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Abstract

The agricultural productivity of smallholder farmers in sub-Saharan Africa
(SSA) is severely constrained by pests and pathogens, impacting economic
stability and food security. Since 2004, an epidemic of cassava brown streak
disease (CBSD) has been spreading rapidly from Uganda, with the disease
causing necrosis of the edible root tissue. Based on sparse surveillance data,
the epidemic front is currently believed to be at least as far west as central
DRC and as far south as Zambia. The DRC is the world’s highest per capita
consumer of cassava and future spread threatens production in West Africa
which includes Nigeria, the world’s largest producer of cassava. Here, we
take a unique Ugandan CBSD surveillance dataset spanning 2004 to 2017
and develop, parameterise, and validate a landscape-scale, spatiotemporal
epidemic model of CBSD at a 1 km2 resolution. While this paper focuses on
Uganda, the model is designed to be readily extended to make predictions
beyond Uganda for all 32 major cassava producing countries of SSA, laying
the foundations for a tool capable of informing strategic policy decisions at a
national and regional scale.
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1 Introduction

A principal challenge in dealing with emerging epidemics and pest infestations of
agricultural crops is to estimate the current extent of infection and the rates of
spread across heterogeneous landscapes. The challenges are particularly acute for
epidemics that impact smallholder agriculture in sub-Saharan Africa (SSA), where
many staple crops are under threat from emerging pests and pathogens. Examples
include maize lethal necrosis [1], fall armyworm [2], banana bunchy top disease [3],
wheat rusts [4, 5], cassava viruses [6], and desert locust [7].

Cassava is the second most important source of calories in SSA after maize [8]. Cas-
sava brown streak disease (CBSD) is caused by cassava brown streak ipomoviruses
(CBSIs); ssRNA Ipomoviruses of the family Potyviridae that are epidemiologically
equivalent. The disease poses one of the most significant threats to cassava pro-
duction in SSA, causing necrosis of the edible root tissue [9, 10]. The CBSIs are
spread by an insect vector, the whitefly Bemisia tabaci [11], with additional spread
by trade movement of virus-infected cuttings used for planting [12].

Following an initial report of CBSD in Uganda in 2004 [13], the disease rapidly
spread throughout Uganda [14] to surrounding countries, including Rwanda [15],
Burundi [16], western Kenya [17], lake-zone Tanzania [18], eastern DRC [19], and
Zambia [20]. The disease has more recently been reported as far west as the north-
central province of Tshopo, DRC [21]. Continued westward spread and the risk of
direct introduction via the movement of planting material poses a major threat to
food security and economic stability in Central and West African countries.

An initial step in predicting the onward spread of the pathogen is to estimate trans-
mission and dispersal parameters at landscape scales. We do this by fitting and
validating a stochastic, spatially-explicit metapopulation epidemic model of CBSD
spread in Uganda, at a 1 km2 resolution, using a unique multi-year country-wide
surveillance dataset [14] that documents the progressive spread of CBSD through-
out Uganda from a few isolated initial infected sites near Kampala. The model
takes account of the spatial distribution and connectedness of the cassava crop and
variability in the abundance of the insect vector throughout Uganda. Estimating
parameters from sparse spatiotemporal data is extremely challenging and an area of
active research. We use approximate Bayesian computation (ABC), which does not
require the explicit definition of the likelihood and is well adapted to dealing with
unobserved data [22] when inferring sequences of infection spread across a heteroge-
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neous landscape. However, a central challenge is specifying summary statistics that
capture as much information as possible about the dynamics of the system in the
simplest possible form [22–24].

Specifically, we address the following questions considering epidemic spread of CBSD:

• Can a simple epidemiological model structure capture the fundamental dy-
namics of the CBSD epidemic?

• Can transmission rates and dispersal parameters be estimated from disjoint
snapshots of annual surveillance data?

• Can the parameterised model predict the future spread of the virus in succes-
sive years within Uganda?

2 Results

2.1 Incorporating data-driven model layers

A spatially explicit, stochastic SI metapopulation epidemic model provided the
framework for the spread of infection, and by implication disease, within and between
rasterised cells in the landscape. A data-driven host landscape layer was generated
to account for the spatial heterogeneity of cassava production. The host landscape
layer was derived by converting the CassavaMap model [25] from production volume
in tonnes per km2 to the number of fields per km2 (Figure 1a).

Through an iterative process of model development (Supplementary Methods S1.1),
the model was extended to incorporate an additional epidemiologically important
data-driven spatial layer accounting for the variation in the abundance of the vector,
B. tabaci, across the Ugandan landscape (Figure 1b). The rasterised vector abun-
dance layer was generated from the B. tabaci count data collected as part of cassava
field surveys [14].
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(a) Host (b) Vector

Figure 1: Maps representing the rasterised data-driven model layers: (a) The model
host landscape, representing the number of cassava fields at a 1 km2 resolution de-
rived from CassavaMap [25]. (b) The vector abundance layer represents the relative
abundance of B. tabaci at a 5 km resolution derived from the Ugandan CBSD field
surveys [14].

2.2 Parameterising the spatiotemporal epidemic dynamics

The Ugandan surveillance data, dreal, were divided into two distinct datasets. The
training dataset, dfit

real, consisting of data from 2004 to 2010 inclusive, and validation
dataset, dval

real, consisting of the remaining data from 2011 to 2017. We applied ABC
rejection to estimate three model parameters using dfit

real: a dispersal kernel exponent,
α, a transmission rate, β, and the proportion of dispersed inoculum that remains
in the source cell, p. The posterior probability distribution for these parameters
was calculated as the number of simulations generating simulated surveillance data,
dfit

sim, sufficiently close to the real-world surveillance data, dfit
real, normalised relative

to the sampling density (Supplementary Methods S1.2) [24, 26].

In order to quantify the distance between the real-world training data, dfit
real, and

the simulated surveillance data covering the same time period, dfit
sim, we constructed

three epidemiologically-informed summary statistics (see Parameter estimation in
Methods). The three summary statistics capture different aspects of the spatiotem-
poral characteristics of the epidemic: Snat and Scen are based on calculations of the
proportion of survey points in different regions that are reported as positive each
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year. A third statistic, Sgrid, explicitly tracks the spatial expansion of the epidemic
throughout Uganda in terms of the year of first CBSD detection in each cell of a
regular grid covering the full extent of Uganda.

The statistic, Scen, is designed to capture the local bulk-up dynamics of the epidemic
in a small, densely sampled area in central Uganda surrounding Kampala, with di-
mensions: xmin = 32.20, xmax = 33.21, ymin = 0.09, ymax = 1.16 in the WGS 84
coordinate system. The statistic, Snat, covers the remaining non-overlapping spatial
extent of Uganda and captures the regional bulk up rate (Figure 2a). For conve-
nience, we refer to the combination of summary statistics, Scen, Snat and tolerances,
ϵcen, ϵnat as Sinf and ϵinf respectively.

The third statistic, Sgrid, is derived by dividing the latitude/longitude extent of
Uganda into a 5x5 grid of quadrats. For a given simulation, the statistic is scored as
the proportion of the quadrats where infected fields are detected in either the same
year as the real-world surveillance data or ±1 year either side, or in the case where
all surveys in a given quadrat were negative for CBSD, the simulation must remain
negative in all simulated surveys (Figure 2c).

The ability of the summary statistics to recover known parameter values was first
tested using synthetic data for the spread of CBSD across the Ugandan landscape.
Preliminary analyses also showed that the statistics were best used in combination,
and guided the selection of appropriate tolerances for each statistic (Supplementary
Methods S1.3)

The posterior distribution is derived from 1440 simulations that passed the fitting
criteria (i.e. tolerances applied to the three summary statistics) from a total of
233,600 fitting simulations (Figure 3). For the kernel scale parameter, α, and log of
transmission rate, ln(β), the posterior distribution covers a clear and distinct region
of highest posterior density, with a correlation between shorter dispersal distances
requiring higher transmission rates and vice versa. Within the credible ranges of α
and ln(β), the third parameter, p, governing the amount of inoculum that remains
in the source cell, lies almost exclusively below 0.8 and is concentrated around 0.12.
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(a) Scen and Snat regions (b) Scen and Snat target data

(c) Sgrid Quadrat first year of CBSD detection

Figure 2: Overview of the three summary statistics used for ABC parameter esti-
mation. Both Scen and Snat statistics were derived by calculating the proportion of
survey points in a given year that were reported as positive within a given region:
(a) represents the two non-overlapping areas of Uganda covered by Scen and Snat

and (b) summarises the values derived when applying Scen and Snat to the Ugan-
dan national survey data covering the period 2004 to 2017. The dotted black line
indicates the divide between the fitting data, dfit

real, and the validation data, dval
real.

(c) Overview of the summary statistic Sgrid highlighting the survey year, up to and
including 2010, in which a CBSD infected field was first detected in a given quadrat.
If no positive surveys were reported prior to 2010, as in the case of quadrat 10, the
quadrat is shaded green. If no surveys were carried out prior to 2010, the quadrats
have been excluded from the plot. Quadrat indices are shown in the top left corner
of each quadrat.
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(a)

(b) (c)

Figure 3: Posterior distribution of the three parameters estimated using the fitting
data from 2004 to 2010, dfit

real. The parameters are the transmission rate, β, the
kernel exponent, α, and the proportion of dispersed inoculum that remains in the
source cell, p. The posterior is composed of 1440 fitting simulations that met the
fitting criteria out of a trial of 233,600 fitting simulations. Five outliers, indicated by
black crosses, were excluded from sparsely sampled parameter space (Supplementary
Figure 7).
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2.3 Simulating the impact of a disease management pro-
gramme

The summary statistic Scen highlights a clear but temporary reduction in the pro-
portion of field surveys reporting CBSD from 2013 to 2015 in the small central area
surrounding Kampala (Figure 2b). The reduction in the intensity of the epidemic
in this region was the result of a number of projects that disseminated a total of
40 million virus-free cassava cuttings, focusing on four Ugandan districts: Luwero,
Mukono, Nakasongola, Wakiso (Figure 4a), with surveillance in each district cap-
turing the same characteristic pattern of temporary decline (Figure 4b) [27, 28].
Beyond this high level information, specific details on precise location and timing of
the different programmes that disseminated clean planting material are not avail-
able.

We implemented a process equivalent to the clean seed programmes in the model
via three discrete rounds of I → S replacement at the start of the 2013, 2014,
and 2015 growing seasons. The parameter, rclean, defines the proportion of CBSI
infected cassava fields across the four districts that should be replaced by virus-free
planting material in each of the three rounds, with the exact fields being selected
at random. A value for rclean of 0.15 was selected based on a parameter sweep to
identify the value that best fitted the observed impact of the clean seed programmes
in Scen (Supplementary Methods S1.1.4). The clear correspondence of the simulated
clean seed programme to the real-world observations, viewed through the lens of the
summary statistic, Scen, is illustrated during model validation.

2.4 Validating predictions of epidemic spread

An ensemble of 10,000 simulations were run from 2004-2010 by sampling from the
posterior parameter distribution to generate initial conditions for the validation sim-
ulations. Of these 10,000 simulations, 65 met the fitting criteria, which were then
used as initial conditions for the system state at the start of 2011. These simula-
tions were then run for the validation period of 2011-2017 and their correspondence
to the validation data, dval

real, was assessed by applying the validation criteria (i.e.
tolerances applied to the summary statistics, Sinf , during the validation period).
All 65 validation simulations passed the validation criteria, resulting in a validation
score of 100% (Figure 5).
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(a) District map (b) District statistics

Figure 4: Overview of the districts where clean seed dissemination programmes were
primarily carried out: (a) shows the location of the districts in Uganda as well as
the region covered by Scen (dotted line) and (b) summarises the proportion of field
surveys that reported CBSD in a given year from each district.

Figure 6 illustrates the spatial structure of the simulated survey data from a single
validation simulation, illustrating the strong yearly correspondence between simu-
lated and real-world surveillance from 2005 to 2017 in terms of the spatial distribu-
tion of fields reported as present/absent for CBSD and the local density of CBSD
positive surveys.

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.491768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491768
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Snat with tolerances (b) Scen with tolerances

(c) Snat without tolerances (d) Scen without tolerances

Figure 5: Time series probability distributions for the statistics (a) Snat and (b) Scen

for the subset of validation simulations that pass within the tolerances of the fitting
and validation criteria. (c) and (d) show the same statistics but without applying
any tolerances to illustrate the unconstrained behaviour of the parameterised model.
The red line indicates the target value of each statistic derived from surveillance data.
Tolerances are indicated by green arrows. The central blue band is the median ±10%
and each gradation beyond is a further ±10% from the median. The dotted black
line indicates divide between dfit

real and dval
real.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 6: Comparison of a single validation simulation that passes the fitting and val-
idation criteria with the real-world surveillance data from 2005-2017. We define the
fitting criteria as the values selected for the three tolerances for parameter estimation
using Ugandan survey data from 2004-2010: ϵfit

cen = 0.25, ϵfit
nat = 0.25, ϵfit

grid = 0.48
and the validation criteria as the comparison of the simulated surveillance data to
the Ugandan survey data covering the validation period from 2011-2017, dval

real, using
the two Sinf statistics with tolerances ϵval

inf = 0.25. Red crosses indicate an observa-
tion of CBSD at the field-level. Green crosses indicate no CBSD observed.11
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3 Discussion

It is essential that policy makers across the cassava producing countries of sub-
Saharan Africa have a clear understanding of the current state of the CBSD epidemic
and the likely future spread to assist in deciding when and how to mitigate the im-
pact of the CBSD epidemic and minimise future spread. However, surveillance data
for the ongoing CBSD epidemic are extremely sparse, especially further west of the
now endemic regions in East Africa due to complex geographic, political and finan-
cial constraints. Moreover, until now, no landscape-scale spatial epidemic models of
CBSD existed to extrapolate beyond surveillance data and provide a shared quan-
titative framework to assist policy formulation. To this end, we have presented the
development, parameterisation and validation of a landscape-scale stochastic model
of the CBSD epidemic in Uganda. The fitted model shows strong correspondence to
the validation dataset, dval

real (Figure 5 and 6). Importantly, whilst this study focusses
on Uganda, the data-driven host and vector input layers are readily extended to the
entirety of sub-Saharan Africa. Moreover, the success of the model in simulating
the impact of the localised deployment of virus-free planting material in the region
around Kampala between 2013 and 2015 provides initial evidence for the flexibility
of the model to predict and analyse the impacts of management scenarios (Figure
5).

The available data on the CBSD pathosystem are both spatially and temporally
sparse. The pathogen has two dispersal mechanisms: vector-borne spread and
human-mediated movement of infected planting material. In the absence of targeted
data collection to distinguish between the two mechanisms, we have parameterised
a single dispersal kernel that represents the net effect of both underlying forms of
dispersal across the Ugandan cassava landscape. The parameterised model proved
sufficient to characterise the spread of the pathogen in Uganda, with a marked cor-
respondence between simulated and real-world surveillance data for both the data
fitting period, dfit

real (2004-10), and validation period, dval
real (2011-2017) (Figure 6).

We recommend, however, that future work should focus on disentangling the two
dispersal mechanisms.

Due to an absence of cheap, reliable in-field diagnostics for CBSD, the survey pro-
tocol was based on above ground foliar symptoms, which likely leads to an un-
derestimation of the true prevalence at the plant level [29]. The impact of this
underestimation is mitigated by modelling spread at the field level with data be-
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ing aggregated across the 30 plant sample to a field level presence/absence record.
Moreover, we allow for false negative biases in the model structure to account for
the limitations of the protocol, such as the limited number of plants surveyed per
field and biases in cultivar selection (Supplementary Methods S1.1.1).

The model is modulated by data for the spatial distribution of the host crop and
the insect vector across the Ugandan landscape, thereby improving model fit (Sup-
plementary Methods S1.1.3). The host landscape layer provides the best available
model of cassava production at a 1 km2 resolution across sub-Saharan Africa [25],
providing a single temporal snapshot of the amount of cassava being grown. We
therefore assume a constant distribution of cassava production across Uganda over
time. We also assume that all cassava is equally susceptible to infection by CBSIs,
which is consistent with currently available evidence [30, 31]. Similarly, evidence
to date does not indicate major differences in either the yield impact or geographic
distribution of the two CBSIs [32]. Hence, for the purposes of this study, we did not
distinguish between the two.

The vector abundance layer is derived from the interpolation of values from the
Ugandan cassava field surveys that quantified B. tabaci abundance. It is important
to note that the uncertainty in vector abundance layer values is higher in regions
with lower spatiotemporal surveillance density. As with the host landscape, the
vector abundance layer provides a single atemporal snapshot, therefore assuming
the vector abundance remains stable over time and the different species in the B.
tabaci complex are equivalently capable of transmitting CBSIs. There is an ongoing
debate over the extent to which there is an interaction between the cassava epidemics
of CBSD and cassava mosaic disease (CMD) and changes in local vector abundance
or the specific abundance of species within the B. tabaci complex [33, 34]. Extensive
experimental and modelling work would be necessary to improve our understanding
of the significance of the local composition and abundance of the B. tabaci species
complex on the spread of the epidemic. Despite this complexity, it is clear that the
incorporation of the vector abundance layer improved the predictive power of the
model (Supplementary Methods S1.1).

The model presented in this study represents a significant advancement in our abil-
ity to predict the spread of the CBSD epidemic and simulate disease management
scenarios. Importantly, the model has the potential to act as an overarching quanti-
tative framework to assist in addressing a number of vital questions: how can CBSD
endemic countries minimise the impact and reduce the prevalence of CBSD; when

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.491768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491768
http://creativecommons.org/licenses/by-nc-nd/4.0/


will CBSIs spread to currently unaffected countries in West Africa; and how can
these not yet affected countries optimise surveillance for early detection and prepare
to control an outbreak.

4 Methods

We developed, parameterised and validated a stochastic metapopulation epidemic
model for CBSD in Uganda at a 1 km2 resolution via an iterative process of model
development (Supplementary Methods S1.1). The model integrates a host land-
scape of cassava production and the relative spatial abundance of the insect vector,
B. tabaci (Figure 1). We simulated the spread of CBSD across the host landscape as
a spatially explicit, SI (Susceptible-Infected) epidemic via a discrete event, contin-
uous time stochastic process using an optimised Gillespie algorithm [35, 36]. An SI
compartmental structure was selected as cassava is a vegetatively propagated crop,
so infection persists from one harvest to the next planting [37]. The model was
parameterised and validated using annual surveillance data for the spread of CBSD
in Uganda [14] (Supplementary Figure 1).

4.1 CBSD surveillance data

Surveillance of the CBSD epidemic in Uganda was carried out in annual field surveys
since the start of the epidemic in 2004 through to 2017, with the exception of
2016 [14]. In a given year, surveyors visited between 253 and 1250 fields, with
a mean of 587. The spatial distribution of surveys was not uniform. In some
years, surveys were carried out in relatively small regions, whereas in other years
surveys were more evenly distributed throughout the country. The same fields were
not revisited across multiple years. The survey protocol for a given field involved
surveyors randomly selecting 30 plants of the dominant cultivar across two diagonal
transects and recording the severity or absence of visual CBSD foliar symptoms,
along with the number of individual B. tabaci on the upper five leaves.

From the perspective of assessing disease presence at the field level, two factors
likely resulted in a degree of systematic under-reporting of disease. Firstly by sam-
pling only the dominant cultivar surveyors did not record disease on non-dominant
varieties. Secondly, a sample size of 30 plants is small relative to a total of approx-
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imately 1000 plants in a field of 0.1 ha. However, the dataset contained additional
information for a subset of fields that allowed us to estimate a false negative report-
ing rate. For data collected from 2009 to 2014, surveyors reported whether CBSD
disease symptoms were observed anywhere in the field, as opposed to just on the
dominant variety or the 30 plant sample. Based on an analysis of these records,
the average false negative under-estimation rate was estimated to be approximately
0.15 (Supplementary Methods S1.1.1).

4.2 Model structure

For the host lanscape layer, we assume an average per field cassava yield of 10
tonnes per hectare [38] and an average field size of 0.1 ha [39–41]. The CassavaMap
model used two forms of input data: human population data and regional cassava
production statistics. For each region, the total production volume was allocated in
proportion to the number of inhabitants per km2 with the exception of spatial loca-
tions with populations greater than 5000 inhabitants per km2, which were excluded
to avoid the allocation of production to urban areas. The model caps production at
1000 tonnes per km2 [25].

For the vector abundance layer, field-level vector abundance mean values were col-
lapsed across all survey years to create a single atemporal dataset. Field-level means
were then capped to a maximum credible mean value of 100. Inverse distance
weighted (IDW) interpolation was applied with a power value of 1.0, generating a
rasterised layer with a 5 km resolution. A linear relationship between B. tabaci count
and field-level infectiousness and susceptibility was selected, reaching saturation at
20 B. tabaci [42]. Therefore, raster values above 20 post-IDW were set to 20, and
the resultant raster was normalised with a maximum value of 1.

The instantaneous state of the model is defined by the number of susceptible and
infectious fields in each raster cell. The model is updated via a discrete event,
continuous time stochastic process using an optimised Gillespie algorithm [35, 36].
Spatial coupling between infected and susceptible cells is governed by an isotropic
discrete power law dispersal kernel, K, where the distance between the centroids of
two raster cells i and j is dij and α is the exponent thus:

K(dij) = Ad−α
ij (1)
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Due to an absence of data independently quantifying the two dispersal mechanisms,
the model integrates both the net effects of dispersal by B. tabaci and the movement
of planting material on the spread of infection into the single kernel.

An additional parameter, p, defines the kernel value at d = 0, where p is the pro-
portion of dispersed inoculum that remains within the source cell. A kernel cut-off
distance, Dmax = 500km, sets the maximum distance from the source cell that the
kernel covers. For the finite set of cell centroids in the range 0 ≤ d ≤ Dmax, values
are calculated based on the kernel function. A normalisation factor, A, is applied
such that the sum of kernel values for d > 0 is equal to the value of 1−p. Therefore,
the sum of the kernel is 1.

The force of infection at location i, ϕi, incorporates the kernel function, K, the
transmission rate, β, the vector abundance parameter at location j, wj, and the
current number of hosts in the infectious state, Ij, where j represents all locations
in the rasterised landscape, including i (Equation 2). The instantaneous rate of
infection at a given raster cell, i, from all locations, j, is ψi, that incorporates the
vector abundance parameter, wi, and the number of susceptible hosts, Si, at location
i (Equation 3). The effect of an infection event at location i is given by Equation 4.
We assume a linear relationship between vector abundance and its effect on infection
and susceptibility up to a field-level mean of 20 B. tabaci [42]. Exploratory analyses
on alternative model structures are outlined in Supplementary Methods S1.1.3.

Force of infection at location i: ϕi =
∑

j

βwjIjK(dij) (2)

Infection rate at location i: ψi = ϕiwiSi (3)

Effect of infection event at location i: Si → Si − 1, Ii → Ii + 1 (4)

The model implements a surveillance scheme that replicates the real-world surveil-
lance structure and intensity. For all years that surveillance was carried out in
Uganda [14], we perform one instantaneous survey at the end of the simulation
year. For example, we assume that all surveys that are carried out in 2005 are
representative of the state on 31st December 2005. For each raster cell in the model
landscape, we summed the number of fields that were surveyed in the Ugandan na-
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tional survey within the bounds of the 1 km2 cell for a given survey year. We then
randomly sampled the equivalent number of fields in each model cell and the num-
bers of sampled fields that were in each system state of susceptible and infectious
were recorded allowing for the false negative survey detection rate of 0.15 (CBSD
surveillance data in Methods).

The first reported observations of CBSD epidemic in Uganda occurred in November
2004 [13]. However, the study did not provide exact coordinate locations for the
CBSD positive fields in November 2004. The dataset includes survey data from
January 2005, reporting infected fields in the same region. Therefore, we assume
the small number of CBSD infected fields reported during the January 2005 surveys
is representative of the state of the epidemic on 1st January 2004, which we take as
the simulation start time.

4.3 Parameter estimation

In the case of the Ugandan CBSD survey data, the model is unlikely to reproduce
the spatiotemporal pattern of over 7600 records of CBSD presence/absence exactly.
Therefore, given finite computational resources, the ABC methodology involved
accepting parameter values from simulations that generated simulated survey data,
dsim, that were considered sufficiently close to the real world data, dreal. Summary
statistics, S, were used to simplify the comparison between simulated and real data,
along with the selection of a distance measure, ρ, and a maximum allowed distance
(tolerance), ϵ, between S(dsim) and S(dreal) defined:

ρ(S(dsim), S(dreal)) ≤ ϵ. (5)

The target data for Scen and Snat were derived by applying the statistics to the real-
world survey data, Scen(dreal) and Snat(dreal), resulting in the yearly proportion of
survey sites within their geographical regions (the central area surrounding Kampala
and the remaining area of Uganda not covered by the central area respectively) that
were reported as positive for CBSD symptoms (Figure 2). The Sinf distance mea-
sure, ρinf , is calculated by taking the maximum of the absolute annual differences
between simulated and real survey proportions of infected survey sites (Equation 6).
A tolerance, ϵinf , then governs the maximum allowed value of ρinf (Equation 7).
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ρinf (Sinf (dreal), Sinf (dsim)) = max
year

|Sinf (dyear
real ) − Sinf (dyear

sim )| (6)

ρinf (Sinf (dreal), Sinf (dsim)) ≤ ϵinf (7)

The statistic Sgrid applied to the real Ugandan survey data, dreal, has a perfect
score of 1 (Equation 8). The distance measure, ρgrid is calculated by subtracting the
statistic as applied to simulated data, dsim, from 1 (Equation 9) and the tolerance
governs the maximum allowed value of the distance measure (Equation 10). A
deviation of ±1 year for a given quadrat in the year in which CBSD was first
detected in the Ugandan surveillance data is only allowed for quadrats with surveys
both one year earlier and one year later than the target infection year, otherwise no
deviation is allowed. Supplementary Figure 6 summarises the target data for each
quadrat and highlights the quadrats with surveys both years either side of the target
first year of infection.

Sgrid(dreal) = 1 (8)

ρgrid(Sgrid(dreal), Sgrid(dsim)) = 1 − Sgrid(dsim) (9)

ρgrid(Sgrid(dreal), Sgrid(dsim)) ≤ ϵgrid (10)

The summary statistic assessment methodology using synthetic data allowed an ex-
ploration of the convergence of the posterior distribution to the known parameter
values as the tolerances are reduced, whilst retaining enough simulations to en-
able a smooth posterior distribution given the finite number of fitting simulations
(Supplementary Methods S1.3). Based on these analyses, we use all three statistics
in combination and define the fitting criteria as the following values for the three
tolerances for each of the statistics: ϵfit

cen = 0.25, ϵfit
nat = 0.25, ϵfit

grid = 0.48

For the prior distribution of p, we sampled from a uniform distribution between
0 and 1. For α and β, we carried out multiple batches of simulations, updating
the search space at each iteration to sufficiently explore parameter space in order
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to identify the regions of highest likelihood density (Supplementary Methods S1.2).
The total number of fitting simulations was 233,600.

4.4 Model validation

We assess the ability of the parameterised model to predict the validation dataset,
dval

real, which spans 2011-2017. We run 10,000 validation simulations starting in 2004
using the same initial conditions as during parameter estimation and isolate the
subset of simulations that meet the fitting criteria. We take the subset of simulations
that pass the fitting criteria as representative of the system state at the start of 2011,
then for the validation period calculate the summary statistics, Sinf , and score model
performance according to the percentage of simulations that satisfy ϵval

inf = 0.25. In
addition, we present the full dynamics of Sinf (dreal) and spatial comparisons of a
simulated survey with the real-world survey.

4.5 Code availability

The code is available at https://github.com/camepidem/cbsd_model_development

4.6 Data availability

A script to automatically download the datasets analysed during this study from
their published sources is shared as part of the code repository.
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