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Abstract

A prominent trend in single-cell transcriptomics is providing spatial context alongside a character-

ization of each cell’s molecular state. This typically requires targeting an a priori selection of genes,

often covering less than 1% of the genome, and a key question is how to optimally determine the small

gene panel. Reference data from these methods covering the whole genome is unavailable, and using

single-cell RNA sequencing (scRNA-seq) datasets as a surrogate can result in suboptimal gene panels

due to the fundamentally different data distributions across technologies. We address these challenges

by introducing a flexible deep learning framework, PERSIST, to identify informative gene targets for

spatial transcriptomics studies by leveraging existing scRNA-seq data. Using datasets spanning different

brain regions, species, and scRNA-seq technologies, we show that PERSIST reliably identifies gene pan-

els that provide more accurate prediction of the genome-wide expression profile, thereby capturing more

information with fewer genes. Furthermore, PERSIST can be adapted to meet specific biological goals,

such as classifying cell types or discerning neuronal electrical properties. Finally, via a simulation study

based on a recent in situ hybridization-based dataset, we demonstrate that PERSIST’s binarization of

gene expression levels enables models trained on scRNA-seq data to generalize with input data obtained

using spatial transcriptomics, despite the complex domain shift between these technologies.

Introduction

Cell type classification has been revolutionized by recent advances in single-cell genomics. It is now possible

to profile the entire mRNA repertoire (i.e., the transcriptome) of tens, or even hundreds, of thousands of

individual cells (scRNA-seq) in a single experiment. Large-scale scRNA-seq studies have provided high-

resolution taxonomies of the transcriptomic cell types in many tissues across several species, and leveraging

data from these scRNA-seq studies, spatial transcriptomic methods can examine molecularly defined cells in

their native context [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. This has led to their use in large consortia such as the Human

Cell Atlas and Brain Initiative Cell Census Network, and widespread recognition of their promise [11].

In particular, fluorescence in situ hybridization (FISH) is a prominent spatial transcriptomics approach,

and it is the basis of many recently developed technologies [3, 4, 6, 7, 9, 12]. By revealing the spatial

organization of cells within tissues, FISH is playing a central role in uncovering the fundamental principles of
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brain organization [12]. In conjunction with other experimental modalities (e.g., morphological, connectivity,

or electrophysiological studies), FISH can also link transcriptomic identity with other data to provide a better

understanding of the functional role of individual cell types [9, 13, 14, 15, 16].

Whereas scRNA-seq detects genes in a largely unbiased manner, FISH-based technologies assay a pre-

defined list of genes. In routine FISH experiments, only a small fraction of the transcriptome is targeted [3,

6, 9, 12]; this is in part because the complexity and duration of FISH experiments increases sharply with

the number of target genes, and also because highly specialized methods capable of probing thousands of

genes are applicable only to thin tissue sections and cultured cells [7, 17]. Thus, judicious selection of a

small number of highly informative target genes (i.e., a gene panel) is key for most FISH experiments.

Experimentalists often rely on ad hoc approaches to gene selection, most commonly choosing markers based

on prior knowledge or very high expression in a limited subset of cells [9, 18]. Such methods are suboptimal

as they tend to overlook genes with more complex expression patterns and rarely account for correlated

expression between selected genes, which yields redundant information. Here, we frame the identification

of markers as a feature selection problem and seek to address it in a principled manner using tools from

machine learning.

Feature selection problems arise in many domains [19, 20, 21, 22, 23], but spatial transcriptomics studies

present unique challenges and thus demand a specialized solution. Importantly, because reference datasets

consisting of spatially resolved mRNA detection measurements for thousands of genes are unavailable,

scRNA-seq datasets are used instead to guide the selection process. The use of a surrogate dataset presents

new obstacles: the expression counts observed by scRNA-seq and spatial transcriptomics technologies may

differ significantly, with a relationship that is nonlinear and noisy [24, 25, 26]. Hence, a gene panel selected

without considering the difference between the datasets is unlikely to perform as well as intended, as we

demonstrate with several existing methods.

Moreover, the optimal gene panel should account for specifics of the target experiment, which may

demand tuning of the selection criterion. For instance, linking of spatial characterization of gene expression

through spatial transcriptomics and the electrical properties of neurons [14, 15] may require a gene panel that

relates to membrane excitability. Another scenario could involve investigating a specific subclass of cells; for

example, exploring neurons expressing a specific marker gene in a particular brain region demands a gene

panel based on reference data from this molecularly and spatially constrained population. Furthermore,

certain spatial transcriptomics methods might require the target genes to have either relatively high or low

expression levels; for example, when using low-resolution detection methods, it may be preferable to prioritize

highly expressed genes.

We address these challenges by introducing predictive and robust gene selection for spatial transcriptomics

(PERSIST), an algorithm to select genes that can serve as valuable targets in spatial transcriptomics studies.

PERSIST uses scRNA-seq data and deep learning to find a small number of highly informative genes whose

expression can predict the genome-wide expression profile. In doing so, PERSIST trains a reconstruction

model with a loss function that accounts for noisy gene dropouts in scRNA-seq; incorporates expert knowl-

edge by pre-selecting or pre-filtering genes; scales to very large datasets using minibatched training; and

quantizes gene expression levels to account for the domain shift between scRNA-seq and spatial transcrip-

tomics. Furthermore, our deep learning-based selection mechanism is flexible: by changing the prediction

target, PERSIST can also operate in a supervised rather than unsupervised fashion to address specific ex-

perimental aims, such as cell type classification or electrophysiological characterization. Our work focuses

primarily on FISH-based studies, but many of the challenges identified above are common to a broader class
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Figure 1: Overview of predictive and robust gene selection for spatial transcriptomics (PERSIST).
PERSIST selects genes using a deep learning model trained to reconstruct the genome-wide expression profile. A, The
model is trained using scRNA-seq data, which is binarized to address the domain shift relative to FISH measurements.
By default, the model aims to reconstruct the original scRNA-seq gene expression levels, and the objective function is
a hurdle loss designed to account for noisy gene dropouts. Alternatively, one can use a supervised prediction target to
address specific experimental aims, such as cell type classification. After training, the selected gene panel is extracted
from the model’s binary mask layer. B, The binary mask layer selects genes by multiplying the input with a learned
binary mask, which controls the specific input features that are used to make predictions.

of spatial transcriptomic methods [8, 10], thus suggesting broader applicability of our method.

We validate our approach using reference datasets from different technologies (plate-based SmartSeq

and droplet-based 10X), multiple brain regions (V1, ALM, MOp) and different species (mouse, human) on

classification and reconstruction tasks. We then highlight PERSIST’s flexibility and show how to incorporate

a different data modality (electrophysiology) with FISH experiments using a large Patch-seq dataset [14].

Finally, we devise a novel evaluation procedure to showcase the effectiveness of our robust inference approach

based on gene quantization using a recent MERFISH dataset [9], which we show allows predictive models

to transfer across technologies despite the measurement differences. Through our comprehensive set of

experiments and comparisons with other methods, we provide strong evidence that PERSIST can identify

valuable gene targets for spatial transcriptomics studies.

Results

Selecting genes using deep learning

Given scRNA-seq data from a cell population to be profiled using spatial transcriptomics, PERSIST selects

a small panel of genes that can optimally reconstruct the entire scRNA-seq expression profile. Intuitively,

such gene panels are useful for a variety of downstream tasks because they sacrifice minimal information.

Our approach is inspired by classical dimension-reduction techniques like principal components analysis
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(PCA) [27], but PERSIST selects a discrete set of genes rather than finding linear combinations. Additionally,

it reconstructs the original data using a non-linear model and with a quality measure more appropriate for

scRNA-seq data. PCA measures reconstruction quality using a mean squared error (MSE) loss, which recent

work has found to be ill-suited for scRNA-seq [28, 29], so PERSIST instead uses a hurdle loss function to

account for noisy gene dropouts [30]. ‘Dropouts’ refer to the failure to detect mRNA transcripts due to

inefficiencies in cDNA library preparation, which is prevalent when using lower resolution (and typically

higher throughput) platforms such as 10X [31, 32, 33]. The hurdle loss used by PERSIST therefore involves

separately predicting each gene’s expression level and whether it is actually expressed, which lets the model

explicitly represent dropout noise in its predictions (see Methods).

PERSIST uses a deep learning model with a custom layer designed to pinpoint a small number of useful

input features (Fig. 1). This approach is inspired by recent work on differentiable feature selection, which

enables neural networks to select features using gradient-based optimization [20, 34, 35, 36]. The selection

layer applies a learned binary mask that sparsifies over the course of the optimization process; information

initially flows through the model from all genes, but the relevant inputs are gradually reduced down to a

user-specified number (Fig. 1B). The model’s memory usage can be managed via the minibatch size used for

training, and when necessary, the computational cost can be further reduced by performing a preliminary

filtering step (see Methods).

By default, PERSIST operates in an unsupervised manner by reconstructing the full scRNA-seq expres-

sion profile, which removes the need for any labels or manual annotation. However, PERSIST can also

operate in a supervised manner by incorporating cell-level annotations as the model’s prediction target, such

as cell type labels or complementary epigenetic data like chromatin accessibility and methylation (Fig. 1A).

As we show in our experiments, this gives PERSIST a versatility that is not shared by other methods, and

which lets practitioners select genes that are tailored to meet specific biological questions and objectives.

While spatial transcriptomics studies often have specific goals like classifying cell types [3, 5, 7, 9], enabling

PERSIST to operate in an unsupervised manner is important because reference cell type clusterings are not

always available, consensus definitions of cell types are still evolving [37], and focusing on gene expression

enables unbiased characterization of complex tissues and specific brain regions.

The goal of our evaluation is to demonstrate that genes identified by PERSIST can serve as valuable

targets in spatial transcriptomics studies. Showing this is not straightforward, both due to the cost of

running multiple FISH studies with panels selected by different criteria, as well as the difficulty of providing

an unbiased comparison through studies conducted on different tissues. We therefore evaluate the PERSIST

gene panels by simulating their use in FISH studies, and in particular via prediction tasks that would be of

interest to practitioners in such studies. scRNA-seq and FISH have very different noise sources and detection

issues, and the number of transcript counts observed by each technology can differ substantially for the same

cell, so our simulated prediction tasks binarize gene expression levels. This pre-processing step allows models

to transfer across technologies despite the domain shift, as we demonstrate in an experiment with MERFISH

data.

Our experiments compare PERSIST to several widely used and state-of-the-art gene selection methods.

We tested the Seurat [38] and Cell Ranger [39] gene selection procedures, which are based on per-gene

variance and dispersion levels and are implemented in the popular ScanPy package [40]. These methods

are designed primarily to reduce computation, but we include them as comparisons because they are widely

used by practitioners. Next, we tested the recently proposed GeneBasis method [41] that selects genes

using a greedy algorithm to preserve the data manifold. Finally, we considered three methods that aim to
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differentiate cell types: a method that maximizes the information about cell type labels (MutInfo) [9, 42], a

method that identifies key gene predictors using feature importance scores (SMaSH) [43], and the scGeneFit

method [44] that uses linear programming. These methods span a range of selection criteria, but PERSIST

is the first method that can be adapted to multiple experimental objectives relevant to practitioners, and

that was designed specifically for transferability to spatial transcriptomics studies.

PERSIST enables more accurate scRNA-seq expression profile reconstruction

We first tested PERSIST on two scRNA-seq datasets: a SmartSeq v4 [45] dataset consisting of 22,160 neurons

from the mouse primary visual (V1) and anterior lateral motor (ALM) cortices [46] (hereafter referred to

as SSv4), and a 10X [39] dataset consisting of 72,629 neurons from the human motor (M1) cortex [47]

(hereafter referred to as 10X). These datasets profile different brain regions and species and were collected

using two library preparation platforms that yield different levels of sparsity. Working with an initial set of

10,000 high-variance genes, we used PERSIST and the other gene selection methods to identify panels of

8-256 marker genes, a range that spans the vast majority of FISH studies.

As a benchmark metric for our comparisons, we calculated the portion of variance explained in the

genome-wide scRNA-seq expression profile by each selected gene panel. For gene panels of all sizes on

both datasets, PERSIST explained more variance and outperformed the unsupervised methods Seurat, Cell

Ranger and GeneBasis (Fig. 2A, C). The GeneBasis approach is most competitive with PERSIST, but it

explained considerably less variance for smaller gene panels, which are most commonly used in experiments.

There is diminishing improvement as the panel size increases, and even large panels, such as those with

256 genes, fail to explain all the variance. This is due not only to the many factors of variation in the full

expression profiles, but to high noise levels in the data. To verify this, we calculated the amount of variance

explained by cell types in each dataset. We found that cell type labels explained just 19% of the variance in

the SSv4 data and 11% in the 10X data, suggesting high intra-type variability due to stochasticity in gene

expression and detection. Perhaps surprisingly, the PERSIST panels can explain more variance than the cell

type identity given enough genes.

Importantly, PERSIST binarizes gene expression levels during training whereas Seurat, Cell Ranger and

GeneBasis all use either raw or logarithmized expression counts. This creates a degree of inconsistency

among methods, so we asked whether this pre-processing step could account for differences in performance.

A modified version of GeneBasis becomes more competitive with PERSIST, whereas Seurat and Cell Ranger

perform worse with binarization (Supp. Fig. 4). For MutInfo, SMaSH and scGeneFit, which leverage cell

type labels to select genes, we find that PERSIST outperforms these methods independent of binarization

(Supp. Fig. 3). Overall, the results show that PERSIST’s binarization step can be incorporated into several

of the baselines to enable better transferability to FISH studies.

Recent work has demonstrated that the digital “dropout pattern” of a cell (i.e., the set of genes not

detected by scRNA-seq) is nearly as informative as quantitative expression levels for identifying cell types [32,

48]. We thus wondered whether the selected gene panels could predict the set of genes with non-zero

transcript counts in the rest of the scRNA-seq dataset (Fig. 2B, D). In this task, PERSIST again performs

more accurately than other methods on both datasets for all panel sizes; this is due in part to our hurdle loss

function, which involves predicting whether each gene is detected. For this analysis, we excluded genes that

were rarely expressed and housekeeping genes that are ubiquitously expressed, focusing on those expressed

in 20-80% of cells (n=4,972 genes), but similar results were found for varying cutoffs (Supp. Fig. 6). Supp.

Fig. 5 shows the prediction accuracy for each gene, revealing that those with moderate mean expression are
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Figure 2: Evaluating gene panels based on their ability to reconstruct scRNA-seq expression profiles.
The selected genes are used to predict either log-normalized expression counts for the remaining genes (A, C, E) or
whether each gene is expressed (B, D, F). The panels selected by PERSIST perform better than those selected by
previous methods. A, Explained variance for gene panels identified by PERSIST and other methods with the SSv4
V1/ALM neuronal cells (higher is better). B, Expressed gene prediction accuracy with the SSv4 V1/ALM neuronal
cells (higher is better). C, Explained variance for gene panels with the 10X M1 cells. D, Expressed gene prediction
accuracy for panels with the 10X M1 cells. E, Explained variance for gene panels with the SSv4 V1/ALM Sst cells.
F, Expressed gene prediction accuracy for panels with the SSv4 V1/ALM Sst cells. All error bars represent 95%
confidence intervals determined by training with five bootstrapped datasets.

more difficult to predict than those with predominantly high or low expression.

Finally, from an experimental standpoint, it would be most practical to select a single ‘general-purpose’

gene panel using the entire dataset rather than generating a gene panel for each particular subtype of interest.

To assess the feasibility of this strategy, we focused on the class of somatostatin-expressing (Sst) interneurons

(2,701 cells) in the SSv4 dataset and compared gene sets selected by PERSIST when trained on the entire

scRNA-seq dataset versus just the Sst subpopulation. Performance improved when we only used data from

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2022. ; https://doi.org/10.1101/2022.05.13.491738doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491738
http://creativecommons.org/licenses/by-nd/4.0/


the specific cell type of interest during gene selection (Fig. 2E-F). However, the improvement diminished

when 32 or more genes were selected, which suggests that general purpose gene panels may be appropriate

for technologies that assay large numbers of genes (e.g., multiplexed methods like MERFISH [4]).

PERSIST enables accurate cell type classification

As another evaluation metric, we tested how accurately the gene panels selected by each method can classify

cell types, which is a common goal of spatial transcriptomics studies [3, 5, 7, 9]. We utilized transcriptomic

cell types defined via the original SSv4 and 10X datasets for our evaluation, and the classification accuracy

with binarized input data simulates the accuracy in a subsequent FISH experiment. In addition to the

various gene selection methods, we also consider a panel of marker genes identified by Tasic et al. [46] for

cell types in the SSv4 dataset. For all gene selection approaches, larger panels enabled increasingly accurate

cell type classification (Fig. 3). As expected, supervised methods that use cell type annotations during

their selection procedure (e.g., MutInfo) perform better than unsupervised methods that use only unlabeled

scRNA-seq data (e.g., Seurat). To emphasize this distinction between methods, we present results separately

for unsupervised (Fig. 3A, C) and supervised methods (Fig. 3B, D).

Among the unsupervised approaches, PERSIST outperforms Seurat, Cell Ranger and GeneBasis for

panels of all sizes. For example, when using 64 genes, PERSIST reaches 74% accuracy with the SSv4 data

and 78% with the 10X data considering a total of 113 and 117 cell types, respectively. GeneBasis is the most

competitive unsupervised baseline with the 10X data, and either GeneBasis or Seurat are most competitive

with the SSv4 data. The gap in performance is largest for small panels, and the various methods roughly

converge in accuracy for panels of 128 genes. As additional results, Supp. Figs. 7-8 show confusion matrices

that represent how cells of each type are most often classified, and Supp. Fig. 9 shows that distinct expression

patterns for the selected genes are visible within each cell type.

PERSIST is an unsupervised selection algorithm by default, but we can also adapt it to cell type classi-

fication by using cell type labels as the prediction target. This supervised version of our approach, termed

PERSIST-Classification, matches or exceeds the performance of the other supervised approaches. For exam-

ple, it reaches 81% accuracy in the SSv4 dataset and 82% accuracy in the 10X dataset using panels with 64

genes—a significant improvement over the unsupervised version. This illustrates the flexibility of our deep

learning-based selection approach, and that PERSIST can be adapted to specific experimental objectives by

simply adjusting its prediction target. The peak accuracy we observe with 128 genes is 85%, so our results

also suggest that panels of these small sizes may be incapable of perfectly distinguishing fine-grained cell

types, and therefore that FISH studies may benefit from analyzing more coarse clusterings.

Prior work suggests that the highly similar terminal nodes of the classification hierarchy may not all

correspond to distinct cell types, but may instead reflect cell states or spatial gradients in gene expression [49].

We therefore divided cells into broader subclasses, which leads to greater classification accuracy because the

groupings are more distinct and, trivially, there are fewer of them. For the SSv4 dataset, if we classify cells

into 25 subclasses rather than the full 113 types, PERSIST-Classification reaches 84% accuracy using 16

genes (vs. 59% for 113 types) and 96% accuracy using 64 genes (vs. 81% for 113 types). In comparison, the

unsupervised version of PERSIST provides accuracy just 3% and 1% worse, respectively (Fig. 3E-F). The

results are similar but slightly less accurate when we classify into 50 subclasses. With a reduced number

of cell type subclasses, Seurat, Cell Ranger and GeneBasis are still not competitive with PERSIST, and

PERSIST-Classification remains on par with the supervised procedures.

Although PERSIST does not match PERSIST-Classification in terms of classification accuracy, it is
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Figure 3: Evaluating gene panels based on their ability to classify cell types. The selected genes are used
to classify scRNA-seq cell types, and PERSIST achieves strong performance despite not using cell type labels during
the selection process. PERSIST-Classification, a version modified to distinguish cell types, matches the best existing
supervised approaches. A, Cell type classification accuracy for gene panels selected by unsupervised methods with
the SSv4 dataset (higher is better). B, Accuracy for gene panels selected by supervised methods with the SSv4
dataset. C, Accuracy for unsupervised methods with the 10X dataset. D, Accuracy for supervised methods with
the 10X dataset. E, Accuracy for cell subtypes obtained by merging the SSv4 dataset’s transcriptomic hierarchy, for
panels of 16 genes. F, Accuracy with merged SSv4 cell subtypes for panels of 64 genes. All error bars represent 95%
confidence intervals from training with five bootstrapped datasets, and E-F show results from the five runs.

notable that PERSIST remains competitive despite not having access to cell type labels. This indicates

that PERSIST successfully captures cell type information in an unsupervised manner. We attribute the

strong cell type classification performance to our deep learning-based selection mechanism, which identifies

non-redundant genes that help reconstruct the full expression profile, and to our use of gene expression

binarization. In an ablation study, we also find that PERSIST’s hurdle loss function is an important design
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Figure 4: Using PERSIST to predict electrophysiological properties. PERSIST is adapted to this specific
experimental goal by using electrophsyiological characteristics as its prediction target. The resulting version of our
approach, PERSIST-Ephys, yields gene panels can predict cells’ electrophysiological properties more accurately than
other methods. A, Explained variance in the vector of electrophysiological properties for gene panels selected by
each method. Error bars represent 95% confidence intervals determined by training with five bootstrapped datasets
B, Low-dimensional embedding for the PERSIST-Ephys panel containing 64 genes, colorized according to the cells’
electrophysiological properties (using the first principal component); the cells are effectively clustered according to
their properties, with similar cells appearing nearby in the embedding space.

choice, because it leads to better cell type classification accuracy than training with mean squared error loss

(Supp. Fig. 2). These results are promising because a consensus definition of cell types, and their continuous

versus discrete nature, are far from settled [15, 46, 50]. Moreover, reference label information is currently

available for only a handful of mouse and human tissues, and PERSIST can be used in an unsupervised

manner in settings that lack established cell type hierarchies.

PERSIST can be adapted to predict electrophysiological properties

As a further demonstration of our method’s flexibility, we developed a specialized variant of PERSIST to

identify marker genes that predict each cell’s electrophysiological properties. For this purpose, we used a

multi-modal Patch-seq dataset [14, 51] containing transcriptomic and electrophysiological information from

3,411 GABAergic neurons across 53 cell types in the mouse visual cortex. Specifically, the transcriptomic

profile consists of the scRNA-seq counts for 1,252 curated genes, and the electrophysiological profile consists

of a set of 44 sparse principal components (sPCs) summarizing different portions of the measurement protocol,

as well as 24 biologically relevant features [51].

To select gene panels using the Patch-seq dataset, we used baseline methods that require only unlabeled

expression data (Seurat, Cell Ranger and GeneBasis) because the dataset lacks cell type annotations. For

PERSIST, we first ran it in an unsupervised manner by selecting genes that can optimally reconstruct

the full expression profile. Next, we also ran PERSIST in a supervised manner by using the vector of

electrophysiological features as the prediction target, yielding a variant of our approach that we refer to

as PERSIST-Ephys. We then investigated how well each gene panel represents a cell’s electrophysiological

profile.

As an evaluation metric, we attempted to predict the electrophysiological features of each neuron using the

expression levels of the genes in each panel. Similar to previous experiments, we binarized gene expression

levels to simulate applicability in a subsequent FISH study. We find that PERSIST-Ephys achieves the

highest predictive accuracy, reaching a higher portion of explained variance with panels of all sizes (Fig. 4A).

The unsupervised version of PERSIST is the second most accurate method, achieving comparable explained
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variance for larger panels, and Cell Ranger performs similarly in this case.

The strong performance of PERSIST-Ephys is primarily due to it being tailored to electrophysiological

characterization. PERSIST-Ephys is designed to address this specific predictive task, but the other methods

rely on selection criteria that are not explicitly related to electrophysiology. As a result, these methods

picked distinct genes (Supp Fig. 12) and PERSIST-Ephys is roughly as accurate with a panel of 8 genes as

the other methods are with 64 genes. None of the gene panels we tested exceed 35% explained variance, but

notably, we find that even the full set of 1,252 genes does not exceed this level of accuracy; this suggests

that the unexplained variance represents noise in the experimental results or factors that are not captured

by gene expression.

As an exploratory analysis, we also examined a low-dimensional embedding of the PERSIST-Ephys gene

panel to understand the relationship between cells that are nearby in expression space. Our plot displays

individual cells using the first two principal components of the panel containing 64 genes (Fig. 4B). To assess

whether nearby cells have similar electrophysiological profiles, we colorized the cells by a scalar summary

of the profile – the first principal component of the electrophysiological feature vector. The resulting plot

reveals naturally occurring clusters of similar cells, which may be expected because PERSIST-Ephys selects

genes whose expression is maximally indicative of the neuron’s electrophysiological profile.

Binarization enables gene expression prediction with MERFISH data

PERSIST can identify informative marker genes for a variety of experimental objectives, but our previous

evaluations used only scRNA-seq data due to the challenge of providing an unbiased comparison via FISH

studies conducted with multiple panels. Nevertheless, such cross-modal experiments represent an essential

use case, which is applying predictive models trained using scRNA-seq to data collected from spatial tran-

scriptomics studies. Here, it is important to verify that binarizing expression levels enables such models to

transfer successfully between technologies, which is difficult to ascertain because accompanying annotations

are seldom available for FISH datasets (e.g., ground truth cell type labels, or expression levels of genes that

are not part of the FISH panel). To investigate this question, we therefore devised a multi-step in silico

experiment using the SSv4 scRNA-seq dataset in combination with data from a recent, large-scale MERFISH

study [9].

In the MERFISH dataset, 258 genes were probed across 280,327 cells from the mouse primary motor

cortex (MOp). Because ground truth cell type labels are not available, we instead chose to evaluate per-

formance in the expressed gene prediction task (similar to Fig. 2D-F), where our goal is to predict which

individual genes are detected in each cell. To do so, we first used the V1 and ALM SSv4 scRNA-seq datasets

to select panels of 8-32 markers from within the Zhang et al. [9] MERFISH gene set. Then, an imputation

model was trained—using only the scRNA-seq data—to predict which of the remaining genes are detected.

Finally, using the resulting model, we predicted the set of detected genes in the MERFISH dataset (Fig. 5A).

As in our previous experiments, we binarized both the scRNA-seq and MERFISH gene expression levels so

the model trained with scRNA-seq data could transfer despite the measurement differences.

Encouragingly, we find that the scRNA-seq-trained models can predict expressed genes in the MERFISH

data with high accuracy (Fig. 5B-C). The prediction accuracy tends to improve with larger panels; for

example, PERSIST reached 86.5% with a 32-gene panel when trained on the V1 dataset. PERSIST in most

cases achieves the highest accuracy, with GeneBasis being the most competitive baseline method. We also

find that the prediction accuracy with the V1 cells is slightly higher than with the ALM cells. PERSIST

not only outperforms other unsupervised methods that can operate with only unlabeled scRNA-seq data
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3. Evaluate imputation accuracy
(MERFISH data)

Selected
gene panel

Expression
imputation

G
en

es
 p

ro
fil

ed
 b

y
M

E
R

FI
SH

Gene panel Remaining genes

B C

A

Figure 5: Predicting MERFISH gene expression after training with scRNA-seq data. To test whether
models trained on scRNA-seq can transfer to FISH despite the domain shift between technologies, we design an
experiment combining SSv4 and MERFISH. We find that binarizing gene expression levels enables accurate predictions
in MERFISH cells, and that PERSIST outperforms prior gene selection approaches. A, In this multi-step experiment,
a gene panel is first selected using scRNA-seq restricted to the genes profiled in the MERFISH data. Next, an
imputation model is trained to predict whether the remaining genes are expressed, again using scRNA-seq data.
Finally, the imputation model’s accuracy is tested on MERFISH data, using the small gene panel to predict the
remaining genes. The imputation model’s high accuracy demonstrates that binarization enables successful transfer
from scRNA-seq to FISH. B, Expressed gene prediction accuracy for panels selected by each method when using the
V1 SSv4 data. C, Expressed gene prediction accuracy for panels selected by each method when using the ALM SSv4
data. All error bars represent 95% confidence intervals determined by training with five bootstrapped datasets

(Fig. 5), but also the approaches that leverage cell type labels when performing gene selection (Supp. Fig. 10).

Crucially, the panels selected by all methods benefit from expression binarization to enable the imputation

models to transfer across technologies.

In these experiments, we carefully determined the thresholds for binarizing the MERFISH expression

counts by matching the quantile of the zero-threshold used with the scRNA-seq data. This procedure enables

us to account for the zero-inflation present in scRNA-seq datasets. If we instead binarized the MERFISH

data using a threshold value of zero, the prediction accuracy decreased for all gene panels (Supp. Fig. 10).

Finally, because we have access to cells profiled using MERFISH with all genes in this case, we are able to

determine that training the imputation model with MERFISH rather than scRNA-seq data results in an

accuracy improvement of roughly 4-6% (Supp. Fig. 10). The gap is non-negligible, but it may be due in

part to differences in the brain regions profiled in the reference dataset.

This evaluation approach does not represent a practical workflow for a real experiment, because the genes

we predict are present in the panel; however, the fact that the model transferred successfully suggests that

binarization can allow models for other predictive tasks to transfer from scRNA-seq to FISH data, including

models for cell type classification or characterizing electrophysiological properties. This represents the first
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Figure 6: Diversity in gene panels selected by each method. Using the SSv4 and 10X datasets, we find
that PERSIST and PERSIST-Classification select distinct gene panels from prior methods. Additionally, because
PERSIST is non-deterministic across trials, we examine the frequency of its gene selections across multiple trials.
A, Portion of overlapping genes between panels of 32 genes for the SSv4 cells. B, Portion of overlapping genes
between panels of 32 genes for the 10X cells. C, Frequency of gene selections within PERSIST panels containing 16
genes, aggregated across 32 independent trials.

quantitative evidence, to our knowledge, that a predictive model trained exclusively with scRNA-seq data

can be transferred successfully to a subsequent spatial transcriptomics study.

Variability in gene panel selections across algorithms

Because the gene selection algorithms tested here rely on diverse selection criteria, they produce different

gene panels given the same reference scRNA-seq data. Here, we examine the overlap in gene panels selected

by each algorithm, and we do so by calculating the proportion over overlapping genes within 32-gene panels

chosen from among the 10,000 candidates in the SSv4 and 10X datasets. Expectedly, no two methods select

the exact same gene set (Fig. 6A-B), but there is overlap among many pairs of methods. The probability of

two random 32-gene panels sharing more than one gene is just 4.6×10−3, so the overlap we observe suggests

a shared reliance on a relatively small number of informative genes. The strongest similarity is between

Seurat and Cell Ranger on the 10X dataset, at 53% overlap (17/32 genes); their overlap is lower with the

SSv4 dataset, at just 22% (7/32 genes), and their similarity is perhaps due to the fact that both methods

are based on per-gene variance levels. Another pair of similar methods is scGeneFit and GeneBasis, which

have an overlap of 41% and 47% for the SSv4 and 10X datasets, respectively.

In comparison, we find that PERSIST has relatively low overlap with other methods. The highest overlap
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for PERSIST is with PERSIST-Classification and MutInfo: PERSIST shares 19% of genes with PERSIST-

Classification on the 10X dataset and 16% on the SSv4 dataset, and with MutInfo it shares 16% on the 10X

dataset and 19% on the SSv4 dataset. Meanwhile, PERSIST-Classification and MutInfo achieve higher levels

of overlap, at 31% for the SSv4 dataset and 38% for the 10X dataset; similarly, PERSIST-Classification and

SMaSH have 19% overlap on the SSv4 dataset and 28% overlap on the 10X dataset. For these three supervised

methods, their similarity is likely due to their selection criteria that all aim to distinguish cell types. For

panels containing either 16 or 128 genes, PERSIST’s selections remain distinct from other methods, and

they are still somewhat similar to those from PERSIST-Classification and MutInfo (Supp. Fig. 11). Overall,

these results reflect that the various gene selection methods select distinct gene panels, and that PERSIST

and PERSIST-Classification’s improved performance across various metrics is enabled by the selection of

substantially different panels.

Finally, we examined a unique characteristic of PERSIST: the stochasticity of its selections across runs.

Because we implemented a deep learning model that is trained using stochastic gradient descent from

a random initialization, the results from PERSIST and its supervised variants (PERSIST-Classification,

PERSIST-Ephys) can differ across trials. This variability is somewhat unusual for a gene selection method,

but this property is shared by other state-of-the-art feature selection techniques [20] and by the UMAP

embedding method [52]. To examine the variability in the individual genes selected and the performance of

the selected gene panels, we ran 32 independent trials of PERSIST with the SSv4 dataset.

For panels containing 16 genes, four genes were selected in at least half of the trials, with a single gene,

Bmp3, being selected in 30 of 32 trials (Fig. 6C). The remaining ones were selected less consistently; the

sixteenth most frequently selected gene was chosen in just over a third of trials, and 38 genes were selected

just once. Reassuringly, differences in the composition between the gene panels had little impact on cell type

classification accuracy or expression profile reconstruction (Supp. Fig. 13). The stability in performance

despite changes in the gene panel composition is not surprising, because many genes have highly correlated

expression patterns and thus can be readily substituted. In practice, we suggest running a small number of

trials and selecting the best trial using the validation loss achieved by the PERSIST deep learning model.

Discussion

Identifying an effective gene panel is a pre-requisite for successful spatial transcriptomics studies. This

work introduces PERSIST, which uses deep learning to select genes that are highly predictive either for

the genome-wide expression profile or for a specific experimental objective. Our experiments with several

datasets show that PERSIST selects more informative targets than existing algorithms, generally providing

better predictive accuracy and/or enabling the use of fewer genes. In addition to our deep learning-based

selection mechanism, a key contribution of this work is PERSIST’s robust inference ability, which is achieved

by using binarized gene expression levels: this helps mitigate the complex relationship between scRNA-seq

and FISH measurements, and we find that it allows models to transfer to FISH studies despite the challenging

domain shift. We also note that while our explicit demonstration is based on a recent MERFISH dataset, the

problems addressed here are common to a broader class of spatial transcriptomic methods [8, 10]. Therefore,

our method is likely to improve target gene selection in a broader class of studies where genes are selected

using surrogate data from a different technology.

From a computational perspective, PERSIST benefits from several aspects of deep learning that make

it increasingly popular for data analysis in single-cell genomics [28, 29, 53]. These include the simplicity
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of gradient-based optimization, the scalability to large datasets enabled by minibatched training, and the

flexibility of the prediction target and loss function. We profiled PERSIST’s computational cost (Supp.

Fig. 14), and we found that both the running time and memory usage remain manageable when using

10,000 candidate genes and selecting a relatively large panel of 256 genes. When using even larger datasets,

PERSIST’s computational cost can be managed by maintaining a smaller minibatch size, or by performing

an initial filtering step to reduce the number of candidate genes. Finally, PERSIST does not require extensive

tuning of parameters, and we used identical network architectures across all experiments (Supp. Table 1);

however, future improvements may involve automatically setting all parameters to ensure ease-of-use for

both computational and biological users.

PERSIST is by default an unsupervised method that aims to reconstruct the genome-wide expression

profile. Running it in an unsupervised fashion yields genes that are informative in general, but some informa-

tion is necessarily sacrificed, because reconstructing the full expression profile using a small number of genes

remains challenging. One interesting finding of our study is that while stochasticity in gene expression and

detection limits the variance explained by the cell identity according to the reference clustering, relatively

small PERSIST panels can explain more variance than the discrete cell type identity. This may suggest im-

perfections in the reference clustering, or biologically meaningful variability that lies in a continuum which

is not captured by a discrete cell type label [54].

PERSIST can be tailored to arbitrary experimental goals by simply modifying the prediction target,

thus enabling FISH studies to use gene expression as a bridge to other data modalities. Because alternative

prediction tasks can be simpler than reconstructing many thousands of genes, using PERSIST in this fashion

can enable the use of small gene panels that sacrifice minimal accuracy. Our experiments show examples with

transcriptomic cell type classification and electrophysiological profile prediction, but other focused prediction

tasks may include identifying disease properties or bridging with epigenetic information such as chromatin

accessibility and methylation. Overall, PERSIST represents a powerful general-purpose solution for marker

gene selection, and our design choices make it an effective tool for selecting small gene panels that can be

used for FISH studies, and for spatial transcriptomics studies more generally.
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Methods

Predictive and robust gene selection for spatial transcriptomics (PERSIST)

PERSIST aims to capture as much information as possible in a small gene panel, and it does so by selecting

genes that can predict the genome-wide scRNA-seq expression profile. It relies on a deep learning model

that reconstructs all the genes while using only a subset of the inputs, similar to an autoencoder but with

a learned sparsity pattern. Deep learning-based reconstruction models have become popular for extracting

low-dimensional embeddings in single-cell genomics [28, 29, 53], but PERSIST is designed to select a precise

number of genes rather than fitting a general non-linear embedding. During the model’s training, the input

genes are selected by a custom network layer that enables training with stochastic gradient descent – a binary

mask layer, which we describe below.

Deep learning is well suited to datasets with very large cell counts, and PERSIST’s memory usage can be

managed via the minibatch size used during training. In cases where memory usage is an issue, for example

because the number of gene candidates and the intended panel size are both large, PERSIST can perform

an initial filtering step using the binary gates layer, an alternative selection layer that we describe below.

In addition to reducing memory usage, we find that such a two-stage approach provides minor performance

improvements (Supp. Fig. 2), and we use this approach for the majority of our experiments.

Hurdle loss function

Gene dropouts represent a significant source of noise in scRNA-seq data, and because PERSIST relies on

scRNA-seq as a surrogate for FISH data, we must model gene dropouts appropriately when reconstructing

the genome-wide expression profile. Recent computational tools for scRNA-seq data have shifted away from

using mean squared error loss [53, 55] and towards zero-inflated models to account for this key source of

noise [28, 29, 31, 56, 57]. In line with these works, we propose a loss function that can be applied to zero-

inflated and continuous-valued measurements, which arise from common normalization approaches like as

counts per million (CPM) normalization [58]. A zero-inflated negative binomial (ZINB) loss can instead be

used if CPM normalization is not applied, but variability in the total UMI counts per cell can make integer

transcript counts difficult to predict.

When reconstructing the genome-wide scRNA-seq expression profile, PERSIST trains a model that out-

puts predictions for each target gene i = 1, . . . , d. The predictions consist of a point prediction ŷi as well

as a probability p̂i of the gene having non-zero expression. Given a fixed weighting parameter γ > 0, the

hurdle loss ℓ
(i)
γ for gene i with observed expression level yi is defined as

ℓ(i)γ

(
p̂i, ŷi, yi

)
=

 1
γ (ŷi − yi)

2 − log p̂i yi > 0

− log(1− p̂i) yi = 0.
(1)

The loss has a cross entropy component for predicting whether the gene is expressed or not, as well as

a mean squared error component that is incorporated only when the gene is expressed (yi > 0). Because

we use log-normalized gene counts yi, the loss ℓ
(i)
γ can be understood as the negative log-likelihood for a

log-normal hurdle distribution [30, 59], where we implicitly simplify the log-normal component by assuming

fixed standard deviations for each gene, and the weighting parameter γ > 0 controls the trade-off between

predicting whether a gene is expressed and predicting its expression level. The total loss ℓγ for the full

expression profile is the following, where ŷ, p̂ and y represent vectors of predictions and expression levels for
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Supp. Figure 1: Feature selection layers. A, The binary mask layer multiplies its input with a learned,
k-hot binary mask whose entries are the element-wise maximum of samples from k Concrete random variables.
B, The binary gates layer multiplies the input with a learned binary mask whose entries are samples from d separate
BinConcrete random variables.

all genes:

ℓγ
(
p̂, ŷ,y

)
=

m∑
i=1

ℓ(i)γ

(
p̂i, ŷi, yi

)
. (2)

In practice, we fix γ = 10 so the mean squared error and cross entropy components of the loss have similar

scale, but this parameter can also be tuned.

Feature selection layers

We introduce the binary mask layer as a tool to select a user-specified number of inputs within a deep learning

model. Our approach is based on the Concrete distribution [34] (also known as the Gumbel-Softmax [35]),

which lets us optimize discrete probability distributions using stochastic gradient descent. To select exactly

k genes from d candidates, we multiply the model input by a binary mask generated using the element-

wise maximum of k Concrete random variables, which are denoted as Ai ∼ Concrete(αi, τ) for i = 1, . . . , k

(Supp. Fig. 1A). Each Concrete distribution is parameterized by unnormalized probabilities αi ∈ Rd
+ and a

temperature value τ > 0, and each one converges to a multinomial distribution with probabilities given by
αi

1⊤αi
as τ → 0 [34].

The binary mask layer’s input is a vector of binarized gene expression levels x ∈ Rd, and its output is

given by the element-wise product a ⊙ x, where a = maxi ai ∈ Rd is the element-wise max of samples ai

from each Concrete random variable Ai ∈ Rd. The layer is followed by a neural network fθ that predicts the

label y given a⊙ x, and we train the model by optimizing the following objective:

min
θ,α

Ex,y,a

[
ℓγ
(
fθ(a⊙ x),y

)]
. (3)
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To select a specific number of genes, we need only ensure that the temperature parameter τ is sufficiently

low at the end of training. In practice, we find that each Concrete random variable concentrates its probability

mass on a single input, yielding a set of exactly k selected genes. The binary mask layer is similar to the

CAE approach [20], but we find that our parameterization, which uses element-wise multiplication rather

than a matrix multiplication, provides slightly better results (Supp. Fig. 2).

We also introduce the binary gates layer as a memory-efficient alternative to the binary mask layer.

Similar to previous work [36], we learn a Binary Concrete random variable for each input feature, denoted as

Bi ∼ BinConcrete(βi, τ), and we use these “gate” variables to perform element-wise multiplication with the

corresponding genes (Supp. Fig. 1B). In the Binary Concrete distribution, each parameter βi > 0 represents

an unnormalized probability, τ > 0 represents a temperature value, and each random variable Bi converges

to a Bernoulli random variable with probability parameter βi

1+βi
as τ → 0 [34].

The binary gates layer output is given by the element-wise product b ⊙ x, where x is the input and

b = [b1, . . . , bd] ∈ Rd is a vector of samples bi from the random variables Bi ∼ BinConcrete(βi, τ). The layer

is followed by a neural network fθ that predicts the label y given b⊙x. Genes are eliminated when we learn

low βi values, and we encourage this by augmenting the loss function with a penalty on the BinConcrete

samples:

min
θ,β

Ex,y,b

[
ℓγ
(
fθ(b⊙ x),y

)
+ λ1⊤b

]
. (4)

The regularization term penalizes the number of selected genes, and the hyperparameter λ > 0 controls

the trade-off between prediction accuracy and the number of genes used. Determining a specific number

of genes requires choosing the correct λ value, and our implementation finds this value automatically by

iteratively adjusting λ using the secant algorithm [60]. Briefly, given a desired number of candidate genes

d′ < d, our method iteratively updates the λ value based on the number of genes yielded by previous λ values.

In our experiments with the SSv4 and 10X datasets, we initially narrow the set of candidates to roughly 500

genes. For the experiments involving Patch-seq and MERFISH data, which involve fewer candidate genes,

we directly select gene panels using the binary mask layer.

Training

When training our deep learning models, we perform optimization using Adam with the standard learning

rate (10−3) [61]. Over the course of training, the temperature parameter τ is geometrically annealed from

a high value to a low value to encourage discrete feature selection, similar to previous work [20]. For both

input layers, we use an initial temperature τ = 10.0 and a final temperature of τ = 0.01. After training, the

parameters for the Concrete random variables are naturally learned such that the same genes are selected

at every forward pass. That is, most Binary Concrete variables are deterministically equal to 0 or 1, and

the Concrete variables are one-hot at the same entry in every sample. As a selection criterion for the binary

gates layer, we retain all genes i such that βi

1+βi
> 1

2 . For the binary mask layer, we select k genes using the

maximum index of each vector of unnormalized probabilities αi for i = 1, . . . , k.

The binary mask layer is necessary for selecting a specific number of genes, but the binary gates layer is

preferable for eliminating a large number of genes. The binary mask layer has k × d learnable parameters

when selecting k genes, whereas the binary gates layer has only d. The binary mask layer can therefore be

difficult to apply directly in scenarios where d and k are both large, and the binary gates layer is useful for

our datasets with d = 10,000 total candidate genes (SSv4 and 10X). In practice, the outcome from running
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Supp. Figure 2: PERSIST ablations. PERSIST performs better than the CAE on expression profile reconstruc-
tion tasks and cell type classification. The performance gap narrows when the CAE uses binarized expression counts,
but the difference in cell type classification accuracy remains large. PERSIST also performs slightly better when
initially narrowing the set of candidate genes, rather than proceeding directly to training with the binary mask layer
(PERSIST Direct). A, Explained variance for the SSv4 dataset. B, Expressed gene prediction accuracy for the SSv4
dataset. C, Cell type classification accuracy for the SSv4 dataset.

PERSIST may differ across runs when the random seed is not fixed. For our experiments, we run five trials

and use the gene panel that achieves the best validation loss.

Ablation experiments

We tested several variants of PERSIST to validate our design choices. First, we compared PERSIST to a

version that skips the initial step of narrowing the set of candidate genes and proceeds directly to training

with the binary mask layer. The results are slightly worse (Supp. Fig. 2), which we attribute to the beneficial

effect of iteratively reducing the number of genes. Next, we compared PERSIST to the CAE approach [20],

which is closely related but differs in its choice of loss function (mean squared error) and feature selection

layer. We find that the CAE underperforms PERSIST across our three evaluation metrics. Most noticeably,

the CAE underperforms at cell type classification (Supp. Fig. 2C), which is consistent with recent work

that highlights the importance of modeling gene dropouts [28, 29]. Finally, we observe that binarizing gene

expression counts improves the CAE’s performance on our metrics, but a small gap remains for expressed gene

prediction, that the binarized CAE still does not match PERSIST’s performance for cell type classification.

Additional results

Here, we provide additional results for evaluating PERSIST. First, we present results for the expression profile

reconstruction metrics using the supervised methods, scGeneFit, SMaSH and MutInfo, which leverage cell
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Supp. Figure 3: Expression profile reconstruction with supervised selection methods. We compare
PERSIST with the two supervised methods that leverage cell type labels, scGeneFit and MutInfo, on the tasks of
predicting log-normalized expression counts (A, C) and whether each gene is expressed (B, D). A, Explained variance
for gene panels with the SSv4 dataset. B, Expressed gene prediction accuracy for the SSv4 dataset. C, Explained
variance for gene panels with the 10X dataset. D, Expressed gene prediction accuracy for the 10X dataset.

type labels when selecting genes. Supp. Fig. 3 shows their explained variance and expressed gene prediction

accuracy for the SSv4 and 10X datasets. MutInfo is competitive for small gene panels, but none of the three

methods matches PERSIST’s performance.

Next, we examine whether introducing binarization into the baseline methods enables better performance

on our evaluation metrics, which simulate the use of gene panels in a FISH study. Supp. Fig. 4 shows that

binarization makes scGeneFit, SMaSH and GeneBasis more competitive with PERSIST, and that they in

some cases even match PERSIST’s performance. In contrast, binarization makes Seurat and Cell Ranger

perform worse, which is unsurprising because variance and dispersion values are significantly less informative

for binary data. Overall, even when all the gene selection methods used binarized data, PERSIST is either

the best or tied for best on each metric, suggesting better transferability to FISH studies.

To give a more granular view of PERSIST’s expressed gene prediction accuracy, we provide additional

plots with gene-level accuracy metrics. As in the main text, we calculate accuracy according to how often

the prediction agrees with each gene’s detection in the data, but we now report results for each individual

gene in the SSv4 dataset. Supp. Fig. 5 shows results for the PERSIST panels containing 32 and 128 genes,

with the per-gene accuracy plotted against the portion of cells in which the gene is expressed, and against

the average expression level (after log-CPM normalization). The results show that the most difficult genes

to predict are those which are neither ubiquitously expressed or not expressed, and which have moderate

mean expression. There is a visible improvement when we use a panel of 128 rather than 32 genes, but even

then, the prediction problem remains difficult due to stochasticity in gene expression and detection.

In the main text, our expressed gene prediction results focus on genes that are expressed in 20-80% of
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Supp. Figure 4: Binarizing gene expression for existing methods. Binarizing gene expression levels before
selecting the gene panel enable certain baselines to perform better in our metrics. GeneBasis, SMaSH and scGeneFit
become more competitive with PERSIST and PERSIST-Classification, while Seurat and Cell Ranger perform worse.
A, Explained variance for gene panels with the SSv4 dataset. B, Expressed gene prediction accuracy for the SSv4
dataset. C, Cell type classification accuracy for the SSv4 dataset. D, Explained variance for the 10X dataset.
E, Expressed gene prediction for the 10X dataset. F, Cell type classification accuracy for the 10X dataset.

cells, ignoring the remaining genes whose expression is easiest to predict. The results with different ranges of

10-90% and 0-100% are shown in Supp. Fig. 6. The trend between methods does not depend on the cutoff,

but including the easier genes increases the overall accuracy while shrinking the gap between methods.

Regarding cell type classification, the main text reports accuracy results averaged across all cell types,

so we now provide additional results that give a more granular view. In Supp. Fig. 7, we present two results

for the PERSIST panel containing 32 genes from the SSv4 dataset: a confusion matrix showing how cells of

each type are classified, and the recall (true positive rate) shown for each cell type. The results show that
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Supp. Figure 5: PERSIST expressed gene prediction. The accuracy when predicting each gene’s expression
is plotted against the gene’s characteristics. Genes that are either frequently expressed or infrequently expressed are
easiest to predict (A, C), and those with moderate mean expression are most difficult to predict (B, D). A, Prediction
accuracy versus the percentage of cells in which the gene is expressed, for the PERSIST panel containing 32 genes.
Dotted lines indicate the accuracy achieved by trivially predicting that each gene is either always expressed or
never expressed. B, Prediction accuracy versus mean expression level, for the 32-gene PERSIST panel. C, Prediction
accuracy versus the percentage of cells in which the gene is expressed for the 128-gene PERSIST panel. D, Prediction
accuracy versus mean expression level for the 128-gene PERSIST panel.

while some cell types are mostly correctly classified, some have relatively low recall, reflecting the imperfect

overall accuracy (63%). In Supp. Fig. 8, we show the same results but for the PERSIST-Classification panel

containing 32 genes. The results are visibly improved, reflecting the higher overall accuracy (74%), but

certain cell types remain difficult to classify. This provides further motivation for designing FISH studies

that focus on coarse-grained cell types, as we described in the main text.

Next, as an intuitive visualization of how PERSIST can distinguish cell types using only binarized

expression levels, we plot the frequency of each gene being expressed within each cell type. Supp. Fig. 9

displays this expression matrix for the full set of transcriptomic cell types in the SSv4 dataset, as well

as for 50 and 25 subclasses, using the PERSIST and PERSIST-Classification panels containing 16 genes.

The results show that each cell type has a unique expression pattern, enabling us to distinguish cell types

using a surprisingly small number of genes. Although all configurations of gene expression are technically

possible, we find that many genes are expressed nearly all of the time or none of the time within each cell

type. For example, we find that with all 113 transcriptomic cell types, 67% of the entries are expressed

either less than 20% or more than 80% of the time (Supp. Fig. 9A); this figure is even higher at 74% for

PERSIST-Classification (Supp. Fig. 9D).

For the MERFISH gene imputation experiments, we provide several additional results in Supp. Fig. 10.

First, Supp. Figs. 10A-B show the imputation accuracy for the supervised methods, scGeneFit, SMaSH and

MutInfo. We find that when using the SSv4 V1 scRNA-seq data, PERSIST and MutInfo reach comparable
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Supp. Figure 6: Expressed gene prediction with different expression cutoffs. Genes that are expressed in
either all cells or no cells are easiest to predict, and focusing on these genes can inflate the expressed gene prediction
accuracy. We examine how the accuracy changes as we apply different cutoffs to focus on more difficult-to-predict
genes. A, SSv4 accuracy for genes expressed in 20-80% of cells. B, SSv4 accuracy for genes expressed in 10-90% of
cells. C, SSv4 accuracy for genes expressed in 0-100% of cells (all genes). D, SSv4 Sst accuracy for genes expressed in
20-80% of cells. E, SSv4 Sst accuracy for genes expressed in 10-90% of cells. F, SSv4 Sst accuracy for genes expressed
in 0-100% of cells. G, 10X accuracy for genes expressed in 20-80% of cells. H, 10X accuracy for genes expressed
in 10-90% of cells. I, 10X accuracy for genes expressed in 0-100% of cells (all genes). All error bars represent 95%
confidence intervals determined by bootstrapped training.

accuracy for small gene panels, but that PERSIST achieves higher accuracy with larger panels; when using

the SSv4 ALM scRNA-seq data, the various methods offer comparable accuracy for panels of all sizes.

Next, we examine the importance of using a carefully chosen threshold when binarizing the MERFISH gene

expression counts. If we naively use a threshold value of zero, the imputation accuracy is significantly lower

than if we choose a threshold to match the quantile that zero represents in the scRNA-seq data (Supp.

Fig. 10C). Finally, we use the fully observed MERFISH dataset to quantify the accuracy lost due to training

on out-of-domain scRNA-seq data. We find that training with the in-domain MERFISH data yields an

accuracy improvement of 4-6% (Supp. Fig. 10D), suggesting that our binarization step does not completely

remove the effects of the domain shift relative to the SSv4 V1 scRNA-seq data.

Regarding the diversity in gene panels between different methods, in addition to the results for panels

of 32 genes (Fig. 6), we report the gene panel overlap for panels of size 16 and 128 in Supp. Fig. 11. For

panels of these sizes, we still find that PERSIST selects genes that are largely different than those identified

by other methods. We also find several sets of similar methods that appeared in the main text: scGeneFit

and GeneBasis, Seurat and Cell Ranger, and MutInfo, SMaSH and PERSIST-Classification.

Similarly, we report gene panel overlap for the experiments with Patch-seq data (Supp. Fig. 12). The
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Supp. Figure 7: PERSIST cell type classification metrics. Additional metrics quantify the classification
accuracy on a per-type level for the 32-gene PERSIST panel. A, Confusion matrix where each row corresponds to a
cell type and values indicate the percentage of cells classified into each type. Names for each numbered cell type are
provided in the bar chart below. B, Recall (true positive rate) for each cell type.

results show that PERSIST-Ephys selects up to roughly 30% of the same genes as other methods, with Cell

Ranger being the most similar for all panel sizes. PERSIST and Cell Ranger are the next most effective
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Supp. Figure 8: PERSIST-Classification cell type classification metrics. Additional metrics quantify the
classification accuracy on a per-type level for the 32-gene PERSIST-Classification panel. A, Confusion matrix where
each row corresponds to a cell type and values indicate the percentage of cells classified into each type. Names for
each numbered cell type are provided in the bar chart below. B, Recall (true positive rate) for each cell type.

methods in this experiment after PERSIST-Ephys, but these three methods select largely distinct gene

panels.
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Supp. Figure 9: PERSIST gene expression frequency by cell type. Using the SSv4 dataset, we plot the
portion of the time that each gene in a panel is expressed within each cell type (white indicates never expressed,
dark green indicates always expressed). Examining these matrices for the PERSIST and PERSIST-Classification
panels containing 16 genes, using both the full set of transcriptomic cell types as well as small numbers of subclasses,
we can identify distinct expression patterns within each cell type. A, Expression matrix for PERSIST gene panel
with all cell types. B, Expression matrix for PERSIST gene panel with 50 subclasses. C, Expression matrix for
PERSIST gene panel with 25 subclasses. D, Expression matrix for PERSIST-Classification gene panel with all cell
types. E, Expression matrix for PERSIST-Classification gene panel with 50 subclasses. F, Expression matrix for
PERSIST-Classification gene panel with 25 subclasses.

Finally, we examine to what extent the variability in PERSIST’s selections across trials impacts the per-

formance in our evaluation metrics (Supp. Fig. 13). Using five independent trials with the SSv4 dataset, we

examine the mean performance across trials, the gap between the minimum and maximum performance, and

the performance from the single trial chosen according to its validation loss (calculated using the PERSIST
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Supp. Figure 10: Additional MERFISH imputation results. Here, we report results for the supervised gene
selection methods, investigate the importance of the thresholding procedure for MERFISH expression counts, and
examine the accuracy lost due to domain shift between the scRNA-seq and MERFISH datasets. A, Imputation
accuracy for panels selected by each method when using the SSv4 V1 scRNA-seq data. PERSIST narrowly outper-
forms the supervised baselines, except for MutInfo with small panel sizes. B, Imputation accuracy for panels selected
by each method when using the SSv4 ALM scRNA-seq data. The various methods achieve similar performance.
C, Imputation accuracy when using a zero threshold for MERFISH expression counts, versus when using a threshold
that matches the scRNA-seq quantile. Matching the threshold significantly improves the accuracy for all methods
across all panel sizes. D, Comparing imputation accuracy when selecting genes using V1 cells but training on V1
scRNA-seq versus MOp MERFISH data. Training on in-domain MERFISH data, which is free of domain shift but
inaccessible in practice, reveals an accuracy loss of 4-6% due to training on scRNA-seq.

reconstruction model’s hurdle loss). We find that the variability in performance is relatively small, particu-

larly for the explained variance results (Supp. Fig. 13A). Choosing a single trial based on its validation loss

tends to result in performance above the mean for smaller panels (≤16 genes), but with larger panels it can

be slightly less effective than choosing a single trial at random. These results suggest that the significant
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Supp. Figure 11: Diversity in gene panels of different sizes. Using the SSv4 and 10X dataset, we examine the
overlap between panels containing 16 and 128 genes. The genes identified by PERSIST for these panel sizes remain
distinct from those selected by existing methods. A, Portion of overlapping genes between panels of 16 genes for
the SSv4 dataset. B, Portion of overlapping genes between panels of 128 genes for the SSv4 dataset. C, Portion of
overlapping genes between panels of 16 genes for the 10X dataset. D, Portion of overlapping genes between panels
of 128 genes for the 10X dataset.

redundancy in genome-wide expression profiles enables the selection of diverse panels with nearly equivalent

information content.

Memory and running time

To benchmark PERSIST’s computational cost, we ran it across a variety of parameter settings and measured

the running time and GPU memory usage. For simplicity, we used the SSv4 training set with 17,728 cells,

we fixed the minibatch size to 128, and we selected panels by training directly with the binary mask layer for

500 epochs. Our models were all trained on a single NVIDIA GeForce RTX 2080 Ti. Supp. Fig. 14 shows

the results from varying two key parameters related to the dataset size. First, after fixing the panel size to

32, we varied the number of candidate genes from 2,000 to 10,000. The results show that the memory scales

linearly, and the run-time scales sublinearly in the number of candidates. Next, after fixing the number of

candidate genes to 10,000, we varied the panel size from 32 to 256. The results show that the memory scales

linearly, and that the run-time scales roughly linearly. We did not test different numbers of cells because

this does not affect memory usage, and the run-time would simply depend on how the number of epochs is
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Supp. Figure 12: Diversity in Patch-seq gene panels. We find that for panels of all sizes, PERSIST-Ephys
selects distinct genes from the remaining methods. A, Portion of overlapping genes for panels of 8 genes. B, Portion
of overlapping genes for panels of 16 genes. C, Portion of overlapping genes for panels of 32 genes. D, Portion of
overlapping genes for panels of 64 genes.

A B

Supp. Figure 13: PERSIST performance variability across runs. PERSIST can select different panels across
multiple runs due to stochasticity in its training, but the variability in performance is relatively small. We compare
the mean performance across five trials to the minimum and maximum performance, as well as the performance from
the single trial chosen according to its validation loss. A, Explained variance across five trials for the SSv4 dataset.
B, Cell type classification accuracy across five trials for the SSv4 dataset.

tuned to each dataset size.

Across all the settings tested, PERSIST’s run-time is not prohibitive. The GPU memory usage can
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Supp. Figure 14: PERSIST run-time and memory usage. We varied two parameters that affect PERSIST’s
computational cost, the number of candidate genes (A-B) and the number of genes in the panel (C-D), and we
then measured the run-time and GPU memory usage. A, Run-time versus the number of candidate genes, with the
number of targets fixed to 32. B, Memory usage versus the number of candidate genes, with the number of targets
fixed to 32. C, Run-time versus the panel size, with the number of candidates fixed to 10,000. D, Memory usage
versus the panel size, with the number of candidates fixed to 10,000.

become high when both the number of candidates and the panel size are large (e.g., 10,000 candidates and

panel size of 256), but memory issues can be mitigated by either reducing the minibatch size or performing

an initial filtering step using the binary gates layer. Compared to other gene selection methods, certain

methods are faster than PERSIST because they do not require training a model (Seurat, Cell Ranger) or

involve a simpler model that does not perform gene selection (SMaSH), but other methods can be slower,

particularly with large datasets, because they involve expensive greedy heuristics (MutInfo, GeneBasis).

Expert knowledge and supervision

PERSIST can be used in a purely data-driven fashion, or it can be used while incorporating expert knowledge.

For example, the candidate genes can be restricted to those with known biological function or other desirable

properties, or the gene panel can be forced to include certain hand-selected genes. When such expert

knowledge is applied to the set of candidate genes, PERSIST finds the best available panel among the

current candidates and while accounting for any pre-selected genes.

For example, when working with specimens of lower RNA quality (e.g. post-mortem human samples),

it can be useful to consider only highly expressed genes that can be readily detected. Supp. Fig. 15 shows

that when PERSIST is restricted to using only genes whose maximum expression level is higher than the

median value, we achieve roughly the same performance as when choosing from among all 10,000 candidate

genes in the SSv4 dataset. In general, filtering steps that preserve a large number of gene candidates should

not prevent PERSIST from finding highly informative panels.
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Supp. Figure 15: Using PERSIST with highly expressed genes only. PERSIST can incorporate expert
knowledge, for example by considering only genes with high expression (whose maximum expression level is above
the median); this helps ensures that transcripts are visible during the FISH experiment. The results show that even
with this restriction on the gene candidates, PERSIST can identify informative gene panels and its performance is
nearly identical. A, Explained variance for gene panels of different sizes with the SSv4 dataset. B, Expressed gene
prediction accuracy with the SSv4 dataset. C, Cell type classification accuracy with the SSv4 dataset.

Rather than using PERSIST in an unsupervised manner, we can also incorporate supervision to align

the gene panel with specific experimental aims. If the spatial transcriptomics study has a specific prediction

objective, such as characterizing electrophysiological properties, and accompanying labels are available for

the reference scRNA-seq data, PERSIST can incorporate this information into the selection procedure.

Adapting PERSIST is straightforward, requiring only a change in the prediction target and loss function, as

we demonstrate with PERSIST-Classification (multiclass cross entropy loss, see Fig. 3) and PERSIST-Ephys

(mean squared error loss, see Fig. 4).

Models and hyperparameters

Each dataset is split into training, validation and test sets. The training and validation sets are used to select

gene panels and train predictive models, and the test set is used only to evaluate the performance of trained

models. Our hyperparameter choices were all made using the validation set, including for early stopping.

For PERSIST and its supervised variants, we used identical neural network architectures across all datasets,

and the only hyperparameters we adjusted are the number of training epochs and the minibatch size (Supp.

Table 1). Our model choices for the various downstream tasks are shown in Supp. Table 2, where we use

multi-layer perceptron (MLP) models for most tasks, and LightGBM models [62] for cell type classification.

Confidence intervals for the downstream tasks were determined by training models with five bootstrapped

training sets and measuring the test set performance across these models.
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Supp. Table 1: PERSIST hyperparameter choices.

Model Description

PERSIST (SSv4, 10X, Patch-seq)
MLP (2 × 128 units, ReLU activations),

mbsize 128, 500 epochs

PERSIST (SSv4 Sst)
MLP (2 × 128 units, ReLU activations),

mbsize 1024, 4,000 epochs

PERSIST (SSv4 → MERFISH)
MLP (2 × 128 units, ReLU activations),

mbsize 128, 250 epochs

PERSIST-Classification (SSv4, 10X)
MLP (2 × 128 units, ReLU activations),

mbsize 1024, 500 epochs

PERSIST-Ephys (PatchSeq)
MLP (2 × 128 units, ReLU activations),

mbsize 128, 250 epochs

Supp. Table 2: Downstream task hyperparameter choices.

Task (Dataset) Description

Cell type classification
(SSv4, 10X)

LightGBM, learning rate 0.05,
10,000 boosters (with early stopping)

Explained variance
(SSv4, SSv4 Sst, 10X)

MLP (2 × 128 units, ReLU activations),
mbsize 512, 100 epochs (with early stopping)

Expressed gene prediction
(SSv4, SSv4 Sst, 10X, SSv4 → MERFISH)

MLP (2 × 128 units, ReLU activations),
mbsize 256, 100 epochs (with early stopping)

Electrophysiological properties
(Patch-seq)

MLP (2 × 128 units, ReLU activations),
mbsize 256, 100 epochs (with early stopping)

When using PERSIST, overfitting can be avoided by using network architectures that are not too large and

performing early stopping during training. If overfitting is a significant concern, additional regularization

techniques are straightforward to incorporate, including dropout, batch norm and L1/L2 regularization.

Finally, when fitting models for the downstream predictive tasks, such as cell type classification, one can

further mitigate overfitting by using a non-neural network model with fewer learnable parameters [63].

Evaluation metrics

The variance explained by a gene panel is measured by training a neural network to predict the full expression

profile, measuring the mean squared error on the test set, and subtracting this quantity from the total

variance. We provide results on an intuitive scale by calculating explained variance as a portion of total

variance. For this metric, we used CPM normalized and logarithmized expression counts as the prediction

target. The portion of explained variance does not approach 100% for any method, but this is in large part

due to the stochasticity of gene expression and measurement; as described in the main text, the ground truth

cell type labels explain only 19% and 11% of the variance for the SSv4 and 10X datasets, respectively.

The cell type classification performance is the accuracy of a gradient-boosted decision tree (GBDT) model

trained with a multi-class cross entropy loss. The cell type with the highest classification probability is taken

as the predicted class. To evaluate performance with cell subclasses for the SSv4 dataset, we trained models

with cell types merged according to their order in the transcriptomic hierarchy (Supp. Fig. 16).

Expressed gene prediction accuracy is measured using a neural network trained to separately predict
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Supp. Figure 16: Transcriptomic hierarchy for the SSv4 V1/ALM neuronal cells. The cell types for
this dataset are defined by a transcriptomic hierarchy containing 115 total cell types [46]. To simplify the cell
type classification task, we consider merging cell types according to the transcriptomic hierarchy, yielding 50 or 25
subclasses that are more clearly defined.

whether each gene is expressed. Similar to a classifier model, the loss function is a per-gene cross entropy

loss that is then added across genes. A gene is predicted to be expressed if the network’s probability exceeds

0.5, and we calculate the accuracy by calculating how often the predictions agree with the true expression,

and averaging the results across all target genes.

Data pre-processing

Due to technical noise in scRNA-seq data, we applied CPM normalization [58] to the raw measurements

and then applied the log1p operation. These values serve as prediction targets for PERSIST, whereas the

inputs to our various models are binarized expression counts. For both the SSv4 and 10X datasets, we

restricted our analysis to the 10,000 transcripts with the highest variance. We used exon counts for the

high-resolution SSv4 dataset and the sum of intron and exon counts for the lower resolution 10X data. For

the MERFISH dataset, the only pre-processing we applied was gene expression binarization. When working

with the MERFISH data, we analyze 253 genes that appear in both the Zhang et al. [9] and SSv4 datasets

rather than the 258 genes described in the original work.

Expression quantization

We quantized gene expression levels in order to train models using scRNA-seq data that can transfer to FISH

studies. There is a complex domain shift between the two technologies, but their quantized gene expression

values should be similar if we assume that the transformation between measurements is monotonic. When

applying models trained with scRNA-seq on FISH data in practice, we recommend using a threshold matching

approach, i.e., finding the quantile that the scRNA-seq threshold represents in the scRNA-seq measurements

(we use a threshold value of zero), and then identifying the matching threshold in the FISH data. This

approach is used for the results in Fig. 5, and its utility is demonstrated in Supp. Fig. 10.

Baseline methods

For the Seurat and Cell Ranger gene selection protocols, we used the implementations available in the

Scanpy [40] package: https://github.com/theislab/scanpy. Seurat was run with raw gene expres-
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Supp. Table 3: Summary of datasets.

Species Brain region Technology Num. Genes Num Cells. Annotations Used

Mouse
Primary visual (V1),

anterior lateral motor (ALM)
SmartSeq v4

45,768 (10,000
in experiments)

22,160 neuronal,
2,701 Sst

Transcriptomic cell
types (115 total)

Human Motor cortex (M1) 10X
50,281 (10,000
in experiments)

72,629
Transcriptomic cell
types (117 total)

Mouse Primary visual (V1) Patch-seq 1,252 3,411
Electrophysiological
profiles (68 features)

Mouse Primary motor (MOp) MERFISH
258 (253

in experiments)
280,327 None

sion counts and Cell Ranger with logarithmized counts. For the scGeneFit method, we used the au-

thors’ implementation with logarithmized expression counts, and we used the default hyperparameters:

https://github.com/solevillar/scGeneFit-python. For the GeneBasis method, we used the authors’

R implementation: https://github.com/MarioniLab/geneBasisR. For the SMaSH method, we used the

authors’ Python implementation with a neural network architecture identical to PERSIST, and with fea-

ture importance scores calculated using DeepSHAP [64]: https://gitlab.com/cvejic-group/smash. Fi-

nally, for the MutInfo method, we implemented the greedy forward selection algorithm described in prior

work [42, 65] using the hyperparameter β = 1 to account for gene correlations.

For the panel of marker genes used in Fig. 3B, we used a set of genes identified in various tables of Tasic

et al. [46]. The original work listed 77 such markers, and we used the 59 that were represented in our dataset

after narrowing it to 10,000 high-variance genes.

Data availability

The datasets used in this work are summarized in Supp. Table 3, including the species, brain regions, and

annotations used for our experiments. The V1/ALM SmartSeq mouse neocortex data is available at https:

//portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq. The M1 10X data

is available at https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x. The Patch-

seq data is available at https://github.com/AllenInstitute/coupledAE-patchseq. The MOp MERFISH

data is available at https://download.brainimagelibrary.org/02/26/02265ddb0dae51de/.

Code availability

Source code for PERSIST is provided at https://github.com/iancovert/persist/, along with tutorial

notebooks and examples of data pre-processing code.
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