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Abstract 

Sleep oscillations provide a key substrate to facilitate memory processing, the 

underlying mechanism of which may involve the overnight homeostatic regulation of 

plasticity at a synaptic and whole-network level. However, there remains a lack of 

human data demonstrating if and how sleep enhances memory consolidation and 

associated neural homeostasis. We combined intracranial recordings and scalp 

electroencephalography (EEG) in humans to reveal a new role for rapid eye movement 

(REM) sleep in promoting the homeostatic recalibration of optimal excitation/inhibition-

balance. Moreover, the extent of this REM-sleep homeostatic recalibration predicted the 

success of overnight memory consolidation, expressly the modulation of hippocampal—

neocortical excitability favoring remembering rather than forgetting. The findings 

describe a novel, fundamental role of human REM sleep in maintaining neural 

homeostasis, thereby enhancing long-term memory.    
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Introduction 

Contemporary theories of sleep function have proposed that the homeostatic regulation 

of excitability constitutes the physiologic mechanism of neural network plasticity 

facilitating overnight memory consolidation (Klinzing et al., 2019; Tononi and Cirelli, 

2014). Numerous behavioral studies support a key role of sleep for stabilization of 

recently acquired memoires and restoring processing capacities for next day learning 

(Girardeau and Lopes-dos-Santos, 2021; Klinzing et al., 2019; Walker and Stickgold, 

2006). Related, in vivo animals studies have revealed that wakefulness and learning 

lead to a progressive build-up of cellular synaptic potentiation and a net increase of 

excitability (Tononi and Cirelli, 2014; Vyazovskiy et al., 2008, 2009). In extreme, 

prolonged wakefulness using sleep deprivation in animal models impairs memory 

performance due to synaptic saturation (Huber et al., 2013; Weiss and Donlea, 2022). It 

has been proposed that, during sleep, a neural homeostatic process restores the 

optimal neural milieu for learning (Timofeev et al., 2001; Tononi and Cirelli, 2006, 2014). 

Specifically, accumulated daytime neural excitability is normalized through a process of 

enhanced neural inhibition and the elimination of synapses (termed ‘down-scaling’ or 

‘pruning’). Through such mechanisms, it is proposed that the brain re-establishes the 

optimal excitatory/inhibitory (E/I) balance (Born and Feld, 2012; Grosmark et al., 2012; 

Vyazovskiy et al., 2009; Watson et al., 2016). That is, E/I-balance might constitute a 

marker of the degree of cellular and network plasticity during sleep (Tononi and Cirelli, 

2006), though such a cellular-network proposal remains untested in humans, as does 

the possibility that this mechanism is functional and enhances human memory. The 

paucity of this knowledge relative to animal models exploring cellular synaptic pruning 

mechanisms (Li et al., 2017; Zhou et al., 2020) is a direct consequence of limited 

invasive recordings of neural processes in humans. 

To date, the majority of the evidence for cellular and network homeostasis of 

neural excitability during sleep suggested that NREM slow oscillations (SO; < 1.25 Hz) 

constitute a key mechanism of homeostatic (down-) regulation (Tononi and Cirelli, 2006, 

2014), since SOs periodically silence neural firing during ‘down-states’ (Steriade et al., 
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1993). Though less evidence exists, a similar role in rodent models has started to 

emerge for theta activity (4-10 Hz) during REM sleep (Grosmark et al., 2012). Unlike 

NREM SOs, which are common to both rodents and humans, only rodent REM sleep 

features prominent theta oscillations (Cantero et al., 2003), whereas human REM sleep 

is characterized by desynchronized electroencephalogram (EEG) activity without 

prominent oscillations. Therefore, traditional oscillations-centric approaches fail to 

capture homeostatic processes in human REM sleep; thus, there is a need to establish 

novel electrophysiological signatures of desynchronized, non-oscillatory brain activity.   

In the electrophysiological power spectrum, oscillations are defined as distinct 

peaks that rise above the exponential decay function (1/fx relationship between 

frequency and power; x reflects the spectral slope) of the background activity. 

Previously, background activity has often been discarded as neuronal noise (Voytek et 

al., 2015); however, recent findings revealed that it contains unique information about 

the underlying brain state (He, 2014; Lendner et al., 2020; Miller et al., 2009). Since 

background activity lacks a defining temporal scale, it has also been termed aperiodic or 

scale-free activity (Donoghue et al., 2020; He, 2014; Helfrich et al., 2021). Recently, 

novel computational models established that aperiodic brain activity captures the 

collective population activity of excitatory and inhibitory neurons (Chini et al., 2021; Gao 

et al., 2017). Specifically, increased inhibition results in a reduction (steepening of the 

EEG power spectrum) and excitation in an increase of aperiodic activity (flattening of the 

power spectrum; Chini et al., 2021; Gao et al., 2017). Furthermore, an important 

advantage of aperiodic features is that they can be obtained for every brain state 

including wakefulness from scalp and intracranial EEG; thus, providing a unique 

opportunity to link macro-scale signals to micro-scale properties (Chini et al., 2021; Gao 

et al., 2017; Kanth and Ray, 2020; Watson et al., 2018). Critically, recent findings 

revealed that REM sleep is associated with the most profound reduction of aperiodic 

activity during sleep (Lendner et al., 2020), i.e. reflecting an overall shift towards 

inhibition (Helfrich et al., 2021; Niethard et al., 2016). Thus, these novel assessment 

measures of aperiodic activity provide the opportunity to gain key insights into the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491801


 
 

` 

function of human REM sleep, especially concerning mechanisms regulating network 

excitability and inhibition underlying neural homeostasis.  

Aperiodic activity also tracks behaviorally relevant information, including arousal 

under general anesthesia, age-related cognitive decline or working memory 

performance (Donoghue et al., 2020; He, 2014; Lendner et al., 2020; Miller et al., 2009; 

Voytek et al., 2015). In addition, aperiodic activity has candidate properties to capture 

dynamics of overnight memory consolidation as its information-rich environment is 

optimal to imprint new mnemonic information onto existing circuits (Hanslmayr et al., 

2016; Helfrich et al., 2021). While theoretical accounts suggested that homeostatic 

synaptic pruning could benefit memory consolidation (Boyce et al., 2017; Klinzing et al., 

2019; Tononi and Cirelli, 2014), aperiodic activity now provides the necessary 

theoretical framework to link memory retention to the homeostatic regulation of neural 

activity in humans.  

These considerations imply an important and to date unappreciated role of 

human REM sleep for neural homeostasis and memory retention. The current study 

tested five specific predictions. (1) Neural homeostasis of excitability during sleep 

should selectively counteract accumulated daytime excitation through increased 

inhibition. Thus, aperiodic activity as a marker of population E/I-balance should increase 

during the day (reflecting excessive excitation) and decrease after sleep, thereby, 

restoring the optimal E/I-balance for the next day. (2) Conversely, sleep loss will abate 

this homeostatic regulation, resulting in a surplus of excitation. (3) As REM sleep is 

characterized by increased inhibition concomitant with the strongest reduction of 

aperiodic activity (Lendner et al., 2020; Niethard et al., 2016), we hypothesized that 

REM sleep, rather then NREM sleep, mediates the overnight homeostatic control of 

excitability. If this downregulation is functionally relevant rather than epiphenomenal, 

then (4) the degree of aperiodic modulation should predict individual memory retention 

and (5) this modulation should preferentially occur in the neocortex, the key node for 

human long-term memory retention (Frankland and Bontempi, 2005). 
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 We tested these predictions using invasive and non-invasive electrophysiological 

recordings in humans. We combined an overnight episodic memory task (Helfrich et al., 

2018; Mander et al., 2013) with scalp EEG recordings of resting state before and after 

habitual sleep (study 1a; N = 40; Fig. 1), as well as after sleep deprivation (study 2; N = 

12; Fig. 1) using novel tools for spectral parameterization to estimate population E/I-

balance (Donoghue et al., 2020). Furthermore, we examined the aperiodic activity in 

overnight sleep recordings using either scalp EEG (study 1b; N = 40; Fig. 2) and 

simultaneous scalp and intracranial EEG recordings (study 3; N = 15; 498 bipolar 

contacts; Fig. 3) in patients with pharmacoresistant epilepsy that underwent invasive 

monitoring before surgical removal of the epileptic focus to access cortical and 

subcortical structures with high spatiotemporal resolution.  

 

Results 

Aperiodic activity is downregulated during sleep  

To test whether homoeostatic downregulation of aperiodic activity occurred 

during sleep, the study employed resting state scalp EEG recordings in three cognitive 

states (N = 40; cognitive engagement during backward counting, eyes open central 

fixation, eyes closed quiescent rest) before and after a night of habitual sleep. Spectral 

analysis revealed a broadband power decrease after sleep in all frequencies above 11 

Hz and across the majority of EEG sensors (Fig. 1A; averaged across all conditions, 

cluster test; p = 0.0020, d = 0.86). Importantly, this broadband modulation was solely 

driven by changes of non-oscillatory aperiodic brain activity (Fig. S1A). 

Aperiodic activity was estimated from three parameters of the 

electrophysiological power spectrum: spectral slope x (the negative exponent of the 1/fx 

decay function), y-intercept and the population time constant (the frequency where a 

bend/’knee’ occurs in the 1/f spectrum). Note that the slope and y-intercept provided 

redundant information (correlated at rho = -0.98), thus, subsequent analyses focused on 

the spectral slope. In line with a homeostatic downregulation of aperiodic activity, the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491801


 
 

` 

spectral slope was more negative after habitual sleep, with the peak effect over frontal 

EEG sensors (inset Fig. 1A; cluster test; p = 0.0180, d = 0.32; Fz: PM: -2.76 ± 0.03, 

AM: -3.04 ± 0.03; mean ± SEM). Importantly, while there was a significant difference of 

the spectral slope between cognitive states (F1.6,63.0 = 33.32, p < 0.0001), all conditions 

exhibited a downregulation of aperiodic activity after sleep (Fig. 1B; 2-way RM-ANOVA 

at Fz; PM/AM: F1,39 = 6.35, p = 0.0159, interaction: F2.0,77.8 = 0.37, p = 0.69). To rule out 

potential confounds of muscle activity as a function of time of day, the analysis was 

repeated on the EMG. While muscle activity varied as a function of cognitive state 

(F2.0,76.0 = 5.07, p = 0.0086; interaction: F1.7,65.2 = 0.91, p = 0.3944), indicating more 

EMG-related activity in the two eyes open conditions, this was not the case for time of 

day (Fig. S1B; 2-way RM-ANOVA; PM/AM: F1,38 = 3.00, p = 0.0916; EMG was not 

available in one participant). Hence, subsequent analyses were performed on eyes 

closed data (highest signal-to-noise ratio across subjects; Fig. S1C). Taken together, 

these findings demonstrate that aperiodic activity undergoes a physiologic 

downregulation during the night. 
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Fig. 1 

 

Overnight modulation of aperiodic activity predicts memory retention and is attenuated by sleep 
deprivation (A) Grand average EEG power spectra before (PM) and after (AM) habitual sleep (N = 40; 
averaged across three conditions and all electrodes in cluster: cognitive engagement, eyes closed and 
central fixation; semi-log representation) indicate a broadband power decrease (11-50 Hz) over all 
electrodes (inset upper right) after sleep. Inset lower left: A decrease of spectral slope over frontal 
sensors (visualized at max. Fz) mirrors the broadband power decrement. (B) Left: Log-log spectral 
representation at Fz per cognitive state reveals that the power decrement is frequency-specific but state-
invariant. Estimates of aperiodic background activity (dashed lines; FOOOF method) indicate a 
characteristic bend (‘knee’; black arrow) of the power spectrum. Right: State-invariant decreases of the 
spectral slope after sleep (Fz; paired one-tailed t-test). (C) Episodic word pair task. Participants learned 
120 word-nonsense word associations. After encoding (left), participants were trained to criterion (center) 
prior to sleep and then performed recognition test prior and after sleep (right). (D) Cluster-corrected 
correlation analysis revealed a significant association between slope modulation (FOOOF model) and 
memory retention: Participants who showed a stronger slope decrease from PM to AM exhibited better 
memory retention. (E) The correlation analysis was repeated for different fit parameters (1st degree 
polynomial fitting; purple: 10 Hz wide fitting range with variable center frequencies (x-axis); green: fitting 
range with fixed start at 1 Hz and variable end point (x-axis); orange: fitting range with variable start (x-
axis) and fixed end point at 45 Hz; visualized over midline EEG sensors) reveals the strongest EEG-
behavioral correlation in the range from 25-45 Hz (inverted y-axis). Note that the correlation was reversed 
or non-significant if frequencies below the spectral knee were included (Fig. S1F). Correlation values 
were transformed to t-values, dashed lines indicate two-tailed p < 0.05 as derived from the inverse 
cumulative distribution function. (F) Distribution of spectral knees across all subjects, conditions and 
electrodes reveals a median knee frequency of 12.9 Hz (SD = 7.07 Hz; lower cut-off = 20 Hz 
(mean+1SD); cf. panel E). (G) Left: Eyes open resting state recordings in the AM reveal a broadband 
power increase after sleep deprivation (N = 12; cluster test: cluster 2-6 Hz, p = 0.04, d = 0.72; cluster 19-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.13.491801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.13.491801


 
 

` 

47 Hz, p = 0.0040; d = 0.87; visualized at Cz) over central sensors (inset), accompanied by an increase of 
spectral slope (right). (H) Comparison to pre-sleep eyes open recordings (PM) replicates the broadband 
down regulation by sleep from Study 1 (cf. panel A/B) while (I) sleep deprivation attenuates this effect. (J) 
Sleep-mediated physiologic broadband power decrease (red; AM vs. PM) and the adverse increase 
following sleep deprivation (orange; AM slept vs. AM sleep-deprived). 

 

Homeostasis of aperiodic activity predicts successful memory retention 

Having established a homeostatic modulation of aperiodic activity across sleep, 

we next investigated whether this modulation predicted long-term memory retention. 

Participants performed a sleep-dependent episodic memory test (Fig. 1C; 36 subjects 

completed behavioral testing). After encoding, participants were trained to criterion 

before initial recognition testing in the evening (Helfrich et al., 2018; Mander et al., 

2013). After 8 h of sleep starting at their habitual bedtime, they performed the second 

recognition test the next morning. Participants who exhibited a stronger modulation of 

aperiodic activity (decrease of the spectral slope) demonstrated better memory retention 

(Fig. 1D; cluster test; p = 0.0011; mean rho = -0.36; Fig. S1D). This effect was not 

confounded by EMG activity or age (Fig. S1E; Spearman partial correlation at Fz: EMG: 

rho = -0.45, p = 0.0069; age: rho = -0.46, p = 0.0050). Next, we tested whether the 

correlation depended on the precise fitting range (first-degree polynomial fitting; Fig. 
1E). Indeed, a significant correlation between behavior and slope was observed for 

center frequencies > 20 Hz (high congruence to initial parametrized estimates: 

Spearman rho = 0.99) with a peak in the range from 25-45 Hz. This effect was not 

biased by the presence of a spectral ‘knee’ below this frequency range (bend of the 

PSD at ~12.9 Hz ± 7.1 Hz; median ± SD; reflecting a population time constant during 

wakefulness; Fig. 1F) where fits below or encompassing the knee frequency rendered 

the observed correlation non-significant (Fig. 1E and Fig. S1F). Collectively, this set of 

findings demonstrated that downregulation of aperiodic brain activity across the night is 

associated with memory retention. 
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Sleep deprivation attenuates homeostatic regulation of aperiodic activity  

Having characterized the spatiotemporal extent of the homeostatic regulation, we 

next assessed the causal role for sleep in the modulation of aperiodic activity across the 

night in an independent cohort that was sleep-deprived (N = 12; eyes open, central 

fixation). A disruption of habitual sleep resulted in a broadband power increase over 

central sensors (inset Fig. 1G; cluster test; p = 0.0030, d = 0.81), evident as a flattening 

of the spectral slope (post habitual sleep: -3.18 ± 0.20; sleep deprivation: -2.91 ± 0.22). 

Given the different electrode layouts between the two studies, all subsequent analyses 

were focused on the common central electrode Cz. First, the broadband power 

decrease after sleep was replicated (cf. Fig. 1A) using a between subject design (Fig. 

1H; cluster test; p = 0.0070, d = 0.81). Statistical comparison to pre-sleep resting states 

revealed that sleep deprivation attenuated the observed modulation of aperiodic activity 

(Fig. 1I), and led to an increase of low frequency activity (cluster test; 1-9 Hz; p = 

0.0200, d = 1.23, a finding in line with observations of slow waves after prolonged 

wakefulness (Vyazovskiy et al., 2011)). When directly contrasting the benefits of 

habitual sleep and adverse effects of sleep deprivation (Fig. 1J), a broadband shift 

between both conditions was observed (cluster test; cluster 14-48 Hz; p < 0.001, d = 

1.50; cluster 1-7 Hz; p = 0.0180, d = 1.56). Taken together, these findings establish that 

causal manipulation of neural homeostasis by sleep deprivation attenuates the 

downregulation of aperiodic brain activity. 

 

Aperiodic activity in REM sleep recalibrates neural excitability 

 Next, we sought to determine if REM sleep, characterized by increased inhibition 

(Lendner et al., 2020) and implicated in reorganizing neuronal excitability (Grosmark et 

al., 2012), mediates downregulation of aperiodic activity. Theta oscillations have been 

implicated in maintaining network homeostasis in rodents, but are less prominent in 

humans than in rodents (Fig. S2A/B). Therefore, subsequent analyses focused on 

aperiodic activity, which had previously been shown to index inhibitory drive during REM 

sleep (Lendner et al., 2020). Specifically, we asked whether aperiodic brain activity 
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during REM sleep can predict a homeostatic modulation from one NREM epoch to the 

next one as well as to overnight modulation (cf. Fig. 1A). Consistent with previous 

findings, the spectral slope was more negative during REM sleep compared to NREM 

and wakefulness (Fig. 2A/B; 1-way ANOVA: F2.9,75.3 = 61.78, p < 0.0001; wake: -3.18 ± 

0.15; NREM: -3.41 ± 0.07; REM: -4.41 ± 0.15).  

Importantly, a state-dependent modulation of the population timescale (Gao et 

al., 2020) as indexed by a change of knee frequency was observed (Fig. 2B; 1-way 

ANOVA: F2.0,77.1 = 32.21, p < 0.0001; wake: 9.88 ± 0.44 Hz; NREM: 6.45 ± 0.06 Hz; 

REM: 8.42 ± 0.46 Hz). When contrasting the first and last NREM segment of the night, a 

broadband spectral power modulation was evident (Fig. 2C; p < 0.001, d = 0.80) with a 

similar spatial extent as the homeostatic effect across the night (cf. Fig. 1A and Fig. 

S2C). The broadband modulation had a steepening of the spectral slope (paired one-

tailed t-test: t39 = 2.40; p = 0.0107, d = 0.38), but did not encompass the SO range (< 4 

Hz). When directly contrasting the first and last REM episode of the night, however, 

modulations were band-limited (Fig. 2D; cluster test; cluster 1-23 Hz, p = 0.0090, d = 

0.55; cluster 28-40 Hz, p = 0.0380, d = 0.39) and were not driven by a change in 

aperiodic activity (paired one-tailed t-test: t39 = -0.65, p = 0.7426, d = -0.10), resembling 

previous findings in rodents (Grosmark et al., 2012).  

To determine if REM sleep mediates the modulation of aperiodic activity in 

subsequent NREM epochs, time-normalized triplets of NREM-REM-NREM sleep were 

extracted (Fig. 2E). State-specific oscillatory patterns (Fig. 2E, central panel) were only 

apparent after subtraction of aperiodic activity from composite power spectra (Fig. 2E, 

upper panel). Aperiodic activity, quantified as the spectral activity slope, was strongly 

modulated over the course of the triplet (Fig. 2E, lower panel). Statistical comparison of 

the spectral slope during REM and NREM sleep showed a brain-wide difference that 

peaked over frontal sensors (cluster test; p < 0.001, d = 0.97).  

Consistent with a homeostatic influence of REM sleep on NREM, a greater 

negative spectral slope (i.e. a stronger downregulation of aperiodic activity) was 

observed in NREM epochs after a REM episode compared to before (Fig. 2F; paired 
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two-tailed t-test; t39 = 4.04, p = 0.0002, d = 0.64). On an individual level, a more 

negative spectral slope in REM sleep predicted a stronger modulation across the triplet 

(Fig. 2G; cluster test; p = 0.001, mean rho = 0.44; peak correlation at Fz rho = 0.65). 

This relationship remained unchanged after accounting for theta power (partial 

correlation: rho = 0.59, p < 0.0001) and was also apparent when the REM slope was 

correlated against the individual difference between first and last NREM segments of 

the night (Fig. 2H; cluster test; p = 0.0470, mean rho = 0.36; cf. Fig. 2C). Moreover, this 

effect was not confounded by SO power (Fig. S2D; Spearman partial correlation; rho = 

0.37, p = 0.0189) or REM theta power (rho = 0.34, p = 0.0349).  

Importantly, this modulation reliably predicted individual memory performance 

(Fig. 2I; cluster test; p = 0.049, mean rho = -0.34), and became even more robust after 

accounting for theta power (partial correlation; rho = -0.49, p = 0.0025), thus, providing 

additional support for the behavioral relevance of changes in aperiodic activity (cf. Fig. 

1D). Collectively, these observations indicate that aperiodic activity tracks population 

E/I-balance across different brain states. Specifically, aperiodic activity during REM 

sleep predicts sleep-dependent homeostasis across the night with stronger reduction of 

aperiodic activity leading to superior memory retention.  
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Fig. 2 

 

Aperiodic activity during REM sleep mediates overnight spectral modulation and memory 
retention (A) Grand average power spectrum for different sleep stages. Grey shaded area indicates the 
peak fitting range (cf. Fig. 1E). Inset: Aperiodic activity and spectral knee. (B) Features of the aperiodic 
activity indicate a state-specific dissociation. (C) Spectral modulation across NREM sleep demonstrates a 
brain-wide (upper panel), broadband power reduction (lower left), which was well captured by a decrease 
of the spectral slope (lower right). (D) Spectral modulation across REM sleep shows a widespread (upper 
panels) frequency-specific (lower left) effect, which left the spectral slope unchanged. (E) Upper: Time-
normalized triplet of adjacent NREM-REM-NREM segments (visualized at Cz). Center: Spectral residuals 
after subtraction of aperiodic activity reveal state-specific oscillatory signatures (NREM: spindle activity 
~14 Hz; REM: theta activity at ~6 Hz; visualized in young adults to attenuate the spindle slowing-related 
spectral smearing). Lower: Spectral slope over time across all subjects. Note a decrement during REM 
sleep followed by a net decrease in subsequent NREM segment. Inset: Topographical depiction of slope 
differences between NREM and REM sleep reveal a frontal maximum (visualized at Fz). (F) Average 
spectral slopes across the triplet reveal significant time-dependent differences. (G) The spectral slope 
during REM sleep predicted the slope difference from NREM-pre to NREM-post (topographical inset 
depicts spatial extent), i.e. the steeper the slope during REM, the larger the down-modulation between the 
adjacent NREM segments. (H) A similar pattern was observed over frontal sensors, when the average 
REM slope was correlated against the difference between first and last NREM segment of the night (cf. 
panel C). (I) Confirming and extending the observation in Fig. 1D, a large down-regulation of slope across 
NREM sleep predicted better memory performance.  
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Distinct aperiodic activity regimes govern REM sleep in MTL and PFC 

Regional population E/I-balance was assessed in intracranial recordings (N = 15) 

in two key nodes of the human memory network, the prefrontal cortex (PFC) and the 

medial temporal lobe (MTL). Contemporary theoretical frameworks posit that long-term 

memory consolidation is associated with human PFC plasticity (Frankland and 

Bontempi, 2005; Klinzing et al., 2019) and we tested if the homeostatic modulation 

differentially impacts PFC and MTL. Analogous to previous work (Grosmark et al., 2012; 

Watson et al., 2016), a set of parameters was obtained, including the number of frontal 

SOs, frontal spindles and hippocampal ripples as well as spectral slopes, high 

frequency power and active episodes (Methods) in the MTL and PFC (Fig. 3A).  

Across the night (comparison of NREM thirds; Fig. 3B), the count of SOs (1-way 

RM-ANOVA across all thirds; F1.6,22.2 = 8.01, p = 0.0041, d = 0.90), spindles (F1.7,24.4 = 

8.76, p = 0.0020, d = 1.10) and the PFC slope (F1.8, 25.6, p = 0.0160, d = 0.57; all other 

markers p > 0.21) showed significant decreases. Subsequently, triplets for all subjects 

were extracted separately for MTL and PFC (Fig. 3C). A state- and region-specific 

modulation of the spectral slope was observed (Fig. 3D) with a prominent functional 

dissociation between the MTL and PFC (Fig. 3D; 2-way RM-ANOVA; ROI: F1,14 = 9.38, 

p = 0.0084; stage: F1.2,17.1 = 0.64, P = 0.4672; interaction: F1.2,17.7 = 21.95, p = 0.0001). 

This analysis revealed a steepening of the PFC power spectrum during REM sleep (cf. 

Fig. 2E; paired two-tailed t-test; t14 = 3.44, p = 0.0039, d = 0.89) as well as a net 

decrease in aperiodic activity after a REM episode (replication of Fig. 2F; t14 = 2.26, p = 

0.0403, d = 0.58). Critically, the pattern was reversed in the MTL (increase of the 

spectral slope during REM; t14 = -4.68, p = 0.0004, d = 1.21) and no REM-mediated 

modulation was observed (t14 = -0.16, p = 0.8772, d = 0.04).  

In sum, these results reveal a double dissociation between the PFC and MTL 

REM sleep with increased inhibition observed during neocortical PFC indexed REM 

sleep providing the optimal neurophysiological milieu to induce neuroplasticity in support 

of long-term memory retention. In contrast to neocortical inhibition, a switch to more 
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excitable dynamics was evident in the MTL, where no REM-mediated homeostatic 

down-regulation was observed.  

 Analysis of high frequency band (HFB) activity, a marker of multi-unit firing and 

dendritic synaptic potentials (Leszczyński et al., 2020), confirmed the observation of 

enhance hippocampal excitability. Mean HFB activity only changed in MTL but not PFC 

over the course of the triplet (MTL: F1.3,18.9 = 15.94, p = 0.0003; PFC: F1.5,21.7 = 0.39, p = 

0.6279) with no homeostatic modulation (both p-values > 0.59). However, we found a 

dispersion of activity patterns across all recording sites (Fig. 3D, last row). Population 

vector analysis (Ebitz and Hayden, 2021) revealed a regionally-specific modulation of 

the multidimensional distance across the triplet (2-way RM-ANOVA; ROI: F1,14 = 42.07, 

p < 0.0001, state: F1.2,16.6 = 3.77, p = 0.0634; interaction: F1.5,21.3 = 1.84, p = 0.1878), 

which reflects a more heterogeneous and less synchronized population response. 

Importantly, we again observed homeostatic downscaling following REM sleep in PFC 

(t14 = 2.50, p = 0.0253, d = 0.65) but not in the MTL (t14 = 1.24, p = 0.2354, d = 0.32). To 

further quantify the REM-mediated modulation, we separately correlated the overall 

REM slope (analogous to Fig. 2G/H) with surrogate excitability markers.  

Larger negative slopes during REM sleep predicted increased overnight 

hippocampal ripple activity (Spearman rho = -0.75, p = 0.0018), HFB activity (rho = -

0.70, p = 0.0046) and active periods (rho = -0.64, p = 0.0129). This was observable on 

the individual subject level (Fig. 3E), including a steepening of the spectral slope across 

the night (Fig. 3E; rho = 0.68, p = 0.0073; replicating Fig. 2H). Importantly, the same 

relationship between REM and the overnight slope decrease was observed in PFC (Fig. 

3F; rho = 0.16, ppseudo-population = 0.0029, plme = 0.0266; t345 = 2.23; CI95 = [0.007 0.109]; 

p-values were calculated in a pseudo-population and confirmed using a linear mixed 

effects models with subjects as random intercepts). In addition, the count of prefrontal 

SO (rho = -0.19, ppseudo-population = 0.0004, plme = 0.1012; t345 = 1.64; CI95 = [-0.001 

0.012]) and spindles changed as a function of REM slope (rho = 0.11, ppseudo-population = 

0.0380, plme = 0.0599; t345 = -1.89; CI95 = [-0.009 0.0002]). The spindle modulation 

exhibited an opposite pattern between medial and lateral frontal cortex, with a decrease 
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in medial and an increase in lateral prefrontal regions (Fig. 3F; plme = 0.0157; t345 = 2.43; 

CI95 = [5x10-5 5x10-4]).  

Together, these results reveal that aperiodic activity during REM sleep predicts 

homeostatic modulation of neural excitability in sleep. There was a region-specific 

modulatory influence on NREM oscillations: while homeostatic modulation of aperiodic 

activity in the MTL predicted a modulation of hippocampal ripples, neocortical activity 

predicted a modulation of SOs and spindles. Critically, the post-REM excitability 

modulation was confined to the neocortex indicating that REM-mediated homeostatic 

downregulation preferentially impacts neocortical regions to support long-term memory 

retention.  
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Fig. 3 

 

Aperiodic activity indexes sleep homeostasis and functionally dissociates medial temporal and 
prefrontal cortex (A) Upper: Single subject example of NREM-REM-NREM triplet (visualized at Fz) of a 
participant with implanted electrodes in the MTL and PFC. Center: Mean waveform shapes of detected 
frontal SOs (red) and spindles (blue), as well as MTL ripples (green) and the rate modulation across the 
triplet with a prominent decrease during REM sleep. Lower: Average spectral slopes in the MTL and PFC 
across the triplet reveal a clear dissociation, with a flattening of the spectral slope in MTL during REM and 
a steepening in PFC. (B) Different surrogate markers indexing neuronal excitability across sleep highlight 
significant reductions in SO and spindle counts as well as frontal spectral slopes. (C) Electrode coverage 
across 15 participants with simultaneous coverage in the MTL and PFC. In every participant, we selected 
one MTL channel with the lowest number of epileptic discharges outside of the seizure onset zone for 
subsequent analyses. (D) Row 1: Spectral slope time-resolved across the triplet. Note the prominent, 
REM-mediated antagonistic modulation between PFC and MTL. We observed a reduction (steepening) of 
the spectral slope in NREM-post as compared to NREM-pre in PFC, but not MTL. Row 2: Average high 
frequency power (HFB; 120-200 Hz; above the ripple range) shows no modulation in PFC, and only little 
modulation across the triplet in MTL with no differences from pre- to post-NREM sleep. Row 3: Population 
activity (multidimensional distance (MDD) of the HFB trajectory in state space) highlights elevated 
population dynamics during REM sleep (i.e. dispersion of activity patterns), with a net decrease after REM 
sleep in the PFC. (E) MTL: Spearman rank correlations between REM slope difference (last 3rd – 1st 
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third, cf. panel B) and surrogate markers of neuronal excitability. A more negative slope during REM was 
associated with an increase in MTL ripple count (see i), high frequency power (see iii) and active periods 
(see iv), as well as a steepening of the PSD slope (ii). (F) The same analysis for the PFC showed a 
modulation of SO count (i), spindle count (iii) and PFC slope (ii) as a function of the REM slope at the 
given electrode (p values are reported for the Spearman correlation at the pseudo-population (pp) level as 
well as for a linear mixed effects model with subjects as random intercepts). Additionally, an inverse 
relationship between REM slope and spindle count was observed(iv), and was driven by prominent 
spatially specific differences. While the overall number of spindles was reduced over medial PFC, lateral 
and orbitofrontal PFC exhibited an increase across the night. 

 

Discussion 

Our results from three independent studies demonstrated that REM sleep 

mediates sleep-dependent neural homeostasis by downregulation of excitability in 

humans, which predicted the success of subsequent overnight long-term memory 

retention. While previous work has primarily focused on sleep oscillations (Klinzing et 

al., 2019; Miyawaki and Diba, 2016; Tononi and Cirelli, 2014), and largely those of 

NREM sleep, these results reveal that non-oscillatory, aperiodic activity during REM 

sleep is an inherent characteristic of the functional organization of the sleeping human 

brain. Unlike state-specific sleep oscillations, aperiodic activity can be estimated for 

every state including wakefulness constituting a marker to directly compare activity 

across different neural and behavioral states. A causal manipulation of neural 

homeostasis through the removal of sleep using total overnight deprivation resulted in 

an increase in excitation and an attenuated downregulation of aperiodic activity. 

Furthermore, REM sleep mediated overnight neural homeostasis by down-regulating 

aperiodic activity to establish optimal excitation/inhibition-balance. In addition, it was 

during REM sleep that a pronounced functional and anatomical dissociation was 

observed between two key brain regions for memory, the MTL and neocortex. 

Specifically, the MTL switched from a stable inactive state in NREM sleep to a transient 

active state during REM sleep, while the neocortex transitioned from an active to an 

inactive state. Moreover, REM sleep mediated the homeostatic regulation of oscillatory 

NREM sleep signatures in a spatially specific manner, with aperiodic activity in the MTL 

indexing the modulation of hippocampal ripples, while neocortical aperiodic activity 

predicted SO and spindle modulation. These findings indicate a novel interactions 
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between sleep-stages, such that the expression of NREM sleep oscillations are 

governed as a function of the modulation of population level excitatory versus inhibitory 

balance by the preceding REM sleep episode.  

 

E/I-balance tracks neural homeostasis during sleep  

Returning to the fundamental experimental hypothesis, exactly how does the 

sleeping brain regulate neural homeostasis to meet the demands of optimal function, 

including that required for information processing and memory retention? During 

wakefulness and learning, new synapses are formed, existing connections are 

strengthened and overall neural firing increases, thus, resulting in an accumulation of 

excitation with time spent awake (Maret et al., 2011; Vyazovskiy et al., 2008, 2009). 

Sleep has been proposed to counteract this progressive build-up of excitation to 

maintain healthy neural functioning, with sleep deprivation attenuating such homeostatic 

regulation and impairing cognitive processes and memory formation (Huber et al., 2013; 

Vyazovskiy et al., 2009; Weiss and Donlea, 2022).  

On the cellular level, sleep reduces neural firing (Vyazovskiy et al., 2009) and 

promotes synapse elimination (Maret et al., 2011; Vyazovskiy et al., 2008) to rebalance 

excessive daytime excitation. At the population level, strong inhibitory bouts occur as 

‘down states’ during sleep, which manifest as SOs in meso- and macro-scale recordings 

(Steriade et al., 1993; Timofeev et al., 2001). Hence, one seminal hypothesis posits that 

SO-mediated post-synaptic depression counteracts excitation to restore the optimal E/I-

balance (Tononi and Cirelli, 2006, 2014). While SOs and related NREM sleep 

oscillations exhibit several candidate properties (Miyawaki and Diba, 2016; Norimoto et 

al., 2018), how the homeostatic excitability regulation as observed on the cellular level 

translates to macro-scale recordings at the in vivo level in the human cortex it poorly 

understood, despite being fundamental for affirming sleep-dependent neural network 

recalibration and its functional consequences.  
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Novel computational models have proposed a missing link between cellular and 

macro-scale signals (Chini et al., 2021; Gao et al., 2017). Specifically, aperiodic activity 

as indexed by the spectral exponent of the PSD predicts the E/I-balance of the 

underlying neuronal population (Gao et al., 2017; Helfrich et al., 2021; Lendner et al., 

2020). The present findings tested the prediction that aperiodic activity is 

homeostatically regulated during sleep. While physiologic sleep increased inhibition 

(decreased the spectral exponent), sleep deprivation attenuated the homeostatic 

regulation (increased the spectral exponent). In contrast to the popular notion that 

inhibition is maximized during NREM sleep given the ubiquitous expression of SOs 

(Steriade, 2003), the strongest inhibition was observed during REM sleep. This 

observation raises the question if REM sleep inhibition mediates the overnight 

recalibration of population E/I-balance in humans.  

 

REM sleep inhibition recalibrates the E/I-balance during sleep 

While SOs during NREM sleep have typically been linked to inhibition (Steriade, 

2003), mounting evidence suggests that such NREM sleep consequences are nuanced, 

and also reflect a brain state of considerable excitability (Klinzing et al., 2019; Tamaki et 

al., 2020; Watson et al., 2016). For example, NREM sleep increases synaptic strength 

and neural firing at a cellular level (Yang et al., 2014). At the population level, the 

cardinal oscillations of NREM sleep actively coordinate the hippocampal-neocortical 

dialogue to enable information reactivation, transfer and consolidation (Buzsáki, 2015; 

Klinzing et al., 2019). Thus, NREM sleep oscillations, including SOs, have been 

suggested to mediate neuroplasticity through repetitive replay of firing sequences 

(Buzsáki, 2015; Ólafsdóttir et al., 2018) and the memory-specific upregulation of 

synapse formation (Yang et al., 2014), thus reflecting a potential state of increased net 

excitation, in addition to co-occurring benefits of synaptic downscaling (Tononi and 

Cirelli, 2006, 2014).  

In contrast, emerging evidence in animal models indicates a possible neuronal 

inhibitory state for REM sleep (Timofeev et al., 2001). At a cellular level, REM sleep 
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promotes global synapse elimination (Li et al., 2017; Zhou et al., 2020). Moreover, two-

photon calcium imaging (Niethard et al., 2016) and in-vivo electrophysiology studies 

(Grosmark et al., 2012; Watson et al., 2016) report a global reduction of neural firing 

with a selective increase of inhibitory cell activity during REM sleep, in accord with 

macro-scale findings demonstrating a reduction of aperiodic activity reflecting net 

inhibition (Lendner et al., 2020). The present results provide direct in vivo evidence 

corroborating this proposal in human cortex, showing that REM-mediated inhibition 

recalibrates excitability dynamics of the brain during this sleep state (Grosmark et al., 

2012; Helfrich et al., 2021; Placidi et al., 2013; Watson et al., 2016). First, aperiodic 

REM activity predicted the homeostatic downregulation of the E/I-balance across the 

night. Second, REM sleep mediated a spatially specific homeostatic regulation of NREM 

sleep oscillations, such as SOs, spindles and ripples. Collectively, these findings reveal 

that homeostatic control of excitability is a core function of human REM sleep. 

 

REM sleep-mediated neural homeostasis predicts memory retention 

Is the change in E/I-balance during REM sleep epiphenomenal, or instead, 

functional, specifically regarding sleep-dependent overnight memory processing (Born 

and Feld, 2012)? At the cellular level, consolidation of mnemonic representations 

requires a selective, activity-dependent elimination of synapses (Tononi and Cirelli, 

2006). As this ‘down-scaling’ occurs primarily in sleep, prolonged wakefulness is 

proposed to result in hyper-excitability and synapse saturation leading to impaired 

memory function (Basner et al., 2013; Bridi et al., 2020; Vyazovskiy et al., 2009). 

Consistent with this proposition, when inhibitory cells are optogenetically inactivated 

during REM sleep in rodents, neural excitability increases and memory formation is 

impaired (Boyce et al., 2016). Conversely, REM sleep deprivation in rodents reduced 

synaptic plasticity (McDermott et al., 2006).  

This set of findings suggests a role for REM sleep in maintaining neural E/I-

balance in support of memory retention. The present scalp and intracranial cortical 

recordings in humans confirm that REM sleep mediates the downregulation of cortical 
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excitability during the night. This recalibration benefit from reduced neural excitability 

had a functional benefit predicting successful next day memory retention. Indeed, this 

memory enhancement association was regionally specific to a local cortical network, 

that of the prefrontal cortex, in line with the idea that neocortical areas house long-term 

mnemonic storage (Frankland and Bontempi, 2005). 

 

Conclusions 

Collectively, these findings uncover a fundamental role of human REM sleep in 

maintaining the neural homeostasis between excitation and inhibition, one that supports 

long-term memory formation. Our results establish that the homeostatic recalibration 

association with REM sleep activity constitutes an inherent and previously unidentified 

functional property of the sleeping brain, which dynamically controls experience-

dependent excitability to enhance memory consolidation. 
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Materials and Methods 

 

Participants 

Study 1: 26 healthy older (73.0 ± 5.4 years; mean ± SD) and 14 younger adults 

(20.6 ± 2.2 years; mean ± SD) participated in the study. All participants provided written 

informed consent according to the local ethics committee (Berkeley Committee for 

Protection of Human Subjects Protocol Number 2010-01-595) and the 6th Declaration of 

Helsinki. Here we report a subset of participants from a larger cohort that completed 

three resting state recordings in addition to overnight sleep recordings(Helfrich et al., 

2018; Mander et al., 2013).  

Study 2: 12 young healthy controls (mean age: 23.2 ± 1.1 years; seven men, five 

women) participated in the study. All participants provided written informed consent 

according to the local ethics committee at the University of Mannheim (Protocol number 

2010-311N-MA) and the 6th Declaration of Helsinki. The resting state data was acquired 

in the context of a larger study investigating the effects of sleep deprivation on 

habituation, but have not been reported previously (Schuh-Hofer et al., 2015).  

Study 3: We obtained intracranial recordings from 15 pharmacoresistant epilepsy 

patients (35.0 ± 11.1 years; mean ± SD; 9 female) who underwent pre-surgical 

monitoring with implanted depth electrodes (Ad-Tech), which were placed stereo-

tactically to localize the seizure onset zone. All patients were recruited from the 

University of California Irvine Medical Center, USA. Electrode placement was 

exclusively dictated by clinical considerations and all patients provided written informed 

consent to participate in the study. Patients selection was based on MRI confirmed 

electrode placement in the MTL and PFC from a larger cohort (Helfrich et al., 2019; 

Lendner et al., 2020). We only included patients where one seizure free night was 

available and a sufficient amount of REM sleep was recorded (see inclusion criteria 

below). The study was not pre-registered. All procedures were approved by the 

Institutional Review Board at the University of California, Irvine (protocol number: 2014-

1522) and conducted in accordance with the 6th Declaration of Helsinki. 
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Experimental design and procedure 

Study 1: All participants were trained on the episodic word-pair task in the evening 

and performed a short recognition test after 10 min. Then, participants were offered an 8 

h sleep opportunity, starting at their habitual bedtime (Table S1). Resting state 

recordings were obtained directly before and after sleep. Polysomnography was 

collected continuously. Participants performed a long version of the recognition test 

approximately 2 h after awakening. Subsequently, we obtained structural MRI scans 

from all participants. Two older adults did not complete behavioral testing, and two 

young adults failed to achieve criterion at encoding. Thus, these four subjects were 

excluded from behavioral analyses, but were included in all electrophysiological 

analyses.  

Study 2: In the three days prior to the experiment,  sleep was monitored using an 

Actiwatch Device (Philips Respironics, Amsterdam). Participants were randomly 

assigned to either start in the sleep deprivation or habitual sleep group. In the 

experimental night, participants were either allowed to sleep and monitored using the 

Actiwatch device or kept awake and engaged by an experimenter. Recordings were 

obtained in the late AM or around noon.  

Study 3: We recorded a full night of sleep for every participant. Recordings typically 

started around 8.00-10.00pm and lasted for ~10-12h (Table S2). Only nights that were 

seizure-free were included in the analysis. Polysomnography was collected 

continuously.  

 

Behavioral task 

Study 1: We utilized a previously established sleep-dependent episodic memory 

task (Figure 1A), where subjects had to learn word-nonsense word pairs (Mander et al., 

2013). In brief, words were 3-8 letters in length and drawn from a normative set of 

English words, while nonsense words were 6-14 letters in length and derived from 

groups of common phonemes. During encoding, subjects learned 120 word-nonsense 

pairs. Each pair was presented for 5 s. Participants performed the criterion training 

immediately after encoding. The word was presented along with the previously learned 
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nonsense word and two new nonsense words. Subjects had to choose the correctly 

associated nonsense words and received feedback afterwards. Incorrect trials were 

repeated after a variable interval, and were presented with two additional new nonsense 

words to avoid repetition of incorrect nonsense words. Criterion training continued until 

correct responses were observed for all trials. 

During recognition, a probe word or a new (foil) probe word was presented along 

with 4 options: (1) the originally paired nonsense word, (2) a previously displayed 

nonsense word, which was linked to a different probe (lure), (3) a new nonsense word 

or (4) an option to indicate that the probe is new. During the recognition test after a short 

delay (10 min), 30 probe and 15 foil trials were presented. At the long delay (10 h), 90 

probe and 45 foil trials were tested. All probe words were presented only once during 

recognition testing, either during short or long delay testing. 

 

Sleep monitoring and EEG data acquisition 

Study 1: Polysomnography (PSG) sleep monitoring was recorded on a Grass 

Technologies Comet XL system (Astro-Med), including 19-channel 

electroencephalography (EEG) placed using the standard 10-20 system as well as 

Electromyography (EMG). Electrooculogram (EOG) was recorded the right and left outer 

canthi. EEG recordings were referenced to bilateral linked mastoids and digitized at 400 

Hz. Sleep scoring was performed according to standard criteria in 30 s epochs 

(Rechtschaffen and Kales, 1968). Non-REM sleep (NREM) was defined as NREM 

stages 2-4. First and last NREM and REM epochs were defined as the first and last five 

minutes of the respective stages in the hypnogram.  

Study 2: Resting state EEG recordings were obtained using a 64-channel 

BrainAmp amplifier (Brain Products GmbH) EEG system with equidistant Ag–AgCl 

electrode positions (EasyCap, Herrsching, Germany). The central electrode of this 

layout corresponded to electrode Cz (10-20 layout) and was therefore used for between 

group comparisons.  

Study 3: We recorded from all available intracranial electrodes. In order to facilitate 

sleep staging based on established criteria, we also recorded scalp EEG, which typically 
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included recordings from electrodes Fz, Cz, C3, C4 and Oz according to the 

international 10-20 system. Electrooculogram (EOG) was recorded from 4 electrodes, 

which were placed around the right and left outer canthi. All electrophysiological data 

was acquired using a 256-channel Nihon Kohden recording system (model JE120A), 

analog filtered at 0.01 Hz and digitally sampled at 5000 Hz. All available artifact-free 

scalp electrodes were low-pass filtered at 50 Hz, demeaned and de-trended, down-

sampled to 400 Hz and referenced against the average of all clean scalp electrodes. 

EOGs were typically bipolar referenced to obtain one signal per eye. A surrogate 

electromyogram (EMG) signal was derived from electrodes in immediate proximity to 

neck or skeletal muscles, by high-pass filtering either the ECG or EEG channels above 

40 Hz. Sleep staging was carried out according to Rechtschaffen and Kales guidelines 

by trained personnel in 30 second segments (Rechtschaffen and Kales, 1968) as 

reported previously (Helfrich et al., 2018; Mander et al., 2013). Same conventions as in 

study 1 were used. 

 

CT and MRI data acquisition. 

Study 3: We obtained anonymized postoperative CT scans and pre-surgical MRI 

scans, which were routinely acquired during clinical care. MRI scans were typically 1mm 

isotropic.  

 

Quantification and statistical analysis 
 

Behavioral data analysis 

Study 1: Memory recognition was calculated by subtracting both the false alarm 

rate (proportion of foil words, which subjects’ reported as previously encountered) and 

the lure rate (proportion of words that were paired with a familiar, but incorrect nonsense 

word) from the hit rate (correctly paired word-nonsense word pairs). Memory retention 

was subsequently calculated as the difference between recognition at long minus short 

delays.  
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EEG data  

 

Preprocessing: 

Study 1/2 - Resting state: EEG data were imported into MATLAB and analyzed 

using the FieldTrip toolbox. Raw recordings were demeaned, detrended, high-pass 

filtered at 1 Hz, common average referenced and epoched into three-second-long 

segments with 50% overlap. Artifact detection was done semi-automatically for EOG, 

jump and muscle artifacts and visually confirmed (Oostenveld et al., 2011).  

Study 1 - Sleep: EEG data were imported into FieldTrip, then demeaned, 

detrended, common average referenced and epoched into non-overlapping 30 second 

segments. Artifact detection was done manually in five-second segments (Helfrich et al., 

2018).  

Study 3: Scalp EEG was demeaned, de-trended and locally referenced against the 

mean of all available artifact-free scalp electrodes. We applied a 50 Hz low-pass filter 

and down-sampled the data to 500 Hz. All scalp EEG analyses were done on electrode 

Fz. In a subset of subjects Fz was not available and Cz was utilized instead of Fz. 

Intracranial EEG: In every subject, we selected all available electrodes in the medial 

temporal lobe, which were then demeaned, de-trended, notch-filtered at 60 Hz and its 

harmonics, bipolar referenced to its immediate lateral neighboring electrode and finally 

down-sampled to 500 Hz. We retained all MTL channels, but discarded noisy PFC 

channels. We adopted a previously introduced approach where we first detected 

interictal epileptic discharges using automated detectors (see below), which were then 

excluded from further analysis. Finally, we selected one MTL electrode per participant 

with the lowest number of overall detections. For PFC analyses, all available contacts in 

these regions were included and the same pre-processing steps were applied. Then all 

resulting traces were manually inspected and noisy, epileptic and artifact-contaminated 

PFC channels were excluded.  
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Extraction of REM epochs and time normalization procedure: 

REM epochs were detected based on the manually staged hypnogram (Grosmark 

et al., 2012). We first detected all REM epochs and then selected artifact-free epochs 

that spanned at least three consecutive epochs (90s) and required that the majority of 

adjacent periods within a time window ± 9 min were staged as NREM sleep. 

Subsequently, the identified REM epochs were extracted as continuous time-domain 

signals, then epoched into 100 overlapping epochs and subjected to multi-taper spectral 

analysis as outlined below. Similarly, we the adjacent NREM data were epoched into 10 

second long segments with 70% overlap. The spectral estimates were then 

concatenated to form the final time-normalized triplet in the frequency domain. For 

statistical testing, we omitted the transition states and selected one third of the time-

normalized epoch (beginning, center and end of the triplet, respectively) for subsequent 

testing.  

 

Spectral analysis:  

Scalp EEG: Resting state spectral estimates were obtained through multitaper 

spectral analyses (Mitra and Pesaran, 1999; Prerau et al., 2017), based on discrete 

prolate slepian sequences. Spectral estimates were obtained between 1 and 50 Hz in 1 

Hz steps. We adapted the number of tapers to obtain a frequency smoothing of ± 2 Hz.  

Intracranial EEG: Spectral estimates were by means of multitaper spectral analyses 

based on discrete prolate spheroidal sequences in 153 logarithmically spaced bins 

between 0.25 and 181 Hz (Mitra and Pesaran, 1999). We adjusted the temporal and 

spectral smoothing to approximately match a ± 2 Hz frequency smoothing. 

 

Estimation of aperiodic background activity: 

FOOOF fitting: In order to obtain estimates of aperiodic background activity, we first 

used the FOOOF algorithm (Donoghue et al., 2020). EEG spectra were fitted in the 

range from 1 to 45 Hz. Aperiodic background activity was defined by its slope parameter 

χ, the y-intercept c and a constant k (reflecting the knee parameter).  
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aperiodic  fit = 10! ∗   
1

(k+ f
!
!)

 

 

The relationship of the knee parameter and the knee frequency is given by 

 

knee  frequency = k
!
! 

 

If a knee parameter could not be determined, we re-fitted the spectrum in the fixed 

mode, which is equivalent to a linear fit where k = 0.  

 

Polynomial fitting: To estimate the spectral slope in different frequency bands, we 

also utilized first-degree polynomial fitting (Lendner et al., 2020), thus, yielding an 

instantaneous spectral exponent (slope, χ) and offset (y-axis intercept, c), for a given 

fitting range. EEG spectra were fitted using variable endpoints (from 1 Hz to 5-45 Hz, 5 

Hz steps), variable starting points (to 45 Hz, from 5-40 Hz, 5 Hz steps) or a fixed 

bandwidth with varying center frequencies (5-45 Hz; ± 5 Hz).  

 

Event detection:  

Slow oscillations (SO): Event detection was performed for every channel separately 

based on previously established algorithms (Helfrich et al., 2018; Staresina et al., 2015). 

We first filtered the continuous signal between 0.16 and 1.25 Hz and detected all the 

zero crossings. Then events were selected based on time (0.8 – 2 s duration) and 

amplitude (75% percentile) criteria. Finally, we extracted 5 s long segments (± 2.5 s 

centered on the trough) from the raw signal and discarded all events that occurred 

during an IED.  

 

Sleep spindles: Based on established algorithms (Helfrich et al., 2018; Staresina et 

al., 2015), we filtered the signal between 12-16 Hz and extracted the analytical 

amplitude after applying a Hilbert transform. We smoothed the amplitude with a 200 ms 

moving average. Then the amplitude was thresholded at the 75% percentile (amplitude 
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criterion) and only events that exceeded the threshold for 0.5 to 3 s (time criterion) were 

accepted. Events were defined as sleep spindle peak-locked 5 s long epochs (± 2.5 s 

centered on the spindle peak). 

 

Ripples: The signal was first filtered in the range from 80-120 Hz and the analytical 

amplitude was extracted from a Hilbert transform in accordance with previously reported 

detection algorithms (Helfrich et al., 2019; Staresina et al., 2015). The analytical signal 

was smoothed with a 100ms window and z-scored. Candidate events were identified as 

epochs exceeding a z-score of 2 for at least 25ms and a maximum of 200ms and had to 

be spaced by at least 500ms. We determined the instantaneous ripple frequency by 

detecting all peaks within the identified segment. The identified events were time-locked 

to the ripple trough in a time window of ± 0.5 s. Overlapping epochs were merged. 

Epochs that contained IEDs or sharp transients were discarded.  

 

Interictal epileptic discharge (IED) detection: We detected IEDs using automated 

algorithms on all channels located in the MTL. All cut-offs were chosen in accordance 

with recently published findings (Gelinas et al., 2016; Staresina et al., 2015) and were 

confirmed by a neurologist who visually verified the detected events. The continuous 

signal was filtered front and backwards between 25-80 Hz and the analytical amplitude 

was extracted from the Hilbert transform and then z-scored. Events were detected when 

this signal was 3 SD above the mean for more than 20ms and less than 100ms.  

 

HFB, population activity and active periods analysis: The high frequency band 

(HFB) activity is typically defined from 70-180 Hz (Leszczyński et al., 2020). To avoid 

confounding true HFB activity with ripple-band activity (upper cut-off ~120 Hz), we 

defined HFB activity as the average power in this frequency range from 120-180 Hz. 

The multi-taper spectral estimates where averaged into a single trace per electrode. The 

dynamics of the population activity were expressed as a population vector (Ebitz and 

Hayden, 2021). At every time point HFB activity was represented as a point P in a n-

dimensional coordinate system where n reflects the number of electrodes. The 
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population vector was then constructed by taking the Euclidean distance d between 

adjacent time points within in a given region-of-interest (ROI), hence, providing a single 

time course per ROI.  

 
MDD = d(P!!,P!!!! )   

 

Active periods were defined as epochs where the smoothed (100ms window) HFB 

signal exceeded a z-score of 1 for at least 50ms (Grosmark et al., 2012). 

 

Statistical analysis 

Unless stated otherwise, we used cluster-based permutation tests (Maris and 

Oostenveld, 2007) to correct for multiple comparisons as implemented in FieldTrip 

(Monte Carlo method; 1000 iterations). Clusters were formed in time/frequency (e.g. 

Fig. 1A/G-J) or space (e.g. Fig. 1D, 2C-E/G-H) by thresholding dependent t-tests or 

linear correlations at p < 0.05. Correlation values were transformed into t-values using 

the following formula: 

t =   
r ∗    N− 2
1−   r!

 

 

A permutation distribution was then created by randomly shuffling condition labels 

(paired t-tests) or subject labels (correlation). The permutation p-value was obtained by 

comparing the cluster statistic to the random permutation distribution. The clusters were 

considered significant at p < 0.05 (two-sided).  

Effect sizes were quantified by means of Cohen’s d or the correlation coefficient 

rho. To obtain effect sizes for cluster tests, we calculated the effect size separately for 

all channel, frequency and/or time points and averaged across all data points in the 

cluster. Repeated-measures ANOVAs were Greenhouse-Geisser corrected. We further 

utilized linear mixed effect models with subjects as random intercepts. 
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Fig. S1  

 

Control analyses related to Fig. 1 
(A) Separation of aperiodic (upper row) and oscillatory activity (lower row) for all three 
resting state conditions (cognitive engagement, eyes closed, central fixation; visualized 
for electrode Cz). The modulation across a night of sleep was confined to aperiodic 
activity (fdr-corrected two-tailed t-tests) with consistently reduced power in the AM (red) 
as compared to the PM (blue) recordings in all three conditions. Note, this effect did not 
pertain oscillatory activity (lower row; all p-values > 0.05; n.s. = not significant). (B) 
Spectral slope of the EMG across all three resting state conditions shows no main effect 
of time-of-day. Results remained unchanged after partialling out the EMG slope from the 
correlational analyses. (C) Overall signal-to-noise ratio across all channels per 
participants reveals a main effect of condition, with the highest SNR observed for the 
eyes closed condition. (D) Median split of the behavioral memory retention metric to 
illustrate that subjects who performed better exhibited a larger broadband shift in the 
high frequency range. (E) Correlational analyses with the mean regression line (black) 
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on the group level and separate fits for the young (red) and older (red) subjects. Note 
the general relationship of slope downscaling and behavior is preserved for older adults, 
but there is a shift along the y-axis, indicating that younger subjects performed better on 
average than older adults, as previously reported (Helfrich et al., 2018; Mander et al., 
2013). (F) Illustration of suboptimal (red, linear fit 1-50 Hz; blue, linear fit 1-20 Hz) and 
optimal linear fits (green, 25-45 Hz), superimposed on an example spectrum (grey) that 
is characterized by both oscillatory bumps as well as 1/f background activity, which 
includes a knee (black dashed line indicates the appropriate FOOOF model). 
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Fig. S2 

 

Control analyses related to Fig. 2 
(A) Representative spectrogram of a single subject for a single NREM-REM-NREM 
triplet to highlight the presence of state-specific, short-lived spindle and theta burst. 
Note that the 1/f estimates have been discounted from the broadband spectrum to 
isolate the oscillatory residuals. (B) Correlation of REM slope and 1/f-corrected REM 
theta power reveals a widespread effect. Note that flatter REM slopes predict higher 
REM theta power. (C) Correlation of the spectral modulation in the wake state (PM-AM, 
cf. Fig. 1A) and NREM sleep (cf. Fig. 2C) indicates that the modulation as observed in 
one state is predictive of the other state (one outlier data point is not shown; correlations 
remained unchanged after accounting for this data point). (D) No significant correlation 
was observed for modulation of SO power across the night and behavior (cluster test; 
no significant clusters).  
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Table S1 
Subject Recording 

Duration 
Total Sleep 

Time [h] 
WASO 
[min] 

N1 
[min] 

N2 
[min] 

SWS 
[min] 

REM 
[min] 

        
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

8.0 
8.0 
7.9 
7.8 
7.9 
7.4 
7.9 
7.9 
7.9 
8.0 
8.1 
7.7 
7.8 
7.9 
8.0 
7.9 
8.0 
7.9 
7.7 
7.9 
8.0 
7.9 
8.0 
8.0 
8.0 
7.9 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 

6.1 
6.0 
6.0 
2.1 
6.6 
5.6 
5.3 
3.9 
6.9 
7.2 
6.2 
4.4 
5.4 
7.0 
5.8 
6.9 
6.5 
4.9 
4.9 
4.2 
6.4 
6.2 
6.0 
3.9 
6.9 
6.7 
7.1 
7.7 
6.2 
7.2 
7.1 
7.6 
7.2 
7.4 
7.2 
6.8 
6.9 
7.6 
7.7 
7.1 

89 
111 
102 
321 
69 
82 

139 
195 
50 
40 

101 
187 
132 
41 

121 
47 
71 
38 

157 
162 
57 
88 

100 
230 
59 
57 
44 
6 

93 
31 
30 
10 
16 
18 
31 
42 
21 
10 
4 

19 

11 
31 
36 
33 
21 
19 
44 
29 
22 
16 
25 
27 
16 
15 
24 
24 
21 
11 
21 
11 
20 
15 
17 
22 
31 
18 
30 
6 

10 
14 
14 
18 
10 
6 

28 
11 
19 
16 
6 

17 

200 
209 
194 
30 

270 
222 
198 
111 
145 
225 
189 
169 
164 
236 
200 
309 
224 
147 
198 
114 
169 
260 
196 
144 
230 
232 
187 
230 
200 
198 
203 
213 
286 
159 
184 
184 
181 
209 
215 
223 

63 
51 
79 
37 
1 

40 
12 
68 

110 
111 
105 
40 
82 
57 
70 
2 

57 
71 
15 

108 
123 
59 

100 
43 
39 
33 

137 
123 
118 
141 
154 
85 
61 

162 
107 
144 
128 
106 
123 
90 

92 
72 
52 
24 

108 
58 
65 
24 

138 
81 
52 
27 
61 

112 
53 
81 
87 
66 
62 
21 
73 
40 
46 
27 

114 
118 
71 

105 
43 
77 
57 

142 
76 

120 
114 
68 
85 

126 
120 
98 

        
Group 7.9 ± 0.1 6.2 ± 1.2 80.5 ± 68.5 19.6 ± 8.6 196.4 ± 49.0 81.4 ± 43.1 76.4 ± 33.2 

 

Sleep metrics related to study 1 
Participants went to bed at their habitual sleep time and were given the opportunity to 
sleep for up to 8h. Sleep staging was the carried out on the continuous epochs in 30s 
segments. Furthermore note that the rater flagged epochs of excessive noise as 
artifactual and hence, those epochs were excluded from staging.  
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Table S2 
Subject Recording 

Duration 
Total Sleep 

Time [h] 
WASO 
[min] 

N1 
[min] 

N2 
[min] 

SWS 
[min] 

REM 
[min] 

        
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

9.0 
13.0 
12.9 
13.0 
8.6 

12.0 
13.0 
13.2 
13.0 
14.0 
13.2 
13.0 
13.8 
10.8 
13.6 

6.8 
4.0 
7.7 
8.2 
4.9 
9.7 
7.0 
7.4 
6.3 
9.1 
5.3 

10.8 
6.9 
9.0 
8.7 

110 
496 
295 
113 
223 
119 
356 
307 
371 
284 
353 
110 
242 
106 
65 

40 
31 
55 
42 
14 
50 
52 
48 
32 
66 
58 
28 
52 
15 
25 

263 
166 
267 
147 
192 
327 
262 
291 
201 
245 
93 

355 
218 
382 
346 

40 
35 
40 

221 
53 
89 
19 
78 
42 

105 
145 
207 
89 
94 
84 

66 
11 
99 
81 
36 

119 
88 
29 

101 
129 
20 
60 
56 
50 
67 

        
Group 12.4 ± 1.6 7.5 ± 1.9 236.7±128.6 33.6 ± 16.9 250.3 ± 82.4 89.4 ± 60.4 67.5 ± 35.4 

 

Sleep metrics related to study 3 
We aimed to include continuous ~12-13h recording blocks, which were roughly obtained 
between 8pm and 8am. However, in some subjects the recording started later or 
stopped earlier due to ongoing testing or clinical considerations. Sleep staging was the 
carried out on the continuous epochs in 30s segments. Furthermore note that the rater 
flagged epochs of excessive noise as artifactual and hence, those epochs were 
excluded from staging. Note that wake-after-sleep-onset values (WASO) are inflated, 
given that the clinical routine often wakes patients around 6am and hence, the last two 
hours of the recording often have been spent awake. 
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