In contrast, we found that the relative fitnesses of the lineages were only weakly correlated across
time intervals in each of the Bacteroides species (Fig. 3B,H-K). This lack of correlation was not driven
by the absence of selection at later times: Figs. 3H-K and Fig. S9 show that the relative fitnesses
during days 4-10 were still well correlated within the same diet. Instead, these results indicate that the
selection pressures shifted over time, potentially reflecting a transition between
colonization-dominated vs competition-dominated selection.

Consistent with this hypothesis, we found that the relative fitnesses in later time intervals were only
weakly correlated across diets (Figs. 3C,H-K), suggesting that host diet can have a substantial impact
on selection at later times. Across the larger set of adaptive lineages, we identified hundreds of
individual examples with strong fitness tradeoffs in different dietary conditions (Figs. 3D-F, Fig. S10).
Some lineages expanded 10-fold in HF/HS, but were neutral or deleterious in LF/HPP (Fig. 3F); other
lineages displayed the opposite trend (Figs. 3D,E). These same lineages exhibited diverse behaviors
in other time intervals as well: while the examples in Figs. 3D and E displayed similar tradeoffs
between days 4-10, only one of them expanded between days 0-4, while the other was effectively
neutral. Conversely, the examples in Figs. 3E and F were both effectively neutral between days 0-4,
but exhibited opposing tradeoffs between days 4-10. This diverse range of behaviors provides further
evidence that the adaptive lineages were driven by different underlying mutations, which can be
differentially amplified by specific sequences of environments.

Despite these strong tradeoffs for individual lineages, our broader characterization revealed no strong
evidence for a global tradeoff in the underlying fitness landscape. We found that many individual
lineages consistently expanded in both diets (Figs. 3G and S10), demonstrating that it is possible for
evolution to improve fitness in both environments simultaneously. The lone exception was the
comparison with the effective fitness during Tn library generation, which was anti-correlated with in
vivo fitness in Bc and Bt-7330 (Fig. S11; SI Section 4). These limited anti-correlations suggest that
the long-term tradeoffs observed at the population level (2) might not necessarily reflect an underlying
physiological constraint, but may actually be an emergent property of their in vivo evolutionary
dynamics (29).

A striking example of this behavior is illustrated by the handful of lineages that reached the largest
frequencies by the end of the experiment. These lineages provide a proxy for the mutations that are
likely to dominate the population at long times. We found that the largest lineages in the constant
diets exhibited an apparent fitness tradeoff in Bc, with higher fitnesses in their home environment and
average fitnesses in the other (Fig. 3C). In contrast, the alternating diets consistently selected for
lineages that were fitter in both environments, despite their lower overall representation in the
underlying fitness distribution (Figs. 3C and S12). This illustrates how clonal competition and
fluctuating selection pressures combine to determine the emergent fitness tradeoffs within a
population.

Together, these results show how the fine-scale dynamics of genome-wide transposon libraries can
enable quantitative inferences of in vivo evolutionary forces. We found that the early stages of
colonization can be dominated by an intense competition between thousands of adaptive variants –
most of which would not be observed with traditional sequencing approaches. While we have
observed these dynamics in native human gut strains, it is possible that the high rates of adaptation
we observed here could be driven by the novelty of the murine host, or the comparatively low diversity
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Figure 3: Selection pressures shift over time to reveal diet-dependent fitness tradeoffs. (a-c)
Joint distribution of relative fitnesses in (a) HF/HS vs LF/HPP diets over days 0-4, (b) days 0-4 vs
4-10 in the HF/HS diet, and (c) HF/HS vs LF/HPP diets over days 4-10; triangles indicate the 10
largest lineages at day 16 in the HF/HS (orange), LF/HPP (blue), or alternating (purple) diets. (d-g)
Example lineages with strong fitness tradeoffs in different in vivo and in vitro conditions; circles indicate
independent mice or in vitro cultures. (h-k) Pearson correlation coefficients of relative fitness values
of lineages across different pairs of environments. Symbols denote comparisons between individual
pairs of replicates. (SI Section 5). T1=days 0-4; T2=days 4-10; Lib.=library creation; Arab.=arabinose;
Gluc.=glucose; Xyl.=xylose.
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of the artificial gut community. Our approach could be used to test these hypotheses in future
experiments, by examining how the spectrum of beneficial mutations differs in communities with
higher levels of taxonomic diversity (30).

A key limitation of this approach is that it does not provide direct information about the genetic targets
of adaptation. Future experiments could begin to map these molecular drivers by isolating and
sequencing a subset of the adaptive lineages we have identified (31). Fig. 3 also suggests that it may
be possible to cluster the phenotypic impacts of these mutations directly, by examining their
pleiotropic tradeoffs across a large panel of in vitro conditions (26, 28). Finally, while our present
analysis has focused on the dominant signal of selection on standing variation, it is possible to extend
this approach to identify signatures of de novo mutations (Figs. S13 and S14) and the rates of genetic
drift (Fig. S15). This suggests that future applications of genetic barcoding could be a promising tool
for resolving in vivo evolutionary forces in complex microbial communities.

References

[1] J. Barroso-Batista, et al., PLoS Genetics 10, e1004182 (2014).

[2] T. Dapa, R. S. Ramiro, M. F. Pedro, I. Gordo, K. B. Xavier, Cell Host & Microbe 30, 183 (2022).

[3] M. Ghalayini, et al., Molecular Ecology 28, 4470 (2019).

[4] K. S. Vasquez, et al., Cell Host & Microbe 29, 1454 (2021).

[5] B. Yilmaz, et al., Cell Host & Microbe 29, 650 (2021).

[6] S. Zhao, et al., Cell Host & Microbe 25, 656 (2019).

[7] N. R. Garud, B. H. Good, O. Hallatschek, K. S. Pollard, PLOS Biology 17, e3000102 (2019).

[8] M. Ghalayini, et al., Applied and Environmental Microbiology 84, e02377 (2018).

[9] M. Poyet, et al., Nature Medicine 25, 1442 (2019).

[10] S. Zlitni, et al., Genome Medicine 12, 50 (2020).

[11] E. Yaffe, D. A. Relman, Nature Microbiology 5, 343 (2020).

[12] M. Roodgar, et al., Genome Research 31, 1433 (2021).

[13] J. Collins, et al., Nature 553, 291 (2018).

[14] J. Barroso-Batista, et al., Current Biology 30, 1049 (2020).

[15] S.-Y. Park, et al., Cell 185, 513 (2022).

[16] V. Maini Rekdal, E. N. Bess, J. E. Bisanz, P. J. Turnbaugh, E. P. Balskus, Science 364, eaau6323
(2019).

[17] S. G. Kim, et al., Nature 572, 665 (2019).

[18] S. F. Levy, et al., Nature 519, 181 (2015).

[19] A. N. Nguyen Ba, et al., Nature 575, 494 (2019).

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491573
http://creativecommons.org/licenses/by-nc/4.0/


[20] W. Jasinska, et al., Nature Ecology & Evolution 4, 437 (2020).

[21] T. van Opijnen, K. L. Bodi, A. Camilli, Nature Methods 6, 767 (2009).

[22] J. D. Gawronski, S. M. S. Wong, G. Giannoukos, D. V. Ward, B. J. Akerley, Proceedings of the
National Academy of Sciences 106, 16422 (2009).

[23] G. C. Langridge, et al., Genome Research 19, 2308 (2009).

[24] A. L. Goodman, et al., Cell Host & Microbe 6, 279 (2009).

[25] K. M. Wetmore, et al., mBio 6, e00306 (2015).

[26] M. N. Price, et al., Nature 557, 503 (2018).

[27] M. Wu, et al., Science 350, aac5992 (2015).

[28] H. Liu, et al., Cell Reports 34, 108789 (2021).

[29] S. M. Ardell, S. Kryazhimskiy, eLife 10, e73250 (2021).

[30] A. G. Cheng, et al., bioRxiv (2021).

[31] S. Venkataram, et al., Cell 166, 1585 (2016).

[32] C. W. Gardiner, et al., Handbook of stochastic methods, vol. 3 (Springer Berlin, 1985).

[33] C. B. Krimbas, S. Tsakas, Evolution 25, 454 (1971).

[34] M. Nei, F. Tajima, Genetics 98, 625 (1981).

[35] E. Pollak, Genetics 104, 531 (1983).

[36] A. F. Feder, S. Kryazhimskiy, J. B. Plotkin, Genetics 196, 509 (2014).

[37] S. Abel, et al., Nature Methods 12, 223 (2015).

[38] S. Van Huffel, P. Lemmerling, Total least squares and errors-in-variables modeling: analysis,
algorithms and applications (Springer Science & Business Media, 2013).

Acknowledgments
We thank M. Wu and J. Gordon for providing access to the original data, and S. Walton, Z. Liu, and
other members of the Good lab for useful discussions and feedback on the manuscript. This work
was supported in part by the Alfred P. Sloan Foundation grant FG-2021-15708. B.H.G. is a Chan
Zuckerberg Biohub Investigator.

Author contributions: Conceptualization: D.P.W. and B.H.G.; theory and methods development:
D.P.W. and B.H.G.; analysis: D.P.W. and B.H.G.; writing: D.P.W. and B.H.G.

Competing interests: None declared.

Data and materials availability: Postprocessed data described in the paper are presented in the
supplementary materials. Raw sequencing data are available at the European Nucleotide Archive and
NCBI using the accessions provided in the supplementary materials. All analysis code is available on
Github (https://github.com/bgoodlab/adaptation_tnseq).

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491573
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Materials
Supplemental Methods
Table S1
Fig S1 – S15

10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491573
http://creativecommons.org/licenses/by-nc/4.0/


Supplemental Methods

1 Data used in analysis
The raw data used in this work were obtained from a previous study (27), in which libraries of 4
human Bacteroides strains (Bc, Bo, Bt-VPI, and Bt-7330) were combined with 11 other species and
gavaged into gnotobiotic mice. Multi-taxon transposon insertion sequencing (InSeq) was performed
on each input library (with 23-41 technical replicates per species), as well as on fecal samples taken
on days 4, 10, and 16. One of the species (Bc) was also assayed in a variety of in vitro conditions.
The full list of samples and technical replicates is provided in Table S1.

Raw sequencing reads from the InSeq experiments were downloaded from the European Nucleotide
Archive (accession no. PRJEB9434), and the raw reads from the input libraries were downloaded
from https://gordonlab.wustl.edu/INSeq_input_sample_reads/. Reference genomes for each
of the 4 Bacteroides strains were obtained from National Center for Biotechnology Information
(accession no. PRJNA289334). After removing the transposon sequence, each read was matched to
its corresponding insertion location on the reference genome using using a custom Python script.
Only exact matches were retained, and reads that matched to multiple locations were excluded. We
assumed that each unique location ℓ corresponded to a distinct lineage founded by a single
transposon insertion event, and we calculated the total number of reads Rℓ,s corresponding to lineage
ℓ in sample s. These read counts formed the basis of all of our downstream analysis.

For each Bacteroides strain, Wu et al. (27) determined a set of “fitness determinant” genes whose
Tn-insertion knockouts were estimated to be non-neutral. Most of these gene knockouts had
deleterious fitness effects, though a small fraction were beneficial [see Tables S4A-B, S9A-B, S14A-D
of Ref. (27)]. To arrive at a conservative set of quasi-neutral Tn lineages, we removed from
downstream analysis all lineages whose corresponding transposons fell within or 100bp upstream of
any of the fitness determinant genes identified by Wu et al (27). This filtering step left a total of
n=418,879 lineages across the four libraries (88,396 in Bc; 117,020 in Bo; 150,849 in Bt-VPI; and
62,614 in Bt-7330), which we used for all of our subsequent analysis. We estimated the relative
frequencies of these remaining lineages using the plug-in estimator,

f̂ℓ,s =
Rℓ,s∑
ℓ′ Rℓ′,s

, (1)

where the denominator sums over all of the filtered lineages within a given Bacteroides strain. This
renormalization scheme ensures that the relative fitnesses inferred in our later analyses are
independent of the fitness determinant genes examined in Ref. (27). (The sole exception is Fig. S3,
which compares the relative fitnesses of the fitness determinant genes to the adaptive lineages
identified in this work.)

2 Evolutionary model of lineage dynamics
We assumed that the temporal dynamics of the Tn lineages could be described by a simple
evolutionary model, in which the lineages within a given mouse m competed with each other as a
well-mixed population. In the most general form of this model, the frequencies of rare lineages
(fℓ,m ≪ 1) are described by a system of coupled stochastic differential equations,

∂fℓ,m
∂t

= [sℓ,m(t)−Xm(t)]fℓ,m +
√
Λm(t)fℓ,m · ηℓ,m(t) , (2a)

where ηℓ,m(t) is a Brownian noise term with mean zero and variance one (32), and Λm(t) is the
strength of genetic drift in mouse m at time t. Each lineage ℓ has instantaneous fitness sℓ,m(t), while
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Xm(t) is the mean fitness of the population,

Xm(t) =
∑
ℓ

sℓ,m(t) · fℓ,m(t) . (2b)

Equation (2) is a time-dependent generalization of the branching process model employed in previous
in vitro lineage tracking studies (18, 19). The additional time-dependence allows us to account for
shifting selection pressures and population bottlenecks that might arise in more complex in vivo
settings.

If the functions Nm(t), sℓ,m(t), and Xm(t) are known, the dynamics of an individual lineage in Eq. (2)
can be solved using standard techniques (19). Given an initial frequency fℓ,m(t0) at time t0, the
moment generating function for the lineage frequency at a later time t is given by

Hℓ,m(z, t) ≡
〈
e−zfℓ,m(t)

〉
= exp

(
−

aℓ,m(t) · z
1 + bℓ,m(t) · z

)
, (3a)

where the functions aℓ,m(t) and bℓ,m(t) are defined by

aℓ,m(t) = fℓ,m(t0) · e
∫ t
t0
(sℓ,m(t′)−Xm(t′))dt′

,

bℓ,m(t) = e
∫ t
t0
(sℓ,m(t′)−Xm(t′))dt′

∫ t

t0

dt′
Λm(t′)

2
e
−

∫ t′
t0
(sℓ,m(t′′)−Xm(t′′))dt′′

.
(3b)

The mean and variance of fℓ,m(t) can then be obtained from the derivatives of Hℓ,m(z, t):

⟨fℓ,m(t)⟩ ≡ −
∂ logHℓ,m(z, t)

∂z

∣∣∣∣
z=0

= aℓ,m(t) ,

Var[fℓ,m(t)] ≡
∂2 logHℓ,m(z, t)

∂z2

∣∣∣∣
z=0

= 2 · aℓ,m(t) · bℓ,m(t) .

(4)

We assumed that the observed read counts Rℓ,s were generated from these lineage frequencies
through an additional sampling process, which encapsulates the combined effects of cell sampling,
PCR amplification, and DNA sequencing. We assumed that this sampling process is unbiased, so
that on average,

⟨Rℓ,s|fℓ,ms(ts)⟩ = Ds · fℓ,ms(ts) , (5)

where Ds is the total coverage of sample s. Similarly, the variance can be written in the general form,

Var(Rℓ,s|fℓ,ms(ts)) = κs ·Ds · fℓ,ms(ts) , (6)

where κs is a constant that describes the deviations from simple Poisson sampling. While the full
distribution of the sampling process can be complicated, previous work (18, 19) has shown that it can
often be approximated by a second branching process with a conditional generating function

HR
ℓ,s(z|fℓ,ms(ts)) ≡ ⟨e−zRℓ,s

∣∣ fℓ,ms(ts)⟩ = exp

[
−
Dsfℓ,ms(ts) · z
1 + (κs/2) · z

]
. (7)

By marginalizing over the random value of fℓ,ms(ts) using Eq. (3), we can obtain a corresponding
expression for the marginal distribution of the read counts

HR
ℓ,s(z) = exp

[
−

aℓ,ms(ts) ·Ds · z
1 + (κs/2 + bℓ,ms(ts)Ds)z

]
, (8)
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whose mean and variance are given by

⟨Rℓ,s⟩ = Ds · aℓ,ms(ts) ,

Var(Rℓ,s) = D2
s · aℓ,ms(ts)

[
κs
Ds

+ 2bℓ,ms(ts)

]
.

(9)

In this way, Eq. (8) provides a model that links the observed read counts Rℓ,s to the underlying
evolutionary parameters Nm(t), λm(t), sℓ,m(t), and Xm(t) in each mouse. All of our subsequent
analyses were derived by considering different limits of this basic model.

3 Distributions of lineage frequency shifts
Our initial expectations for the distribution of lineage frequency shifts in Fig. 1G-J were informed by
the simplest limit of Eq. (2), in which the vast majority of the focal lineages are effectively neutral
(sℓ,m(t) ≈ 0). For lineages with similar initial frequencies (fℓ,m(t0) ≈ f0), the branching process
parameters in Eq. (3) reduce to a pair of lineage-independent functions,

aℓ,m(t) ≈ am(t) ≡ f0 · e
−

∫ t
t0

Xm(t′)dt′
,

bℓ,m(t) ≈ bm(t) ≡ e
−

∫ t
t0

Xm(t′)dt′
∫ t

t0

dt′
Λm(t′)

2
e
∫ t′
t0

X(t′′)dt′′
.

(10)

Note that the mean fitness Xm(t) can still be non-zero if a small minority of the lineages in the
population have non-zero fitness. In this way, the statistical behavior of a large number of neutral
marker lineages can in principle provide information about the population parameters Xm(t) and
Nm(t) (18).

For example, by substituting Eq. (10) into Eq. (8), we see that the average size of a neutral marker
lineage declines over time due to competition with fitter lineages in the population (Xm(t) > 0).
Likewise, the variance in the observed read counts grows due to a combination of genetic drift
(∝ 1/Nm(t)) and sequencing noise (∝ κs/Ds). However, it can be difficult to apply these heuristics in
practice, since the mean and variance can be biased if a small number of highly fit lineages happen to
be present in the initial pool. We therefore turned to other characteristics of the lineage frequency
distribution that are more robust to small amounts of “contamination” by non-neutral lineages.

For example, in the limit that the lineage fluctuations are small (Var(Rℓ,s) ≲ Dsf0), one can invert
Eq. (8) to obtain an asympotic expression for the probability distribution of Rℓ,s (18),

p(R) ∝ R−3/4 exp

[
−
(
√
R−

√
Dsam(t))2

κs/2 +Ds · bm(t)

]
. (11)

The peak (or mode) of this distribution occurs at a characteristic value R∗, which is given by

R∗

Dsf0
= e

−
∫ t
t0

Xm(t′)dt′︸ ︷︷ ︸
competition with

fitter lineages

12 +

√√√√√√1

4
− 3κs

8Dsf0
· e

∫ t
t0

Xm(t′)dt′︸ ︷︷ ︸
sequencing noise

−
∫ t

t0

3dt′Λm(t′)

8f0
e
∫ t′
t0

Xm(t′′)dt′′

︸ ︷︷ ︸
genetic drift


2

. (12)

This expression shows that peak of p(R) will decline due to competition with fitter lineages in the
population, as well as through genetic drift and sequencing noise. Similarly, Eq. (11) shows that the
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characteristic width around this peak will spread out due to genetic drift and sequencing noise. In
contrast to the mean and variance above, we expect that these “typical measures” will be robust to the
inclusion of a small number of non-neutral lineages in the initial pool.

To compare these predictions with the data, we tabulated the empirical distributions of day 4 read
counts for the subset of lineages in each mouse whose day 0 frequencies fell in the range
10/Dm,4 ≤ f0 ≤ 15/Dm,4 (Fig. 1G-J). These day 0 frequencies were estimated by pooling all but one
of the technical replicates of the input library. As a comparison, we performed the same procedure on
the remaining input replicate to obtain an empirical null distribution showing the effects of technical
noise alone (Fig. 1G-J). Deviations from this null distribution suggest that the observed dynamics are
driven by the evolutionary forces of natural selection and/or genetic drift.

The joint distribution in Fig. 2A was computed using a similar procedure. We identified a subset of
lineages with similar initial frequencies, 2 · 10−5 < f0 < 3 · 10−5 in the input library, and measured
their day 4 read counts in a pair of mice in the same diet. Under our simple model in Eq. (10), this
joint distribution should factor into a product of the two marginal distributions
[p(R1, R2) ≈ p(R1)p(R2)], regardless of their individual locations or widths. The strong correlations in
Fig. 2A indicate departures from this simple model, in which a substantial fraction of the focal lineages
have non-zero fitnesses that are shared across independent mice.

4 Cross-validation approach for inferring lineage fitnesses
The strong correlations in Fig. 2A suggested an alternative model, in which a substantial fraction of
the lineages have non-neutral fitnesses [sℓ,m(t) ̸= 0], which are similar for different mice in the same
diet [sℓ,m(t) ≈ sℓ,em(t)]. If the mean fitnesses are also similar for populations in the same
environment [Xm(t) ≈ Xem(t)], then our expression for the average lineage size in Eq. (9) reduces to

⟨Rℓ,s⟩ = Ds · fℓ,ms(t0) · exp
[∫ ts

t0

[sℓ,es(t
′)−Xes(t

′)]dt′
]
. (13)

This suggests that it should be possible to infer the underlying fitness functions sℓ,e(t) by leveraging
the independent observations of Rℓ,s in replicate mice. Due to the difficulty in identifying a set of truly
neutral lineages, we chose to work directly with the relative fitness xℓ,e(t) ≡ sℓ,e(t)−Xe(t), which
measures the instantaneous growth rate of a lineage as it competes with its surrounding population.
We also defined a time-averaged version of the relative fitness over a given time interval t0 ≤ t ≤ t1:

χℓ,e,t0:t1 =
1

t1 − t0

∫ t1

t0

[sℓ,e(t)−Xe(t)]dt , (14)

which contains all the information necessary to predict the average fold change of the lineage over
that time interval:

⟨Rℓ,s⟩ = Ds · fℓ,ms(t0) · exp [χℓ,e,t0:ts · (ts − t0)] . (15)

In this way, the general fitness inference problem can be reduced to inferring a finite collection of
χℓ,e,t0:t1 values for each time interval in the experiment. We note that in this notation, temporal
variation in xℓ(t) and χℓ,e,t0:t1 can arise both through changes in the underlying selection pressures
sℓ,e(t), as well as from the ordinary evolutionary dynamics of the mean fitness Xe(t). We discuss
ways to distinguish between these sources of temporal variability in more detail below.
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We estimated the relative fitness χℓ,e,t0:t1 by pooling observations from multiple replicate mice in the
same environment. For a given cohort of mice M, we estimated the relative fitness using the plug-in
estimator,

χ̂ℓ,e,t0:t1 =



1
t1−t0

log
(
f̄ℓ,M(t1)/f̄ℓ,M(t0)

)
if f ℓ,M(t0), f ℓ,M(t1) > 0,

1
t1−t0

log
(
min

{
1

DM1
, f̄ℓ,M(t0)

}
/f̄ℓ,M(t0)

)
if f ℓ,M(t0) > 0, f ℓ,M(t1) = 0,

1
t1−t0

log
(
f̄ℓ,M(t1)/min{ 1

DM0
, f̄ℓ,M(t1)}

)
if f ℓ,M(t0) = 0, f ℓ,M(t1) > 0,

(16a)

where f̄ℓ,M(t0) is the weighted average of the lineage’s frequency within the cohort,

f̄ℓ,M(t) ≡
∑

m∈MRℓ,(m,t)∑
m∈M,ℓ′ Rℓ′,(m,t)

≡
Rℓ,Mi

DMi

, (16b)

and DM(t) is the total coverage of the library across the cohort of mice,

DM(t) ≡
∑

ℓ,m∈M
Rℓ,(m,t) . (16c)

The edge cases in Eq. (16) allow us to assign finite relative fitnesses to lineages with zero reads at
either the initial or final time point. In these cases, the min{·} terms act like an effective pseudocount,
which is conservatively biased to assign zero relative fitness to lineages with sufficiently low
frequency [e.g. f(t0) < 1/D(t1)].

In vitro fitness estimates. We used a similar approach to estimate relative fitnesses in the in vitro
environments (Fig. 3H-K and Fig. S8). Wu et al. (27) competed the Bc library in 5 in vitro growth
media; 2 independent cultures were inoculated in each medium, and 3 aliquots were sequenced from
each culture after reaching stationary phase. We estimated the relative fitness in each independent
culture using Eq. (16); since no explicit time interval was reported, we set t1 − t0 = 1 to reflect the
duration of a typical overnight culture.

We also defined a special in vitro environment representing the library creation process. We assumed
that all of the Tn lineages were initially founded by unique insertion events in a single cell, so that their
frequencies in the input library reflect the differential growth that occurred during the library creation
process. We estimated the relative fitness in this effective environment using Eq. (16) with a uniform
initial frequency,

fℓ,M(t0) ≡
1∑
ℓ 1

, (17)

and an arbitrary time interval t1 − t0 = 1.

Cross validation of fitness estimates. To verify that putatively adaptive lineages measured in a
cohort were not statistical outliers due to biological or technical sources of noise, we adopted a
cross-validation approach. In this approach, k mice that were maintained in same dietary
environment e were evenly divided into discovery (MDe) and validation (MVe) cohorts. The replicate
measurements of the input library were also evenly divided between the two cohorts. We used this
partitioning to obtain independent estimates of the relative fitness of each lineage in both the
discovery and validation cohorts. We ranked each lineage by its fitness in the discovery cohort, and
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examined how the fitnesses in the validation cohort varied as a function of their rank ρ(ℓ) in the
discovery cohort (Figs. 2C,E and S5). Since the two cohorts have independent sources of technical
noise, systematic correlations between these two quantities can be used to distinguish genuine
fitness differences from statistical fluctuations in read counts.

To increase the signal-to-noise ratio, we restricted our attention to lineages with initial frequencies
>10−6.5 (equivalent to ∼10 reads in the pooled input library in each species). In addition, we only
examined lineages with a minimum number of expected reads in the validation cohort:

min{DMVe,0
, DMVe,1

} ·max{f̄ℓ,MDe,0
, f̄ℓ,MDe,1

} > 5. (18)

These filters were used to generate the rank-ordered fitness distributions in Figs. 2C,E and S5-S7.

To distinguish systematic trends from the noisy estimates of individual lineages, we coarse-grained
groups of lineages based on their relative fitness rank, ρ(ℓ), in the discovery cohort. For a given range
of ranks ρ1 ≤ ρ ≤ ρ2, we defined the coarse-grained frequency f̄ρ1:ρ2,M(t) by summing over the
individual lineage frequencies in Eq. (16b):

f̄ρ1:ρ2,M(t) ≡
∑

ρ1≤ρ(ℓ)≤ρ2

f̄ℓ,M . (19)

Under the simple model in Eq. (15), this coarse-grained frequency will grow as

⟨fρ0:ρ1,M(t1)⟩ = f̄ρ0:ρ1,M(t0) · exp [χ̄ρ0:ρ1,e,t0:t1 · (t1 − t0)] , (20)

where χ̄ρ0:ρ1,e,t0:t1 is the average relative fitness,

χ̄ρ0:ρ1,e,t0:t1 =
1

t1 − t0
log

(∑
ρ0≤ρ(ℓ)≤ρ1

f̄ℓ,M(t0) · exp [χℓ,e,t0:t1 · (t1 − t0)]∑
ρ0≤ρ(ℓ)≤ρ1

f̄ℓ,M(t0)

)
. (21)

Positive values of χ̄ρ0:ρ1,e,t0:t1 indicate that at least some lineages in the coarse-grained grouping
have positive relative fitness. We estimated this coarse-grained relative fitness in the validation cohort
using an analogous version of Eq. (16), in which f ℓ,M(t) is replaced by fρ0:ρ1,M(t). For example, the
blue lines in Figs. 2C,E and S5-S7 show the coarse-gained relative fitnesses in the validation cohort
in sliding windows of 100 consecutive ranks. The consistently positive values observed at lower
values of ρ(ℓ) indicate that many of the underlying lineages had positive relative fitness.

Distinguishing gene-level and lineage-level fitness effects. We used a similar coarse-graining
procedure to estimate the relative fitness of the gene complement of each lineage (Fig. 2B). The gene
complement was defined for a focal lineage ℓ if its transposon insertion fell in the coding region or
<100bp upstream of an annotated gene. In this case, the gene complement G(ℓ) was defined to be
the collection of all other lineages (excluding the focal lineage) that also fell within the same gene as
ℓ. We used this collection of lineages to define a coarse-grained frequency,

f̄G(ℓ),M(t) =
∑

ℓ′∈G(ℓ)

f̄ℓ′,M(t) , (22)

which represents the total frequency of all of the other lineages associated with the same gene. We
reasoned that if the relative fitness of lineage ℓ was caused by the gene knockout effect of the original
Tn insertion, then the dynamics of the gene complement f̄G(ℓ),M(t) should be statistically similar to
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the dynamics of the focal lineage f̄ℓ,M(t). We tested this hypothesis by estimating the relative fitness
of the gene complement of each lineage using an analogous version of Eq. (16), with f̄G(ℓ),M(t)
replacing f̄ℓ,M(t). The purple lines in Figs. 2C,E and S5 show sliding averages of the gene
complement fitnesses in the validation cohort (calculated using the same coarse-graining scheme
described above) as a function of the relative fitness rank of the focal lineage in the discovery cohort.
The large separation between the purple and blue lines in these panels indicates that the fitness
advantages of many lineages were not caused by their original Tn insertion.

Verifying the cross-validation procedure using simulated data. To confirm that our filtering and
cross-validateion procedure could consistently estimate lineage fitnesses in a population, we
simulated lineage dynamics in “biological replicates" designed to mimic the conditions of our
experiments. First, we generated an empirical distribution of lineage fitnesses during days 0-4 by
averaging across the 9 mice fed the HF/HS diet in this interval in the dataset, as described in SI
Section 3. These inferred fitnesses, along with the input frequencies, were used to initialize 9 identical
populations. We then simulated these populations for 40 generations (∼4 days) under a Wright-Fisher
model with a fixed population size Ne = 108. Finally, to generate simulated sequencing libraries, we
modeled the sampling and sequencing of each population as a sequence of two Poisson sampling
steps, each equal to the empirical sequencing depth at day 4 (which varied across Bacteroides
species and mice). We then performed the filtering and cross-validation procedures described above
to produce rank-order curves from these simulated populations (Fig. S2). These simulations
confirmed that our cross-validation approach could reliably distinguish the presence or absence of
fitness variation in a population.

Estimating the overall number of adaptive lineages. Our simulations showed that the
coarse-grained rank order curves reliably estimated the ground truth rank order curves in each of the
scenarios we considered. This suggests that these coarse-grained curves can be inverted to obtain
an estimator for the true distribution of relative fitnesses. The results are shown in Figs. S2 and S6 for
both simulations (Fig. S2) and the observed data (Fig. S6). For visual clarity, the computed
distributions were smoothed with Gaussian kernel density estimation before plotting. The resulting
distributions provide a direct estimate of the relative numbers of lineages with different relative
fitnesses. The interpretation of these distributions is complicated by the fact that we also observed a
large degree of negative fitness variation from day 0-4 (Fig. 3A and Figs. S6-S8), suggesting that
there is substantial maladaptive heritable variation in each Bacteroides population as well. This
makes it difficult to identify the relative fitness that corresponds to the neutral ancestor strain. To be
conservative, we therefore only considered a mutation to be adaptive if it increased in frequency over
the relevant time interval. This ensures that the lineage is at least as fit as the average fitness of the
population.

As an alternative to this approach, we also sought to make an independent estimate of the number of
adaptive lineages that did not rely on any coarse-graining scheme. First, among the highest N+

ranked lineages in the discovery cohort, we counted the number of lineages n̂+ < N+ with consistent
(positive) relative fitnesses in the validation cohort. We then compared this to a null expectation for
the number of lineages that we would have positively cross-validated by chance, i.e. in the absence of
correlations across mice. Under the null hypothesis that lineage fitnesses were uncorrelated across
discovery and validation cohorts, we then drew N+ lineages randomly among all ranked lineages, and
determined the number n+,0 < N+ with positive fitnesses in the validation cohort. The number of

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491573
http://creativecommons.org/licenses/by-nc/4.0/


lineages with positive relative fitnesses observed in excess over the null model,

∆n+ = n̂+ − n+,0 , (23)

represents a lower bound on the number of truly adaptive lineages among the first N+ ranks. To see
that this is a lower bound, we define the distribution of true relative fitnesses χℓ =

∫
sℓ(t

′)−X(t′) in
the (ranked) set of lineages as ρ(χ), and the probability of measuring a positive relative fitness χ̂ > 0
in the validation cohort conditioned on χ as P [χ̂ > 0|χ]. Then, the null expectation of n+,0 from N+

draws, E[n0;N+], can be expressed as

E[n0;N+] = N+

( ∫ 0

−∞
dχρ(χ)P (χ̂ > 0|χ) +

∫ ∞

0
dχρ(χ)P (χ̂ > 0|χ)

)
,

= N+

(
P [χ̂ > 0 and χ < 0] + P [χ̂ > 0 and χ > 0]

)
.

(24)

While the empirical null thus discounts from n+ the expected number of false positives (the first term),
it also discounts the expected number of true positives (the second term). Among HF/HS mice, we
estimated at least ∆n+ = 9115± 48 adaptive lineages in excess of the null expectation among the
first 15,000 ranks in Bc, 4074±42 out of 10,000 in Bo, 2822±45 out of 10,000 in Bt-VPI, and
1630±25 out of 4,000 in Bt-7330. Similar estimates were obtained for the LF/HPP diet.

5 Inferring joint fitnesses and tradeoffs across environments
To estimate the joint distributions of relative fitnesses across a pair of environments and/or
timepoints (Figs. 3A-C and S9), we began by splitting the samples into non-overlapping cohorts for
each of the two environments, e1 and e2. This division ensured that statistical fluctuations in one
environment did not influence relative fitness estimates in the other environment. We used Eq. (16) to
estimate the relative fitness in each environment for all lineages that satisfied Eq. (18) in at least one
of the two environments.

The pairwise correlations in Fig. 3H-K were estimated from a single biological replicate in each
environment, and Pearson correlations were computed for different pairs of biological replicates.
However, to avoid biases from our plug-in estimator, in each pair we calculated the correlation only
among lineages measured at non-zero frequency in both time points in each replicate.

We defined a lineage as exhibiting a fitness tradeoff if its relative fitness (χℓ,e,t0:t1) had opposite signs
in a pair of environments or time intervals. To robustly detect such lineages, we took a similar
cross-validation approach as described in Section 4 above. For example, to detect the fitness
tradeoffs between diets over days 4-10, we first used Eq. (16) to estimate χ̂ℓ,H,4:10 and χ̂ℓ,L,4:10 in
discovery cohorts of HF/HS and LF/HPP mice. We used these fitness estimates in the discovery
cohort to classify each lineage into one of the four quadrants in the (χℓ,H,4:10, χℓ,L,4:10) plane: the (+,-)
and (-,+) quadrants indicate a potential fitness tradeoff, while the (+,+) quadrant indicates a consistent
fitness benefit in both environments. We also defined a quantitative measure of the tradeoff
magnitude,

T̂ℓ = χ̂ℓ,H,4:10 · χ̂ℓ,L,4:10 . (25)

Strong fitness tradeoffs correspond to large, negative values of T̂ℓ, while positive values of T̂ℓ indicate
consistent fitness benefits. Several example lineages from Bc with large values of |T̂ℓ| are illustrated
in Fig. 3D-F.
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To assess the significance of these tradeoffs, we used the validation cohort to check which lineages
remained in the same quadrant as their discovery cohort (Fig. S10). To control for multiple hypothesis
testing, we then compared the observed number of lineages found in the same quadrant to the
following null expectation. If we designated NL lineages as putatively fit in L and unfit in H based on
their quadrant in the discovery cohort, we drew NL null lineages without replacement among those
with positive L fitness in the discovery cohort. We then determined how many of these NL null
lineages were found in the consistent quadrant in the validation cohort. This null model preserves the
correlations in positive fitness across mice fed one diet, and assumed that measured tradeoffs in the
other diet were simply due to biological or technical noise. We performed an analogous comparison to
validate lineages that were putatively fit in H and unfit in L, drawing null lineages with positive H
fitness in the discovery cohort. The excess of lineages with consistent behavior across validation and
cohorts over the null expectation in both categories indicated a statistical enrichment for genuine
fitness tradeoffs in hundreds of lineages (Fig. S10). We used an analogous approach to identify
“generalist” lineages with consistent fitness benefits in both environments, and observed a similar
enrichment of these mutations as well (Fig. S10).

6 Evidence for additional de novo mutations
The dynamics we observed in the main text were dominated by lineages that exhibited consistent
fitness benefits in independent mice, implying that the causative mutations were already present in
the library before gavage (4, 18). However, it is plausible that additional adaptive mutations continued
to accumulate within these populations during the subsequent two weeks of the experiment (1, 4).
Such a mutation would initially arise within a single Tn lineage within single a mouse. If the mutation
survived genetic drift, it would sweep through its Tn lineage and continue to spread through the
population, leading to a lineage trajectory that diverged from the other biological replicates.

To examine the evidence for such mutations, we ranked the day 16 frequencies of each lineage ℓ
across all k = 5 mice in the HF/HS diet, fℓ,1(16) ≥ fℓ,2(16) ≥ . . . ≥ fℓ,k(16). We defined a
divergence metric ∆ℓ as the ratio between the largest and second largest frequencies,

∆ℓ ≡
fℓ,1(16)

fℓ,2(16)
. (26)

Large values of ∆ℓ would be consistent with a beneficial mutation occurring in mouse 1. However,
these divergent lineage trajectories could also arise through biological or technical noise (e.g. if a
lineage was measured at small read counts across mice). To mitigate the impact of these effects, we
restricted our attention to lineages that reached > 0.1% frequency in at least one mouse (which
required that they were sampled in at least 10 reads).

Among these lineages, we observed a clear enrichment in large divergence values (∆ℓ > 10) in Bo,
Bt-VPI, and Bt-7330, but comparatively few divergent lineages in Bc (Fig. S13). In the first three
species, these large divergence lineages accounted for 20%-75% of all lineages that reached > 0.1%
frequency. The trajectories of five randomly chosen examples from each species are shown in
Fig. S14. These randomly chosen examples are highly suggestive of de novo adaptive mutations, in
which the large divergence between the largest and next-largest lineage is maintained across multiple
sequenced timepoints. Furthermore, while large divergence values could also be produced by the
stochastic establishment of pre-existing mutations, we found that most of the examples in Fig. S14
were not consistent with this behavior, since the remaining lineages tended to maintain or decline in
frequency over time. Interestingly, many of the divergent trajectories in Fig. S14 grew most rapidly
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over days 4-10, and grew more slowly (or even declined) over days 10-16. This could arise from
further shifts in selection pressures during days 10-16, or simply from increases in the mean fitness
Xm(t). Together, these examples suggest that there is at least some evidence for adaptive de novo
mutations during the first 16 days of the experiment. Future experiments over longer time periods and
with higher temporal resolution will be necessary to fully resolve the interplay between de novo
mutations and standing genetic variation.

7 Estimating the strength of genetic drift in vivo
Our results in the main text suggest that positive selection is a pervasive force during in vivo
colonization (Figs. 1-3). The opposing force of genetic drift could also play an important role in vivo,
reflecting both the enhanced spatial structure within the gut, or transient population bottlenecks during
engraftment. Here, we describe a method to measure the strength of these genetic bottlenecks when
natural selection is widespread. We apply this algorithm to simulations and experimental data.

In the absence of natural selection [sℓ(t) = X(t) = 0], genetic drift leaves a well-known signature in
the variance of a lineage’s frequency,

Var(f̂ℓ,m(t)) = ⟨f̂ℓ,m(t)⟩ ·
(
κt
Dt

+

∫ t

0
dt′Λm(t′)

)
= fℓ,m(0) ·

(
κt
Dt

+

∫ t

0
dt′Λm(t′)

)
, (27)

which follows from the model in Eq. (9). This simple behavior underlies several common methods for
inferring the strength of genetic drift from frequency trajectory data (33–37). In the presence of natural
selection, this behavior takes on a more complicated form,

Var(f̂ℓ,m(t)) = ⟨f̂ℓ,m(t)⟩ · κt
Dt

+ ⟨f̂ℓ,m(t)⟩2
∫ t

0

dt′Λm(t′)

fℓ,m(0)
e−

∫ t′
0 [sℓ,m(t′′)−Xm(t′)]dt′′ , (28)

which depends on the fitness of the focal lineage (sℓ(t)) as well as the mean fitness of the population
(X(t)). Estimating the strength genetic drift in this more general scenario is more challenging.

Previous work has shown that the strength of genetic drift can be inferred from a collection of neutral
marker lineages (sℓ(t) = 0) with a sufficiently dense time series (18, 19). However, this approach
suffers from two key limitations that make it difficult to apply in our present case. First, if a substantial
fraction of the marker lineages have non-neutral fitnesses, this method will be strongly biased by the
variation in fitness among the marker lineages, which will tend to overestimate the strength of genetic
drift. Second, this approach also requires multiple sequencing replicates at each timepoint to
distinguish the contributions of genetic drift from technical noise (18).

Here we sought to exploit a different feature of Eq. (28) to infer the strength of genetic drift when
natural selection is sufficiently widespread. Our approach is based on the observation that
contribution from technical noise depends on the present-day frequency of the lineage, while the
contribution from genetic drift depends on the historical trajectory of the lineage as well. For a given
present-day frequency, a higher fitness lineage must have been present at a lower frequency in the
initial timepoint, and will therefore have experienced stronger genetic drift on the way to its
present-day frequency. This suggests that the strength of genetic drift will show up as a systematic
correlation between Var(f̂ℓ,m(t)) and f̂ℓ,m(0).

To make this intuition more precise, we focused on a simple version of the model in Section 4, in
which the relative fitnesses and strength of genetic drift are approximately constant over the relevant
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time interval. In particular, for every mouse m with host environment e, we let χℓ,e(t) ≈ χℓ,e and
define Λm(t) ≃ 1/Neτe, where Ne is the effective population size and τe is the effective generation
time in the gut. In this limit, Eq. (28) reduces to

Var(f̂ℓ,m(t)) ≈ ⟨f̂ℓ,m(t)⟩ · κm,t

Dm,t
+

t

Neτe
·
⟨f̂ℓ,m(t)⟩

[
⟨f̂ℓ,m(t)⟩/fℓ(0)− 1

]
log
[
⟨f̂ℓ,m(t)⟩/fℓ(0)

] , (29)

where

⟨f̂ℓ,m(t)⟩ = fℓ(0)e
χℓ,e·t . (30)

Since the average frequency is independent of m, the variance can be estimated from the divergence
in the lineage’s frequency across mice 1 and 2:

⟨[f̂ℓ,1(t)− f̂ℓ,2(t)]
2⟩ = Var(f̂ℓ,1(t)) + Var(f̂ℓ,2(t)) ,

=

[
κ1,t
D1,t

+
κ2,t
D2,t

]
· ⟨fℓ(t)⟩︸ ︷︷ ︸

technical noise

+
t

Ne
· 2⟨fℓ(t)⟩ [⟨fℓ(t)⟩/fℓ(0)− 1]

log [⟨fℓ(t)⟩/fℓ(0)]︸ ︷︷ ︸
genetic drift

. (31)

This suggests that the contributions from genetic drift and technical noise can be distinguished by their
different scaling as a function of ⟨fℓ(t)⟩ and fℓ(0). In particular, if we define the predictor variables

x1,ℓ =
⟨fℓ(t)⟩ [⟨fℓ(t)⟩/f0 − 1]

log[⟨fℓ(t)⟩/f0]
, x2,ℓ = ⟨fℓ(t)⟩ , (32)

then the magnitude of genetic drift (t/Ne) can be inferred from a linear regression of [f̂ℓ,1(t)− f̂ℓ,2(t)]
2

on x1,ℓ and x2,ℓ.

However, a straightforward implementation of this regression approach is challenging, since the
predictor variables must also be self-consistently estimated from the data. The additional uncertainty
in these estimates leads to substantial and heteroscadastic noise in the underlying regression model
that will bias the estimated regression coefficients (38). To mitigate these issues, we instead
performed regression on pre-averaged groups of k ≫ 1 lineages, which were chosen to have similar
initial frequencies and relative fitnesses. The inputs to the regression model are the average values of
the predictor and response variables within each group L:

x̄1,L ≡ 1

k

∑
ℓ∈L

x̂1,ℓ , x̄2,L ≡ 1

k

∑
ℓ∈L

x̂2,ℓ , ȳL ≡ 1

k

∑
ℓ∈L

[f̂ℓ,1(t)− f̂ℓ,2(t)]
2 . (33)

We estimated the individual contributions x̂1,ℓ and x̂2,ℓ using the plug-in estimators,

x̂1,ℓ =
f̄ℓ,M1(t)

[
f̄ℓ,M1(t)/f̄ℓ,M1(0)− 1

]
log
[
f̄ℓ,M1(t)/f̄ℓ,M1(0)

] , x̂2,ℓ = f̄ℓ,M2(t) , (34)

where f̄ℓ,M(t) denotes the cohort-averaged frequency defined by Eq. (16b), and M1 and M2 are
non-overlapping cohorts that do not contain mice 1 or 2. We also assigned each group of a lineages a
corresponding weight

wL ≡ 1

σ̂ŷL
, (35)
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where σ̂ȳL is the standard deviation of ȳL estimated by bootstrap resampling within L. A weighted
regression of ȳL on x̄1,L and x̄2,L yields a corresponding estimate for t/Neτe.

As a proof of principle, we applied this algorithm to measure genetic drift in the Bc population, which
benefited from strong fitness variation and weaker sequencing noise compared to the other
Bacteroides species. We first tested the algorithm on a simulated set of biological replicates designed
to mimic the conditions of our experiments (as described above to validate rank-order curves): we
generated an empirical distribution of lineage fitnesses during days 0-4 as described in SI Section 3.
These inferred fitnesses, along with the input frequencies, were used to initialize 9 identical
populations. We simulated these populations for 40 generations (∼4 days) under a Wright-Fisher
model with a fixed generation time of τe = 10/day and population size Ne varying from 105 − 109

days. Finally, to generate simulated sequencing libraries, we modeled the sampling and sequencing
of each population as a sequence of two Poisson sampling steps, each equal to the empirical
sequencing depth at day 4 in the corresponding mouse.

We then applied our drift inference algorithm to these simulated populations. We first used the input
frequencies and simulated sequencing libraries to partition the lineages into groups of at least 50
lineages with similar initial frequencies and average fold changes across mice. (To mimic the
conditions of the experiment, these average fold changes were estimated from the simulated
sequencing libraries, rather than the true fitnesses in the simulation). Given these lineage groupings,
we partitioned the biological replicates into three non-overlapping cohorts and used them to estimate
x̄1,L (4 replicates), x̄2,L (3 replicates), and ȳL (2 replicates) using Eqs. (33) and (34). The effective
population sizes (Neτe) estimated from the linear regression are shown in Fig. S15. We observed that
over different permutations of mice in the three cohorts, our algorithm could reliably distinguish
population sizes over several orders of magnitude, unless genetic drift contributed <1% of the
variance attributable to sequencing noise.

Having validated our algorithm on simulated data, we applied it to the 9 mice that were subject to the
HF/HS diet over days 0-4 (Fig. S15). The effective population size estimate in this time interval was
around 5 · 106 days, which coincided with the regime in which there was good agreement between the
inferred values and the ground truth in our simulations. Our estimates suggest that genetic drift
accounted for only ∼10% of the observed variance in lineage frequencies across replicates,
highlighting the potential of our approach to distinguish the effects of biological noise even when
technical noise is relatively strong. Interestingly, this estimate is substantially lower than the census
population sizes estimated for Bacteroides species in the murine gut (24).

However, these initial estimates should also be treated with a degree of caution, since our simple
regression model made a number of simplifying assumptions that may not hold in practice. Chief
among these was the assumption that Λ(t) and χℓ(t) are approximately constant over the relevant
time interval, though residual noise or co-linearity in the predictor variables could also pose problems
for the linear regression step. The reasonable performance of our algorithm on simulated data
suggests that these issues have a limited impact in the parameter ranges we examined here. Further
refinements to this algorithm – and extensions to other sources of biological noise – would be an
interesting topic for future work.
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Figure S1: Most lineages that reached intermediate frequency by day 16 were not driven by
beneficial Tn insertions. For each mouse in the HF/HS (red) or LF/HPP (blue) diets, the fold change
of the top 10 largest lineages at day 16 is plotted against the of other Tn lineages in the same gene (the
gene complement, SI Section 4). Lineages among the top 10 in multiple mice in the same diet are
represented by their median (circles) and minimum and maximum values (lines) across those mice
(lines). Lineages in the grey region either have Tn insertions in intergenic regions or gene complements
measured at zero frequency at day 16.
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Figure S2: Cross-validation consistently estimates relative fitnesses of lineages in simulated
populations. For each Bacteroides library (row), 9 populations were initialized with the distribution
of lineage frequencies estimated from the pooled day 0 input libraries. In one set of simulations (left
column), every lineage’s fitness was set to 0 to mimic a neutral scenario. In another set (center col-
umn), each lineage’s fitness was set to its average across 9 HF-fed mice during days 0-4, according
to Eq. (16). Lineage dynamics were simulated as described in SI Section 4. Lineages were then fil-
tered, ranked, and plotted as described in SI Section 4. The right plot compares the true distribution
of lineage relative fitnesses to that estimated by inverting the coarse-grained rank-order curve in the
center plot (SI Section 4).
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Figure S3: Relative fitnesses of adaptive lineages compared to “fitness determinant" gene
knockouts identified in previous work. For each Bacteroides library, the relative fitnesses during
days 0-4 of deleterious gene knockouts, previously annotated by Wu et al. (27), were estimated in a
cohort of mice. Frequencies of gene-knockouts were estimated by summing all reads from Tn inser-
tions falling in the gene, as defined in SI Section 4. Finally, Gaussian kernel density estimation was
applied to plot a smoothed distribution. This distribution was compared to cross-validated relative fit-
nesses, measured in the same cohort of mice and over the same interval, of the fittest 10,000 (Bc),
5,000 (Bo and Bt-VPI), or 3,000 (Bt-7330) lineages, which were estimated with a separate discovery
cohort of mice. The smoothed distribution of adaptive lineages was computed as described in SI Sec-
tion 4.
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Figure S4: Conditional distributions of relative fitnesses at different ranks. In each Bacteroides
library (row), 4 sets of lineages were collected, spanning different ranks of relative fitness during days
0-4 in the HF/HS discovery cohort. For each set, the distributions of relative fitnesses of the lineages
(left) and their gene complements (right, SI Section 4) in the HF/HS validation cohort during days
0-4 are plotted. The same cohorts of HF/HS discovery and validation mice were used as in Fig. 2
and Fig. S5. In each of the 4 Bacteroides libraries, the mode of adaptive lineages’ relative fitness
remains positive over 1000s of ranks, suggesting positive fitness variation across 1000s of lineages.
Conversely, the mode of their respective gene complements’ fitnesses are centered at 0 relative fitness,
independent of rank, suggesting that most lineages’ fitness benefits do not derive from the gene-
knockout effects of their original Tn insertions.
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Figure S5: Analogous version of Fig. 2C-H for all four species. The same sets of discovery
and validation mice are used as in Fig. 2. To emphasize the difference in the numbers and fitnesses of
adaptive lineages, the first 10,000 ranks are shown for all 4 Bacteroides species. In the rightmost plots,
colored lines show the total frequency over time of ranks 1-1,000, 1,000-3,000, and 3,000-10,000 (light
blue to dark blue), as well as the remaining lineages (black) in different mice.
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Figure S6: Full rank-order curves and distribution of relative fitnesses in the HF/HS and LF/HPP
diets. For the HF/HS diet, 5 mice were used for discovery and 4 mice were used for validation, while
in the LF/HPP diet, 4 mice were used for discovery and 3 were used for validation. Note that different
sets (and numbers) of lineages pass the filtering steps in each diet (SI Section 4) .
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Figure S7: Lineage fitnesses are strongly correlated across diets during days 0-4. Relative
fitnesses during days 0-4 in the HF/HS and LF/HPP diets plotted against rank order of relative fitnesses
during days 0-4 in a discovery cohort with the same (blue) or different (red) diet. Each curve represents
a running average of 100 lineages.
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Figure S8: In vivo relative fitnesses correlate with in vitro relative fitnesses for a subset of
media in Bc. Fold changes of Bc lineages in overnight cultures of different media, ranked by their
relative fitnesses during days 0-4 in HF/HS mice. The curves represent running averages of 100 ranked
lineages (SI Section 4). For each medium, two independent cultures (gold, brown) demonstrate the
reproducibility of the relative fitnesses of coarse-grained lineages.

30

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491573
http://creativecommons.org/licenses/by-nc/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

Relative fitness, days 4-10 (days 1), cohort 1

0.0

0.2

0.4

0.6

0.8

1.0

Re
lat

ive
 fit

ne
ss

, d
ay

s 4
-1

0 
(d

ay
s

1 )
, c

oh
or

t 2
1 10 100 1000

Number of lineages

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

Bc

1 0 1
HF/HS (3 mice)

1

0

1

HF
/H

S 
(2

 m
ice

)

1 0 1
HF/HS (5 mice)

1

0

1

LF
/H

PP
 (3

 m
ice

)
1 0 1

LF/HPP (2 mice)
1

0

1

LF
/H

PP
 (1

 m
ice

)
0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

Bo

1 0 1
HF/HS (3 mice)

1

0

1

HF
/H

S 
(2

 m
ice

)

1 0 1
HF/HS (5 mice)

1

0

1

LF
/H

PP
 (3

 m
ice

)

1 0 1
LF/HPP (2 mice)

1

0

1

LF
/H

PP
 (1

 m
ice

)

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

Bt-VPI

1 0 1
HF/HS (3 mice)

1

0

1

HF
/H

S 
(2

 m
ice

)

1 0 1
HF/HS (5 mice)

1

0

1

LF
/H

PP
 (3

 m
ice

)

1 0 1
LF/HPP (2 mice)

1

0

1

LF
/H

PP
 (1

 m
ice

)

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

1.00

Bt-7330

1 0 1
HF/HS (3 mice)

1

0

1

HF
/H

S 
(2

 m
ice

)

1 0 1
HF/HS (5 mice)

1

0

1

LF
/H

PP
 (3

 m
ice

)

1 0 1
LF/HPP (2 mice)

1

0

1

LF
/H

PP
 (1

 m
ice

)

Figure S9: Lineage fitnesses during days 4-10 are correlated within but not between diets.
For each panel, average relative fitnesses during days 4-10 were calculated in nonoverlapping sets
of HF/HS and LF/HPP mice (SI Section 4). Rows correspond to different Bacteroides species and
columns to the same sets of mice. Triangles indicate the 10 largest lineages at day 16 in the HF/HS
(orange), LF/HPP (blue), or alternating (purple) diets.
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Figure S10: Hundreds of lineages exhibit relative fitnesses that depend on diet at later times.
For each Bacteroides species, the left panel shows the joint distribution of all relative fitnesses between
days 4-10 (grey) in the a cohort of 2 HF/HS and 1 LF/HPP mice. The highlighted lineages have the
largest value of the tradeoff statistic |Tℓ| in a separate discovery cohort of 3 HF/HS and 2 LF/HPP
mice (SI Section 5). The right panel shows the excess number of lineages, over a null expectation (SI
Section 5), in each quadrant in the discovery cohort that fell in the same quadrant in the validation
cohort (dark shading). Error bars indicate 95% confidence intervals in the excess lineages, from re-
peated draws of the null distribution.
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Figure S11: Lineage fitnesses are anti-correlated with their frequency in the input library in Bc
and Bt-7330. For each species, individual Tn lineage frequencies were estimated and ranked in a
discovery pool of input libraries. Lineages were then coarse-grained into super-lineages of roughly
equal day 0 frequency ∼1% using the procedure described in SI Section 4. The relative fitnesses
of these super-lineages were estimated during days 0-4 in vivo using a separate validation pool of
input libraries to re-measure initial frequencies. Relative fitnesses in HF/HS (orange) and LF/HPP
(blue) cohorts of mice are plotted against the average lineage frequency within each super-lineage,
measured in the validation input pool. The grey curve plots the total frequency of each super-lineage
in the validation input pool. Bc and Bt-7330 exhibit strong anti-correlations between in vivo fitness and
initial frequency, whereas Bt-VPI shows the opposite trend.
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Figure S12: Analogous version of of Fig. 3C computed for diet-averaged fitnesses. For each
of the lineages in Fig. 3C, we computed a diet-averaged fitness χavg = (χ̂ℓ,H,4:10 + χ̂ℓ,L,4:10)/2 and
the corresponding off-diagonal component |χ̂ℓ,H,4:10 − χ̂ℓ,L,4:10| between days 4-10. An analogous
calculation was carried for the other three species. This projection shows that the largest lineages in
the alternating diets (purple triangles) had higher diet-averaged fitness and smaller tradeoffs in Bc,
despite their smaller representation in the underlying distribution.
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Figure S13: Evidence for adaptive de novo mutations from the variability across mice. Left:
lineage divergence as defined by Eq. (26) (a measure of the variability of a lineage across 5 HF/HS
mice, SI Section 6) as a function of the maximum fold change of that lineage in all mice from the
same diet. Dozens of lineages that reached > 0.1% by day 16 in at least one mouse exhibited large
divergences (> 10, blue shaded region) at this time point, suggestive of putative de novo mutations.
Right: survival function (green curve) of the divergence metric for the lineages in the left plot. For
comparison, the survival function of divergences for all lineages is shown in grey.
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Figure S14: Trajectories of example lineages with putative de novo mutations. Five lineages
with divergence >10 in each species (column) are shown. Lineages were randomly sampled from
each of the three species (Bo, Bt-VPI, Bt-7330) in Fig. S13 that exhibited large numbers of strongly
diverging lineages. Each lineage is illustrated in a separate panel. The individual curves represent the
trajectories of that lineage in each of the 5 HF/HS mice. Each mouse is represented by the same color
across panels.
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Figure S15: Estimating the strength of genetic drift in Bc during days 0-4. Inferred values of
Neτe from simulated (top) and empirical (bottom) Bc populations in HF/HS mice (SI Section 7). For
both simulated and experimental data, different inferences were generated by shuffling mice among
the separate cohorts used to estimate ȳL, x̄1,L, and x̄2,L (Eq. (33)). The median (outlined circles),
interquartile range (lines), and outliers (dots) of inferences are shown; when drift is weak (simulated
Nτ = 108, 109), the algorithm typically does not fit a finite Nτ , so the median is not plotted. In the
experimental data, a particular inference was assigned to a mouse if this mouse was used to estimate
ȳL. For comparison, the grey stars indicate sequencing depth at day 4.
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