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Abstract

1. There have been recent calls for wider application of generative modelling approaches in applied social network
analysis. These calls have been motivated by the limitations of contemporary empirical frameworks, which have
generally relied on post hoc permutation methods that do not actively account for interdependence in network
data. At present, however, it remains difficult for typical end-users—e.g., field researchers—to apply generative
network models, as there is a dearth of openly available software packages that make application of such methods
as simple as other, permutation-based methods.

2. Here, we outline the STRAND R package, which provides a suite of generative models for Bayesian analysis of
human and non-human animal social network data that can be implemented using simple, base R syntax.

3. To facilitate ease-of-use, we provide a tutorial demonstrating how STRAND can be used to model binary, count,
or proportion data using stochastic blockmodels, social relations models, or a combination of the two modelling
frameworks.
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Introduction

The application of theory and methods from network science
(i.e., social network analysis) to ethological data has led to
important advances in our understanding the structural fea-
tures of animal societies. Similarly, the role that sociality—
broadly conceived—plays in the differential success and5

survival of individuals and groups (e.g., Clutton-Brock
2009) has been a topic of perennial interest across the
social, behavioural and biological sciences. By quantifying
the social interactions (i.e., ties or edges) that are observed
between individuals (i.e., nodes or vertices), researchers can10

more formally study how various dyadic phenomena are
related to one another (e.g., Smith-Aguilar et al. 2019) and
to key individual-level properties (e.g., Pike et al. 2008).

Recent network-based research has, for example, advanced
theory on how social relationships—both positive (e.g.,15

food sharing and grooming) and negative (e.g., agonistic
behaviours)—guide the emergence and maintenance of
social hierarchies (Kawakatsu et al. 2021; Redhead and
Power 2022), influence the spread of disease (Read et al.
2008; Silk et al. 2017) and adaptive information (Waters20

and Fewell 2012; Hobaiter et al. 2014), and explain how
individual actions culminate in group-wide movement pat-
terns (Jacoby and Freeman 2016; Strandburg-Peshkin et al.
2015). To address these topics, and many others, network
data are rapidly being compiled across a broad range of taxa25

(Sah et al. 2019). Given the flexibility of network-based
frameworks for understanding behaviour, social network
analysis has become one of the most popular areas of
research in animal behaviour, behavioural ecology, and the
quantitative evolutionary and social sciences more broadly.30

Inferential concerns and topics of debate
While network analytical tools have great potential for
advancing our understanding social behaviour across taxa,
there are many statistical complexities inherent in such
approaches. Network data are highly interdependent, and 35

cannot be modelled using standard statistical approaches
that assume uncorrelated residuals. Standard practices within
the field often ignore such issues. For example, it is common
for researchers to regress outgoing ties on incoming ties
to estimate reciprocity (e.g., Carter and Wilkinson 2013), 40

but such regressions are known to suffer from residual
confounding (see Koster and Leckie 2014). Similarly, it
is common for researchers to correct for sampling effort by
creating a Simple Ratio Index (SRI; Cairns and Schwager
1987; Whitehead and James 2015; Farine and Whitehead 45

2015), but such indices are well-know to divide out sample
size and give the weakest data-points disproportionate
weight in downstream analyses (Hart et al. 2021b).

Permutation methods—such as the quadratic assignment
procedure (QAP; Hubert and Schultz 1976; Krackardt 1987; 50

Dekker et al. 2003)—have been used to “account for” the
typical non-independence of network data (see Farine and
Carter 2022; Farine and Whitehead 2015; Sosa et al. 2021).
However, such post hoc methods do not actually permit
unbiased estimation of generative model parameters (see 55
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Hart et al. 2021a), a point raised by a founder of the method
thirty years ago (Krackhardt 1992). While there remains
much lingering debate about the usefulness of permutation
methods in applied network analysis, it is widely agreed
upon that empirical data of all forms are best analysed using60

scientifically informed generative models (e.g., Reilly and
Zeringue 2005). In the case of social network data, such
models should actively account for non-independence of
data points via correlated random effects at both the node
and dyad level during the process of model fitting (see65

McElreath 2020, for a textbook example).
Permutation methods rose to prominence in large part

for historical reasons, as correlated random-effects models
were difficult to fit using early computer software. In fact,
nuanced generative models of social networks have been70

available for decades, but Bayesian estimation of these
models remained computationally intractable until only
recently. As such, there is still a dearth of freely-available
open-source software for implementing such generative
modelling approaches as data analysis tools. To resolve75

this issue, we draw upon classic generative modelling
approaches for network data, and integrate them with con-
temporary tools for Bayesian model fitting (Stan Develop-
ment Team 2021b). In doing this, we have developed an R
package, STRAND, that allows end-users to build complex80

network analysis models using simple lm-style syntax in
base R, simplifying the process of modelling empirical
network data.

Generative modelling approaches
There are a plethora of generative network models that85

reflect complex data generating procedures (see Newman
2018). Through Bayesian inversion (Allmaras et al. 2013),
these models can be used as analytic tools that support
statistical inference on the basis of empirical data. One such
model that holds particular promise for research on animal90

social networks is the social relations model (Kenny and
La Voie 1984; Snijders and Kenny 1999), which exam-
ines and accounts for correlations in node-level and dyad-
level random effects. Across many contexts, animal social
networks may further be partitioned into observable sub-95

groups—such as coalitions (Kajokaite et al. 2019), matri-
lines (Ilany et al. 2021), and groupings based on identity or
physical location (De Dreu and Triki 2022). These group-
ings may create gross community structure in networks,
whereby individuals preferentially interact with those in100

their own sub-groups (to a greater or lesser extent across
contexts and relationship types; e.g., Pisor and Ross 2021).
Given this, stochastic blockmodels show further promise
for animal social network analysis (Pearl and Schulman
1983), as they capture these higher order structures (Peixoto105

2019). Together, these approaches provide a framework for
a more direct analysis of the mechanisms involved in the
data generating process of social relationships.

Our contribution
In order to address the concerns outlined above, and to110

make data analysis using complex network models easier for
end-users, we have introduced an R package for Bayesian
social network analysis, STRAND, that facilitates applications

of generative network modelling approaches. The STRAND
package supports stochastic blockmodelling, social relations 115

modelling, and more complex latent-network modelling
approaches (see Redhead et al. 2021).

In this paper, we outline how stochastic blockmodels
and social relations models can be fit to both human and
non-human animal network data to answer key research 120

questions. By presenting a tutorial for fitting these models
to each of the three most commonly collected types of
outcome data used in studies of animal behaviour and
behavioural ecology—i.e., binary tie data (e.g., via self-
reports), count data (e.g., through behavioural observations 125

over a standardised time window), and proportion data (e.g.,
counts of behavioural observations where the sampling rate
is variable across possible dyads)—we hope to inspire more
wide-spread application of principled generative network
models in empirical research. 130

Our approach to network modeling here complements
that of the BISoN team (Hart et al. 2021b), who have
also developed a suite of network analysis models using
Bayesian methods. Our R package provides additional func-
tionality to typical end-users, however, in that it integrates 135

new Bayesian network analysis models on the ‘back-end’
with a user-friendly ‘front-end’ interface, that allows even
casual R users to specify complex network models (which
may include a variety of block-, individual-, and dyad-level
covariate data) on-the-fly, using nothing more than base R 140

syntax.

Using STRAND

Much of the functionality of STRAND is made possible by
Stan (Stan Development Team 2021b) and CmdStanR (Stan
Development Team 2021a). Users must install these pro- 145

grams prior to installing STRAND. Installation and loading
of STRAND is then simple: just run three lines of code from
R:

library(devtools)

install_github("ctross/STRAND")

library(STRAND)

All of the tutorial code elaborated on below can also be 150

found online at: https://github.com/ctross/STRAND,
where the package will be maintained.

Building data objects

The first step in building any STRAND model is to organise
the data. Social network data are normally complex, with 155

some variables being reported at the level of the individ-
ual and others being reported at the level of the dyad. The
make strand data function serves to organise all of these
data into a unified format that can be read by later functions.
After data are compiled, they can then be analysed with 160

simple, lm-style function calls, as we discuss below.
We will illustrate how STRAND data objects are built, using

human friendship network data from Dalla Ragione et al.
(2022). First, outcome data and dyad-level predictors (both
structured as adjacency matrices) are stored as labeled lists: 165
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# Organize dyadic measures

outcome = list(Friends = friends)

dyad = list(Relatedness = pedigree ,

Distance = distance)

The outcome data must be either binary data or integers.
The dyadic covariate data can include numeric variables,
indicator variables, or even categorical variables. These
dyadic covariate data can be used to estimate associations170

between dyad-level characteristics—such as genetic relat-
edness or physical proximity—and the likelihood of a tie in
the outcome network.

Next, the individual-level covariates are stored in a data-
frame:175

# Organize individual measures

indiv = data.frame(

Age = age,

BMI = bmi,

PA = pa

)

The individual-level covariate data can also include
numeric variables, indicator variables, or categorical vari-
ables. Individual-level covariate data can be used to estimate
associations between individual-level characteristics and the180

likelihood of either sending or receiving a tie.
Finally, individual-level covariates that govern group/block

structure are stored in a separate data-frame:

# Organize blocking measures

groups = data.frame(

Ethnicity = as.factor(ethnicity),

Sex = as.factor(sex)

)

Although these block-structuring variables are also individual-185

level data, they are treated differently than other variables
by STRAND; these variables must be factors, and are used to
create random intercept offsets unique to the interaction of
focal/sender and alter/receiver block IDs.

Once all covariate data are organised as above, they can190

be compiled into a single STRAND object:

# Create the STRAND data object

dat = make_strand_data(

self_report = outcome,

block_covariates = groups,

individual_covariates = indiv,

dyadic_covariates = dyad,

outcome_mode = "bernoulli",

exposure = NULL

)

At this point, the user must define which outcome model
to use. The STRAND package supports three outcome modes
for each model type: “bernoulli” for binary tie data (e.g., for195

human self-report/name-generator data, or similar binary tie
data from non-human animals, like whether or not there was
any observed conflict between each dyad on a given day),
“poisson” for raw count data (e.g., the number of times GPS

Figure 1. Friendship network data from a rural Colombian
town published in Dalla Ragione et al. (2022). Nodes are
coloured according to ethnic group, with blue nodes
representing indigenous Emberá individuals, goldenrod nodes
representing Mestizo individuals, and dark-grey nodes
representing Afrocolombian individuals. Group structure is
modelled by including ethnicity as an observed block variable.
Variance in node degree is estimated using random effects on
the probability of sending and receiving friendship nominations.

trackers were within 5 meters of each other over a fixed 1- 200

week period), or finally “binomial” for proportion data (e.g.,
if the outcome variable is a matrix containing a count of
grooming events between each dyad, and the exposure vari-
able is matrix containing a count of the number of scans in
which grooming events between each dyad could have been 205

observed). If the outcome mode is set to “binomial”, then
the exposure variable (a labeled list containing a matrix of
sample size values) must be provided.

Example model with Binary data

Classic social network data, especially as collected using 210

self-report survey designs in human research, is frequently
represented as a matrix of binary ties (i.e., zeros indicating
the absence of ties, and ones indicating the presence of ties).
For our first example, we will model binary human friend-
ship network data (see Figure 1) published in Dalla Ragione 215

et al. (2022). These data include individual-level measures
(e.g., sex, ethnicity, age, BMI, and physical attractive-
ness) and dyad-level measures (e.g., relatedness and inter-
household distance) that are thought to be associated with
the structure of friendships. 220

To model the data, we use a hybrid of the stochastic block-
model and social relations model (see Supporting Informa-
tion for full mathematical details). The STRAND syntax is
based on standard lm syntax from base R. To model the data,
we write out equations for block effects, focal/sender effects, 225

alter/receiver effects, and dyadic effects:
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fit =

fit_block_plus_social_relations_model(

data=dat,

block_regression = ˜ Sex + Ethnicity ,

focal_regression = ˜ Age + BMI + PA,

target_regression = ˜ Age + BMI + PA,

dyad_regression = ˜ Relatedness +

Distance ,

mode="mcmc",

stan_mcmc_parameters = list(

chains = 2,

iter_warmup = 1500,

iter_sampling = 1500,

max_treedepth = 12,

adapt_delta = 0.98)

)

In this model, we estimate block-level effects for sex
and ethnicity using the argument: block regression =
∼ Sex + Ethnicity. These effects are indicative of how230

the likelihood of friendship nomination varies as a function
of block categories—i.e., we can measure if male-to-male
ties are more or less likely than male-to-female ties, female-
to-male ties, or female-to-female ties (and likewise for ties
within and between ethnic groups).235

Next, the focal regression model, focal regression
= ∼ Age + BMI + PA, explores how the age, body mass
index, and physical attractiveness rating for a given indi-
vidual is related to that individual’s propensity to nom-
inate others as friends (i.e., it measures the effects of240

individual-level covariates on out-degree). Similarly, the
target regression model, target regression = ∼ Age
+ BMI + PA, explores how the age, body mass index, and
physical attractiveness rating for a given individual is related
to that individual’s propensity to be nominated by others245

as a friend (i.e., it measures the effects of individual-level
covariates on in-degree). Finally, the dyad regression model,
dyad regression = ∼ Relatedness + Distance, explores
how the likelihood of friendship ties is associated with the
genetic relatedness of each dyad, as well as with the spatial250

distance between the homes of each dyad.
When the model has finished running, the MCMC sam-

ples can be processed and summarised using a convenience
function:

res = summarize_strand_results(fit)255

The results can then be visualised as a table (e.g., see
Table 1) or as a forest plot (e.g., see Figure 2).

As in Dalla Ragione et al. (2022), we find that relatedness
is positively associated with the probability of observing
friendship ties, while inter-household distance is negatively260

associated the probability of friendship ties. Older indi-
viduals have a higher probability of making friendship
nominations, while individuals who were rated by the
community as more physically attractive are less likely
to nominate others as friends. On the other hand, individuals265

rated as more physically attractive were more likely to be
nominated by others as friends. Age and BMI are also asso-
ciated with the likelihood on being nominated as a friend.
Next, when considering block variables, such as ethnicity

and sex, we find evidence that individuals preferentially 270

assort with others of their same group. For example, the
intercept offset for Afrocolombian-to-Afrocolombian ties
is -3.37 (90%HPDI; -4.83, -1.62), is reliably greater than
the intercept offset for Afrocolombian-to-Emberá ties, -9.30
(90%HPDI; -11.94, -6.73). Finally, we find evidence of both 275

dyadic reciprocity (dyadic ρ) and generalised reciprocity
(focal-target ρ) in friendship nominations (see Table 1).

Example model with Poisson data

Throughout the non-human literature, network data are often
recorded using numerical measurements (e.g., the number 280

of times two animals are observed fighting, or the number
of minutes two animals spend grooming one another). As
an example of such numerical measures, we draw on data
investigating blood-sharing among vampire bats (Carter
and Wilkinson 2013). These data include individual-level 285

predictors (i.e., sex) and dyad-level predictors (i.e., genetic
relatedness, and whether each dyad had the opportunity to
be observed sharing blood).

As before, we start by organising the data:

Table 1. Parameter estimates for the effects of various
covariates on the structure of friendships in a rural Colombian
town. Focal, target, and dyadic effects are interpreted as
slopes. Block effects are interpreted as intercept offsets.
Random effects include terms that control the variance of
random effects, σ, and terms that control the correlation of
random effects, ρ.

Type Variable Median HPDI:L HPDI:H Mean SD
random focal σ 0.669 0.434 0.87 0.666 0.139
random target σ 0.75 0.527 0.976 0.758 0.139
random dyadic σ 2.16 1.706 2.726 2.213 0.341
random focal-target ρ 0.741 0.514 0.957 0.724 0.148
random dyadic ρ 0.836 0.689 0.959 0.826 0.089

focal Age 0.016 0.003 0.027 0.016 0.007
focal BMI 0.02 -0.016 0.056 0.02 0.023
focal PA -0.02 -0.037 -0.003 -0.02 0.011

target Age 0.023 0.011 0.034 0.023 0.007
target BMI 0.045 0.011 0.085 0.046 0.023
target PA 0.015 0 0.029 0.015 0.009

dyadic Distance -3.593 -4.591 -2.691 -3.602 0.609
dyadic Relatedness 4.484 3.256 5.605 4.468 0.718
block Any to Any -1.889 -4.408 1.036 -1.912 1.648
block Female to Female -4.306 -6.123 -2.322 -4.284 1.168
block Female to Male -5.898 -7.662 -4.065 -5.885 1.168
block Male to Female -6.082 -8.025 -4.239 -6.097 1.174
block Male to Male -3.362 -5.174 -1.567 -3.376 1.145
block Afro. to Afro. -3.379 -4.831 -1.62 -3.328 0.967
block Afro. to Emberá -9.309 -11.943 -6.735 -9.36 1.615
block Afro. to Mestizo -5.221 -6.786 -3.407 -5.176 1.018
block Emberá to Afro. -6.611 -8.413 -4.655 -6.637 1.148
block Emberá to Emberá 0.071 -1.513 1.827 0.094 1.011
block Emberá to Mestizo -4.976 -6.797 -2.938 -4.946 1.192
block Mestizo to Afro. -4.852 -6.585 -3.296 -4.844 1.029
block Mestizo to Emberá -7.464 -10.845 -4.741 -7.609 1.881
block Mestizo to Mestizo -5.956 -8.703 -2.873 -6.027 1.806
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Focal efffects: Out−degree

Target effects: In−degree

Dyadic effects

Other estimates

−2 −1 0 1 2

focal effects coeffs (out−degree), Age
focal effects coeffs (out−degree), BMI

focal effects coeffs (out−degree), PA

target effects coeffs (in−degree), Age
target effects coeffs (in−degree), BMI

target effects coeffs (in−degree), PA

dyadic effects coeffs, Distance
dyadic effects coeffs, Relatedness

offset, AFROCOLOMBIAN to AFROCOLOMBIAN
offset, AFROCOLOMBIAN to EMBERA
offset, AFROCOLOMBIAN to MESTIZO

offset, Any to Any
offset, EMBERA to AFROCOLOMBIAN

offset, EMBERA to EMBERA
offset, EMBERA to MESTIZO

offset, FEMALE to FEMALE
offset, FEMALE to MALE
offset, MALE to FEMALE

offset, MALE to MALE
offset, MESTIZO to AFROCOLOMBIAN

offset, MESTIZO to EMBERA
offset, MESTIZO to MESTIZO

(a) Effects of covariates.

Correlation

Dispersion

0 1 2

dyadic effects rho

focal−target effects rho

dyadic effects sd

focal effects sd

target effects sd

(b) Variance and correlation of random effects.

Figure 2. Parameter estimates for the effects of various covariates on the structure of friendship in a rural Colombian town. Points
represent the posterior median, and bars represent 90% highest posterior density intervals.

# Number of minutes of blood licking

net = list(Lick = round(Lick/60,0))

# Dyadic variables

dyad = list(Relatedness = Relatedness ,

NoOppertunity = NoOppertunity

)

# Block variables

group_ids = data.frame(

Sex = as.factor(Sex)

)

290

Then, the data can be compiled into a STRAND data object.
This time, we must include the argument: outcome mode
= "poisson", so that STRAND treats the outcome data as

Figure 3. Blood-sharing network data from vampire bats
published by Carter and Wilkinson (2013). Red nodes
represent females and dark-grey nodes represent males.
Group structure is modelled by including sex as a block
variable. Variance in node degree is estimated using random
effects.

integers. Also, since there are no individual-level covariates
other than sex, which is used as a blocking variable, we can 295

set: individual covariates = NULL.

dat = make_strand_data(

self_report = net,

block_covariates = group_ids ,

individual_covariates = NULL,

dyadic_covariates = dyad,

outcome_mode = "poisson"

)

Then, a model can be fit to the data:

fit =

fit_block_plus_social_relations_model(

data=dat,

block_regression = ˜ Sex,

focal_regression = ˜ 1,

target_regression = ˜ 1,

dyad_regression = ˜ NoOppertunity +

Relatedness ,

mode="mcmc",

stan_mcmc_parameters = list(

chains = 1,

iter_warmup = 1500,

iter_sampling = 1500,

max_treedepth = NULL,

adapt_delta = .98)

)

Here, we set the focal and target regression models to be 300

intercept only (as we have no individual-level covariates)
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Dyadic effects

Other estimates

−2 −1 0 1

dyadic effects coeffs, NoOppertunity

dyadic effects coeffs, Relatedness

offset, Any to Any

offset, Female to Female

offset, Female to Male

offset, Male to Female

offset, Male to Male

(a) Effects of covariates.

Correlation

Dispersion

0 1 2 3

dyadic effects rho

focal−target effects rho

dyadic effects sd

focal effects sd

target effects sd

(b) Variance and correlation of random effects.

Figure 4. Blood sharing among of vampire bats. Points
represent the posterior median, and bars represent 90%
highest posterior density intervals. Vampire bats are more likely
to share blood with relatives than less-related conspecifics.
Transfers are also more likely to flow from females to other
females than from females to males, as indicated by the
credible regions for these offsets not overlapping. Blood
sharing is also reciprocal, as indicated by the strong correlation
in dyadic random effects.

using the lm-style syntax: focal regression = ∼ 1 and
target regression = ∼ 1.

Finally, the results can be summarised and plotted:

# Summarize results

res = summarize_strand_results(fit)

# Plot slopes

vis = strand_caterpillar_plot(res,

normalized=TRUE, only_slopes=TRUE)

305

Table 2 and Figure 4 present the effects of relatedness and
sex on the rate of blood-sharing transfers. We recover the
primary results of Carter and Wilkinson (2013), finding that
genetic relatedness is a reliable predictor of blood-sharing,
and that transfers are reliably more likely between female310

dyads than between male or mixed-sex dyads.

Table 2. Predictors of vampire bat blood-sharing relationships.
Type Variable Median HPDI:L HPDI:H Mean SD
random focal σ 0.855 0.322 1.477 0.872 0.348
random target σ 1.3 0.667 2.05 1.332 0.437
random dyadic σ 2.475 2.09 2.977 2.496 0.274
random focal-target ρ 0.23 -0.32 0.72 0.196 0.322
random dyadic ρ 0.62 0.449 0.804 0.61 0.113
dyadic No Opportunity -0.971 -2.016 0.207 -0.976 0.685
dyadic Relatedness 1.299 0.121 2.426 1.285 0.726
block Any to Any 0.716 -1.213 2.713 0.694 1.216
block Female to Female -0.275 -2.164 1.819 -0.29 1.248
block Female to Male -4.203 -6.08 -2.228 -4.209 1.226
block Male to Female -3.607 -5.427 -1.513 -3.563 1.226
block Male to Male -6.439 -8.481 -4.151 -6.421 1.331

Example model with Binomial data

Another type of data frequently encountered in studies of
animal sociality represents ties strength as a weighted social
association matrix (e.g., Brask et al. 2019). These measures 315

are typically created by applying a simple ratio association
index (SRI; Cairns and Schwager 1987; Farine and White-
head 2015), where, for example, the edge weight of each
dyad is calculated as the ratio of the number of scans/obser-
vations in which the dyad is observed together divided by 320

the number of scans/observations in which at least one of
them was observed.

While this approach of weighting counts by an exposure
variable is significantly better than ignoring variation in
risk of observation (Farine and Whitehead 2015), con- 325

struction of a simple ratio divides out sample size infor-
mation, leading dyadic observations based on little data
to carry disproportionate weight in downstream analyses
(see McElreath 2020; Hart et al. 2021b, for a review of
this issue). Moreover, zeros arising from censoring (i.e., 330

due to members of a dyad being unavailable; “denominator
zeros”) are often confounded with true zeros (i.e., members
of a dyad being present but not interacting; “numerator
zeros”). A better approach involves modelling the actual
count of the number of scans/observations in which each 335

dyad is observed together using a Binomial model, in which
the sample size parameter is—for example—the number of
scans/observations in which at least one member of the dyad
was observed.

To demonstrate how to fit such a model in STRAND, 340

we draw on grooming data from captive Guinea baboons
published by Gelardi et al. (2020). We investigate three
questions here: 1) do individuals who groom others more
also receive more grooming in general (i.e., generalised
reciprocity)?, 2) accounting for individual-level differences 345

in the probability of grooming, does the probability of indi-
vidual i grooming individual j increase with the probability
that individual j grooms individual i (i.e., dyadic reci-
procity)?, and 3) is the probability of individual i grooming
individual j associated with whether individual j “presents” 350

to individual i? (Presenting is defined as: “approaching
another individual gently with or without lipsmacks and
grunts and presenting the rear”; Gelardi et al. 2020).

As before, we start by organising the data:

# Number of grooming event and a

sample-size measure

nets = list(Grooming = Grooming)

exposure = list(Exposure = Exposure)

# Dyadic variable: transpose of

Presenting

dyad = list(Presenting = t(Presenting)

)

355

And then we compile the data into a STRAND object:
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Figure 5. Grooming data in captive Guinea baboons published
by Gelardi et al. (2020). Group structure is not modelled as no
individual-level data were provided. Variance in node degree is
estimated using random effects on the probability of providing
and receiving grooming.

dat = make_strand_data(

self_report = nets,

block_covariates = NULL,

individual_covariates = NULL,

dyadic_covariates = dyad,

outcome_mode = "binomial",

exposure = exposure

)

This time, the argument: outcome mode = "binomial"
is included. In order for the Binomial model to run, we also
need to store the sample size data, using: exposure =360

exposure.
This time, because we have no blocking variables, we use

the basic social relations model with no block-level effects.
We run this model using the function:

fit =

fit_social_relations_model(

data=dat,

focal_regression = ˜ 1,

target_regression = ˜ 1,

dyad_regression = ˜ Presenting ,

mode="mcmc",

stan_mcmc_parameters = list(

chains = 1,

iter_warmup = 1500,

iter_sampling = 1500,

max_treedepth = NULL,

adapt_delta = .98)

)

365

Finally, the results can be summarised and plotted:

# Summarize results

res = summarize_strand_results(fit)

The results are presented in Table 3 and Figure 6. We note
that the correlation, ρ, of focal and target effects is negative.
This indicates that baboons who frequently groom others370

Dyadic effects

Other estimates

−5.0 −2.5 0.0

dyadic effects coeffs, Presenting

intercept, any to any

(a) Effects of covariates.

Correlation

Dispersion

−1 0 1

dyadic effects rho

focal−target effects rho

dyadic effects sd

focal effects sd

target effects sd

(b) Variance and correlation of random effects.

Figure 6. Grooming data in captive Guinea baboons. Points
represent the posterior median, and bars represent 90%
highest posterior density intervals. Guinea baboons appear
more likely to groom conspecifics who regularly “present” to
them. Interestingly, the correlation, ρ, of focal and target effects
is negative. This indicates that baboons who frequently groom
others are less likely to be groomed themselves by others.
However, after accounting for this individual-level variation in
grooming propensity, there is evidence of dyadic reciprocation,
as indicated by the strong correlation, ρ in dyadic random
effects.

are actually less likely to be groomed themselves by oth-
ers. Such unidirectional behavioural propensities are con-
sistent with dominance hierarchies (e.g., Gullstrand et al.
2021) in which unbalanced benefits are tolerated. However,
after accounting for this individual-level variation in groom- 375

ing propensity, there is evidence of dyadic reciprocation,
as indicated by the strong correlation, ρ, in dyadic random
effects. Finally, in this sample of Guinea baboons, individu-
als appear more likely to groom conspecifics who regularly
“present” to them. 380

Table 3. Results of captive Guinea baboon grooming.
Type Variable Median HPDI:L HPDI:H Mean SD
random focal σ 0.865 0.529 1.242 0.896 0.234
random target σ 0.541 0.266 0.882 0.559 0.195
random dyadic σ 1.455 1.233 1.682 1.46 0.138
random focal-target ρ -0.483 -0.878 -0.068 -0.444 0.266
random dyadic ρ 0.603 0.369 0.779 0.59 0.128
dyadic Any to Any -5.645 -6.161 -5.225 -5.66 0.294
dyadic Presenting 0.339 0.159 0.491 0.341 0.103

Vaildating the models with simulated data
For interested readers, we include a detailed mathematical
description of our statistical models in the Supporting
Information. There, we walk readers through model spec-
ification, parameter interpretation, and model validation 385

procedures. We test each statistical model, for each outcome
mode (Bernoulli, Poisson, and Binomial) using a suite
of unit-tests (see also Redhead et al. 2021). Specifically,
we first generate network data using forward simulations
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Figure 7. Example of model validation results. In this case, we
vary the dyadic reciprocity parameter of a generative network
model and simulate test data-sets for a range of values,
ρδ ∈ (0.01, 0.8). We then use STRAND to estimate the model.
Black lines represent the generative parameter values. Yellow
regions represent estimated posterior distributions of the same
parameters. We find that our model accurately recovers all
generative parameters. We repeat this process for all
combinations of network models and outcome modes, varying
all key model parameters for each test case. See supporting
information for details.
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from a stochastic blockmodel, a social relations model,390

or the combined model, which includes both stochastic
blockmodel and social relations model parameters. We
then use the corresponding inferential statistical models
to analyse the simulated data sets and ensure that we can
recover the generative parameter values. In each simulation395

experiment, we generally vary only a single generative
parameter (e.g., the dyadic reciprocity coefficient) across a
broad parameter space that contains realistic values, while
fixing all other parameters in the model to empirically
plausible values. See Figure 7 for an example, and the400

Supporting Information for the full suite of unit-tests, which
all indicate that our models accurately recover generative
parameters.

Conclusions

The tools included in STRAND provide easy-to-use and405

efficient methods for generative modelling of human and
animal social networks. Here, we have outlined the func-
tionality of STRAND, defined the suite of models that are
included, and provided detailed unit-tests to show that
the software performs correctly. Using openly available410

example data-sets, we have provided tutorials for end-
users interested in running network analysis models in
R using STRAND. We hope that this software will help
end-users with limited programming experience easily
deploy otherwise complex statistical models, and thus415

effortlessly investigate fundamental research questions in
their fields of interest. End-users can find a complete index

of—and full documentations for—all functions included
in STRAND by visiting: https://github.com/ctross/
STRAND. Additional R code examples are provided there as 420

well.
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