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Abstract

Background: Fast and accurate diagnostics are key for personalized medicine. Particularly  in

cancer, precise diagnosis is a prerequisite for targeted therapies which can prolong lives. In this

work we focus on the automatic identification of gastroesophageal adenocarcinoma (GEA)

patients that qualify for a personalized therapy targeting epidermal growth factor receptor 2

(HER2). We present a deep learning method for scoring microscopy images of GEA for the

presence of HER2 overexpression.

Methods: Our method is based on convolutional neural networks (CNNs) trained on a rich

dataset of 1,602 patient samples and tested on an independent set of 307 patient samples. We

incorporated an attention mechanism in the CNN architecture to identify the tissue regions in

these patient cases which the network has detected as important for the prediction outcome. Our

solution allows for direct automated detection of HER2 in immunohistochemistry-stained tissue

slides without the need for manual assessment and additional costly in situ hybridization (ISH)

tests.

Results: We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our

approach offers accurate predictions in cases that pathologists cannot resolve, requiring

additional ISH testing. We confirmed our findings in an independent dataset collected in a

different clinical center.

Conclusions: We demonstrate that our approach not only automates an important diagnostic

process for GEA patients but also paves the way for the discovery of new morphological features

that were previously unknown for GEA pathology.
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Background

Gastroesophageal adenocarcinoma (GEA) is the seventh most common cancer worldwide, with

an increasing number of cases in the western hemisphere. Despite multimodal therapies with

neoadjuvant chemotherapy/chemoradiation before surgery, median overall survival does not

exceed four years [1–5]. Epidermal growth factor receptor 2 (HER2) encodes a transmembrane

tyrosine kinase receptor and is present in different tissues e.g. epithelial cells, mammary gland,

and the nervous system. It is also an important cancer biomarker. HER2 activation is associated

with angiogenesis and tumorigenesis. Various solid tumors display HER2 overexpression, and

targeted HER2 therapy improves their treatment outcomes [6]. Clinical guidelines for GEA

recommend adding Trastuzumab – a monoclonal antibody binding to HER2 – to the first-line

palliative chemotherapy for HER2-positive cases. HER2 targeting drugs are also currently

investigated in the curative therapy for GEA [7].

Accurate testing for the HER2 status is a mandatory prerequisite for the application of targeted

therapies. The gold standard for determining the HER2 status is an analysis of the

immunohistochemical (IHC) HER2 staining by an experienced pathologist, if necessary followed

by an additional in situ hybridization (ISH). The pathologist examines the immunohistochemistry

staining of cancer tissue slides for HER2 and determines the IHC score ranging from 0 to 3.

According to expert guidelines [8], the factors determining the score include the staining

intensity, the number of connected positive cells, and the cellular location of the staining

(Supplemental Table 1). The IHC scores 0 and 1 define patients with a negative HER2 status that

are not eligible for targeted anti-HER2 therapy. An IHC score of 3 designates a positive HER2

status, and these patients receive Trastuzumab. A score of 2 is equivocal. In this case, an

additional in situ hybridization (ISH) assay resolves the IHC score 2 as a positive or negative

HER2 status. However, both manual scoring and additional ISH testing are time-consuming and

costly.

Here, we ask whether Convolutional Neural Networks (CNNs) can directly predict the HER2

status from IHC-stained tissue sections without additional ISH testing. We explore a large tissue

microarray (TMA) with 1,602 digitized images stained for HER2. We use this image dataset as a

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.491769doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?c5nsRq
https://doi.org/10.1101/2022.05.13.491769
http://creativecommons.org/licenses/by-nc-nd/4.0/


training set to train two different CNN classification models. We test these models on an

independent test dataset of 307 TMA images from an unrelated patient group from the same

center. We also further validate the HER2 status prediction accuracy of our approach on a patient

cohort from a different clinical center. If successful, CNNs could assist pathologists in evaluating

IHC stainings and, therefore, save time and expenses related to the ISH analysis.

Methods

Tumor sample and image preparation

For training the CNNs, we used a multi-spot tissue microarray (TMA) with 165 tumor cases and

a single-spot TMA with 428 tumor cases, described elsewhere [9]. We additionally prepared an

independent single-spot TMA with 307 tumor cases as the test dataset. The test set consisted of

tumor cases that occurred at a later time point compared to the training set cases. This dataset

construction strategy mimics how such a model would be developed and deployed in a clinical

routine. Coincidentally, our test set does not include tumor cases with an IHC score of 1. The

multi-spot TMA was composed of eight tissue cores (1.2 mm diameter) of each tumor - four

cores punched on the tumor margin and four in the tumor center. To construct the single-spot

TMA, we punched one tissue core per patient from the tumor center. The cores were transferred

to TMA receiver blocks. Each TMA block contained 72 tissue cores. Subsequently, we prepared

4 µm-thick sections from the TMA blocks and transferred them to an adhesive-coated slide

system (Instrumedics Inc., Hackensack, NJ).

We used a HER2 antibody (Ventana clone 4B5, Roche Diagnostics, Rotkreuz, Switzerland) on

the automated Ventana/Roche slide stainer to perform immunohistochemistry (IHC) on the TMA

slides. HER2 expression in carcinoma cells was assessed according to staining criteria listed in

Table 1. Scores 0 and 1 indicated negative HER2 status, and score 3 indicated positive HER2

status. Immunohistochemical expression evaluation was assessed manually by two pathologists

(A.Q. and H.L.) according to [10]. Discrepant results, which occurred only in a small number of

samples, were resolved by consensus review. Spots with a score of 2 were analyzed by
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fluorescence in situ hybridization (FISH) to resolve the HER2 status. The FISH analysis

evaluated the HER2 gene amplification status using the Zytolight SPEC ERBB2/CEN 17 Dual

Probe Kit (Zytomed Systems GmbH, Germany) according to the manufacturer's protocol. A

fluorescence microscope (DM5500, Leica, Wetzlar, Germany) with a 63× objective was used for

scanning the tumor tissue for amplification hotspots. We counted the signals in randomly chosen

areas of homogeneously distributed signals. Twenty tumor cells were evaluated by counting

green HER2 and orange centromere-17 (CEN17) signals. The reading strategy followed the

recommendations of HER2/CEN17 ratio ≥ 2.0 or HER2 signals ≥ 6.0 for HER2 positive and a

HER2/CEN17 ratio < 2.0 for HER2 negative samples.

We digitized the slides with a digital slide scanner (NanoZoomer S360, Hamamatsu Photonics,

Japan) with 40-times magnification and used QuPath's [11] TMA dearrayer to slice the digitized

slides into individual images (.jpg files, 5,468 × 5,468 pixels). After discarding corrupted

images, this procedure yielded 1,602 images for training and validation, and 307 images for

testing. Each image was labeled with the IHC score (0, 1, 2, or 3) and the HER2 status (0 or 1)

that was determined by the pathologists or by FISH analysis in equivocal cases. This

methodology corresponds to the gold standard, and we used this labeling in training  the different

machine learning models.

Classification models

We used ResNet34 architecture [12] for prediction of IHC score and HER2 status. The network

was trained as a four class IHC score classifier and as a binary classifier of the HER2 status.

Given the large resolution of the tissue images (5,468 × 5,468 pixels), this approach required

scaling them down by 5.34 to the size of 1,024 × 1,024 pixels to allow the network to train

within our hardware memory limits.

The strongly reduced resolution of the downscaled microscopy images could potentially remove

important visual details from the images that are key for the score assignment. To overcome this,

we implemented a method that allows training neural networks on large images at their original

resolution by exploiting weakly supervised Multiple Instance Learning (MIL) [13].
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In the weakly supervised multiple instance learning approach, each slide is considered as a bag

of smaller tiles (instances) whose respective individual labels are unknown. To make a bag-level

prediction, image tiles are embedded in a low dimensional vector space, and the embeddings of

individual tiles are aggregated to obtain representation of the entire image. This representation is

used as input of a bag-level classifier.

For the aggregation of the tile embeddings, we used the attention-based operator proposed by

Ilse et al. [14]. It consists of a simple feed-forward network that predicts an attention score for

each of the embeddings. These scores indicate how relevant each tile is for the classification

outcome, and are used to calculate a weighted sum of the tile representations as the aggregation

operation. Weights of a bag sum to one, this way the bag representation is invariant to bag size.

Finally, the bag vector representation is used as the input of a feed-forward neural network to

perform the final classification.

In this approach, non-overlapping tiles of 224 × 224 pixels were extracted from each slide, and

their embeddings were derived from a ResNet34 model. Empty tiles were discarded beforehand.

As in the fully supervised approach, the MIL classifier was trained separately to predict IHC

score and HER2 status.

We also constructed a method for predicting IHC score and HER2 status based on the staining

intensity of the slides, a feature that is conventionally used by automatic IHC scoring software.

This method was constructed to compare how predictive the single feature of staining intensity is

compared to the higher level features learned by our CNN models. To extract the IHC staining

expression from the images we used color deconvolution [15]. From the staining channel,

non-overlapping tiles of 224 x 224 pixels were extracted and the average staining intensity was

calculated for each tile. The staining intensity of each slide was then calculated as the maximum

of the average intensities of its tiles. The proposed slide descriptor was used as input in two

logistic regression classifiers to predict IHC score and HER2 status separately. This approach can

also be seen as a multiple instance classification formulation where the feature extracted for each

instance is its average staining intensity value, and the bag is aggregated using the maximum

operator.
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Network training

The dataset showed an unbalanced distribution of the IHC score (Supplemental Fig. 1) reflecting

the frequency of HER2 expression in the population [16]. To obtain representative training and

validation sets, we split images of each IHC score in 80-20 proportions. For the samples with

score 2, the 80-20 split was done separately for those with positive status and those with negative

status. During training, we performed a weighted sampling of the images of each score such that

each of the IHC scores is equally represented during training. We performed random horizontal

and vertical flips as data augmentation.

We used Adam optimizer in training [17], with weight decay of 1×10-8 and betas of 0.9 and

0.999. The learning rates as well as their schedulers were chosen based on a hyperparameter

search. The ResNet classifiers were trained using a learning rate 1×10-5, which was reduced by a

factor of 0.1 if the accuracy of the validation set would not improve after 20 epochs of training.

The MIL classifier was trained using a learning rate of 5×10-9, decreasing it by a factor of 0.3 if

the accuracy of the validation set would not improve after 40 epochs.  We used a batch size of 32

in the ResNet classifier and a batch size of only one full resolution image with a bag size

depending on the amount of extracted tiles in the MIL classifier.

Computational work was performed on the CHEOPS high performance computer, on nodes

equipped with 4 NVIDIA V100 Volta graphics processing units (GPUs). We used PyTorch

(version 1.8.1) [18] for data loading, creating models, and training.

Results

IHC score prediction

First, we implemented a multiple instance learning (MIL) [13] method allowing us to make the

classification of the images at their highest resolution. Using this technique the images are split

into smaller tiles, encoded into their numeric embeddings and ranked using the attention

mechanism as proposed by Ilse et al. [14]. The attention mechanism allows for automatic
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identification of areas in the image that are important for the predicted score, this way providing

means to inspect and interpret the prediction outcomes of the network.

This technique has shown the balanced accuracy of 0.8249, precision of  0.9470 and recall of

0.9185 (Fig. 1:left, Table 1). Given the score imbalance and the lack of samples with an IHC

score of 1 in the test set, the reported performance metrics were calculated in a balanced manner

as an average of the metric of each individual label weighted by their number of samples of that

given label.  Most notably, the outermost classes 0 and 3 were predicted with the highest

accuracy while ~ 33% of score 2 images were incorrectly predicted.

We next examined whether a simpler CNN-based classification approach allows for predicting

the IHC score from the TMA images. In order for these images to fit within our hardware

constraints, we downsampled them by a factor of 5.34 to a size of 1,024 x 1,024 pixels. We

trained classification architecture ResNet34 [12] on the rescaled dataset and analyzed it on the

test set of images adjusted correspondingly. This approach resulted in balanced accuracy of

0.8536, precision of 0.9544 and recall of 0.8859 (Table 2). The almost equal accuracy and

precision of this model suggests that relatively large visual details visible at a lower resolution

are sufficient for the most accurate prediction.

HER2 status prediction

We next addressed the question whether the HER2 status can be predicted directly from the

IHC-stained images, without additional ISH testing. Images in our dataset with IHC score of 0 or

1 are HER2 negative, those with a score of 3 are positive. Those with a score of 2 were

additionally resolved using ISH resulting in the following positive/negative HER2 status split:

77/33% in the train set, 53/47% in the test set. Out of 15 IHC score 2 images in the test set, there

were eight HER2 positive and seven HER2 negative. The train-validation split was done in such

a way that all the score and status combinations are distributed equally in both sets.

The MIL classifier resulted in performance with balanced accuracy of 0.9429, precision of

0.9705 and recall of 0.94780 (Fig. 2, Table 2). As in the IHC score prediction task, the results
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were calculated as a weighted average of the individual metrics for class 0 (HER2 negative) and

class 1 (HER2 positive) to take account of the class imbalance. Within both the HER2 negative

and HER2 positive classes, less than 7% of images were misclassified resulting in balanced

precision and recall > 0.94. To better understand the errors of the model, we additionally

inspected the HER2 status prediction accuracy within images of different IHC scores (Table 3).

With ~27% false positive and ~7% false negative predictions, the highest error rate occurred in

images with the IHC score of 2. The higher proportion of false positives among the score 2

images could be due to the underrepresentation of samples with this IHC score and negative

HER2 status in the training set in the score 2 images. In images with IHC scores 0 and 3, the

prediction error was below 4%.  The difference in performance between the 4-class and the

binary classifiers suggests that the inter-score differences are more subtle than the ones

differentiating the two HER2 statuses.

Performance on external cohort

Even if independently, our train and test datasets were collected and prepared within one

hospital. To verify how the performance of our model is dependent on the aspects related to the

data preparation, we evaluated our models on an independent cohort from a different clinical

center [20]. In particular we aimed to investigate whether HER2 status prediction is indeed

possible using IHC-stained images only. The external cohort included 653 tissue samples

belonging to 297 patients with the following IHC score distribution: 416/186/14/37 samples of

scores 0/1/2/3 respectively. Out of the score 2 samples, 12 showed a negative HER2 status and 2

samples showed positive HER2 status.

Given the different color distribution and potential staining quality deterioration due to the

sample age, we applied a preprocessing step to these images. We used Macenko’s method for

stain estimation [21] together with color deconvolution/convolution [15] to match the staining to

our in-house dataset.

The MIL classifier yielded a balanced accuracy of 0.8688, precision of 0.9490 and recall of

0.8908 (Fig. 1). These results support the applicability of our approach in an important clinical

context where the distinction of HER2 status is key for further treatment.
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Insights into the learning process of the MIL classifier

The ResNet and the MIL classifiers achieved almost identical accuracy on our in-house test set

in both the IHC score and the HER2 status prediction. However, the advantage of the more

compute-intensive weakly supervised MIL approach is the possibility to inspect the visual

features that the network utilizes in the classification process. The embeddings and attention

scores assigned to individual 224 × 224 pixel tiles can provide insights into the key visual

features used by the MIL approach in the classification.

First, we examined via t-distributed stochastic neighbor embedding (tSNE) dimensionality

reduction method [19] the embeddings of the image tiles in the test set generated by the IHC

score prediction network (Fig. 2). In this visualization, the spatial proximity of tiles reflects the

similarity of their embeddings. Although the network was trained on the IHC score, it also

correctly separates the HER2 status of the parent TMA image. HER2 negative tiles with a score

of 2 (2-) group together with score 0 tiles, and HER2 positive tiles with a score of 2 (2+) group

together with score 3 tiles.

Additionally, neighboring tiles in the tSNE projection show visual similarity. Most strikingly,

tiles grouped together show a similar staining intensity and this intensity gradually changes along

the 2D projection of the embeddings. Staining intensity is, however, not the only visual feature

determinant of the HER2 scoring, which also takes additional morphological features into

account (Table 1). We expect these morphological features to also be encoded in the learned

vector space.

Next, we inspected the attention score of the MIL classifier and its distribution within the tissue

slides. The attention value reflects the importance of a given image tile for the final prediction

score and this way provides information on spatial distribution of the visual features in the tissue

that the network is exploiting in the prediction. Since the IHC staining is insufficient to resolve

the HER2 status if the tissue IHC score is 2, we inspected which visual features are exploited by

the network in resolving the HER2 status of the score 2 tissue slides (Fig. 3). Strikingly, the

attention of the MIL classifier for the HER2 status focuses on areas of high staining intensity and

corresponds to the mean intensity of the tiles at first sight.
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Given the relationship of the embeddings as well as attention value to the staining intensity, we

tested the accuracy of a predictive model based on the staining intensity only. Similar to the

tiling approach of the MIL classifier, we split the tissue slides in 224 × 224 pixel tiles and

averaged the staining intensity in each of the tiles. We, then, used the maximum of the average

intensities across the tiles of an image as the quantitative descriptor of the entire image. We

trained two logistic regression models to predict IHC score and HER2 status, respectively. The

stain intensity-based model showed a balanced accuracy of 0.6876 in the prediction of the IHC

score, markedly lower compared to the MIL classifier with a balanced accuracy of 0.8249. The

major difference in performance between these models is in images with an IHC score of 2 (Fig.

4). In the task of predicting the HER2 status, the balanced accuracy of the staining

intensity-based model reached 0.8457 compared to 0.9429 of the MIL classifier. These results

suggest that not only the staining intensity but also additional morphological features are

considered by the deep learning models in the classification. These features are particularly

important for correct recognition of images belonging to the intermediate IHC score 2. We

indicate examples of such features in Figure 3. Even though attention value and staining intensity

largely match, the heatmaps in Figure 3 demonstrate prominent exceptions where features of

high attention do not show high staining intensity.

Discussion

Automated and accurate image-based diagnostics help to accelerate medical treatment and

decrease the work burden of the medical personnel. Here, we demonstrate that deep

learning-based prediction of the IHC score (0 - 3) and the HER2 status (negative or positive) is

generally possible with a balanced accuracy of ~0.85 and ~0.94, respectively. Among the scores,

IHC score 2 images show the highest proportion of misclassified samples. These score 2 images

cannot be unequivocally classified regarding their HER2 status by the pathologists and need

further ISH staining. While it is considered that it is not possible to resolve the HER2 status

based on the IHC staining of the IHC score 2 images, our models correctly predict the HER2

status of 73% of these images in our test dataset. Notably, score 2 samples are strongly

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.491769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491769
http://creativecommons.org/licenses/by-nc-nd/4.0/


underrepresented in our datasets. We expect that with more training samples of the

underrepresented scores this prediction accuracy will improve.

We demonstrate that not only staining intensity - conventionally used in automated prediction

tools - but also additional morphological properties are taken into account by the neural networks

in the classification. The attention maps of the MIL classifier do not match the staining intensity.

Additionally, the prediction based on the intensity only yields markedly lower accuracy.

Unexpectedly however, the classifiers based on low- (1,024 × 1,024 pixel) and high- (5,468 ×

5,468 pixel) resolution images achieve matched accuracy. Potentially, the lower resolution used

in this study is sufficient to encode the key morphological features of the images. This resolution

was the highest that still allowed for training ResNet within our hardware memory. Notably

decreasing the size of the images further to 512 × 512 pixel size resulted in the decrease of the

model balanced accuracy to 0.8200 for the prediction of IHC score. Unlike in this study, whole

slide images (WSIs) instead of TMAs are used in the diagnostic pathological assessment. The

WSI size is several orders of magnitude larger than the images in our dataset which does not

allow for using simple classification architectures such as ResNet and MIL approaches are

typically used instead. Our results suggest that reducing image resolution even 5-fold does not

affect the deep learning model performance which could accelerate model training and reduce

computational costs of models built on WSIs without compromising their accuracy.

Given the class imbalance of our datasets, we report the balanced accuracy and weighted recall,

precision and F1 metrics as described previously, as the unbalanced and unweighted metrics may

be misleading in describing the performance of the models. As an example, if unbalanced, the

accuracy score of an IHC score classifier that always predicts score 0 would be 0.92 in our

dataset, and an analogous HER2 status classifier would achieve accuracy of 0.94. Similarly, the

unbalanced precision (and subsequently, F1) of our HER2 status classifiers would be inaccurate.

If we take, for example, the MIL HER2 status classifier, its unbalanced precision score is 0.51,

while its false positive rate is only 0.04. For these reasons we calculate our accuracy metrics in a

balanced manner.

We propose that artificial intelligence-based HER2 status evaluation represents a valuable tool to

assist clinicians. In particular, the attention map generated by the MIL classifier can aid the
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pathologists in their daily work by indicating the image areas of high information content for the

evaluation. This approach could facilitate and speed up the manual analysis of large tissue

images. The IHC score determination network can easily be transferred to any IHC staining other

than HER2, further paving the way for digital pathology. We additionally demonstrate the

capacity of our method to perform on samples from external clinical centers with similar

prediction accuracy. We expect the power and generalizability of our deep learning model to

increase with larger, multi-center datasets.

Finally, the high performance of our models in predicting the HER2 status of score 2 samples for

which the status is considered as unresolvable based on the IHC staining, suggests that there

exist visual features to be predictive of the HER2 status in these images as well. While

identification of these features would require more IHC score 2 image data than available in our

dataset, we expect that further deployment of the MIL models might lead to the discovery of

novel morphological features improving image-based diagnostics.

Conclusion

We demonstrate that it is possible to automatically predict HER2 overexpression directly from

immunohistochemistry-stained images of gastroesophageal cancer tissue, an important

diagnostic process in the treatment of GEA patients. CNNs not only replicate the IHC scoring

system used by pathologists, but can directly predict HER2 status in cases where it is considered

not possible to resolve this condition by IHC staining alone.

Staining intensity is not the only predictive feature of HER2 overexpression in the IHC images,

and deep learning algorithms are able to capture more complex visual information such as

morphological features present in these images. Furthermore, we find that the performance of

models that use downscaled versions of our images achieve a similar performance than that of

the models that make use of the full resolution data, meaning that such fine visual detail is not

required to capture the important semantic information of the images.
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We conclude that deep learning based image analysis represents a valuable tool both for the

development of useful digital pathology applications and the discovery of visual features and

patterns previously unknown to traditional pathology.
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Tables and figures

Table 1. Results of the Attention Based MIL method on the tasks of IHC score prediction and

HER2 status prediction.

Task Balanced

Acc.

Precision Recall F1 Score

IHC score

prediction

0.8249 0.9470 0.9185 0.9302

HER2 status

prediction

0.9429 0.9705 0.9478 0.9551

Table 2. Cross-tabulation of true IHC score and predicted HER2 status of the test dataset. ‘2-’

and ‘2+‘ scores stand for IHC score 2 and HER2 negative and positive status, respectively.

True IHC score

Predicted HER2 status 0 2- 2+ 3

Negative 273 3 1 0

Positive 11 4 7 8
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Figure 1. Confusion matrices of the IHC score prediction evaluated on the test set (left), and

HER2 status prediction evaluated on the test set and on the external cohort (right).

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.491769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491769
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. t-SNE visualization of tile embeddings produced by the IHC score MIL classifier on

the test set images, with the vectors coloured according to the score of their respective slides.

Visual similarity of the tiles is reflected in their neural network-derived representations and the

embeddings of similar tiles are close in the learned vector space. Coincidentally, there are no

TMA images with a score of 1 in the test set because the test set consisted of the consecutive

tumor cases that followed the training set cases.
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Figure 3. Heatmap visualizations of the attention value and mean staining intensity in tiles

within the tissue image. a) Slides with IHC score 2 and negative HER2 status. b) Attention score

heatmap of HER2 status MIL classifier. c) Attention score heatmap of IHC score MIL classifier.

d) Patchwise mean staining intensity heatmap. White arrows point to locations where the

attention values do not match staining intensity.
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Figure 4. Per-class ROC curves for the IHC score classifiers, calculated in a “one-vs-all” fashion

of the MIL (left panel) and staining intensity-based classifier (right panel). While both models’

performance is similar for images of score 0 and 3, images of score 2 are not possible to

correctly recognize based on staining intensity only.
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