1 A toxin-mediated policing system in *Bacillus* improves population fitness via penalizing

2 non-cooperating phenotypic cheaters

- 3 Authors
- 4 Rong Huang¹, Jiahui Shao¹, Zhihui Xu¹, Yuqi Chen¹, Yunpeng Liu², Dandan Wang³, Haichao Feng¹,
- 5 Weibing Xun¹, Qirong Shen¹, Nan Zhang^{1*}, Ruifu Zhang^{1,2*}

6 Affiliations

- 7 ¹Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation
- 8 Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving
- 9 fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
- ¹⁰ ²Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture,
- 11 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural
- 12 Sciences, Beijing 100081, P. R. China
- ¹³ ³National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources,
- 14 College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an
- 15 271018, Shandong, P. R. China

16 ***Corresponding authors**

- 17 Ruifu Zhang (rfzhang@njau.edu.cn), Nan Zhang (nanzhang@njau.edu.cn), College of Resources
- 18 & Environmental Sciences, Nanjing Agricultural University, 210095, Nanjing, P. R. China.
- 19 The authors declare no conflict of interest.

20 Abstract

Microbial cooperation is vulnerable to exploitation by social cheaters. Although the strategies for 21 22 controlling genotypic cheaters have been well investigated, the mechanism and significance of 23 preventing phenotypic cheating remain largely unknown. Here, we revealed the molecular 24 mechanism and ecological significance of a policing system for punishing phenotypic cheaters in 25 the community of a plant beneficial strain Bacillus velezensis SQR9. Coordinated activation of 26 extracellular matrix (ECM) production and autotoxin bacillunoic acids (BAs) biosynthesis/self-immunity, punished public goods-nonproducing cheaters in strain SQR9's 27 28 community. SpoOA was identified to be the co-regulator for triggering both ECM production and 29 BAs synthesis/immunity, which activates acetyl-CoA carboxylase (ACC) to produce malonyl-CoA, 30 an essential precursor for BAs biosynthesis, thereby stimulating BAs production and self-immunity. 31 Elimination of phenotypic cheaters by this policing system, significantly enhanced population 32 fitness under different stress conditions and in plant rhizosphere. This study provides insights into our understanding of maintenance and evolution of microbial cooperation. 33

34

35 Introduction

Cooperative interactions are not restricted to complex, higher organism, but also prevalent among microbial communities in many contexts^{1,2}. Production of costly public goods that can be used by any cells in a population, is a common cooperative behavior consistently found in diverse microorganisms³. Typical public goods include extracellular enzymes for substances digesting⁴, siderophore for iron-scavenging⁵, matrix components for biofilm formation^{6,7}, biosurfactants for

41 cooperative swarming^{8,9}, and so on. Intriguingly, the considerable cost for producing public goods 42 usually raises cheating individuals in the evolution of cooperation, who contributes no or just a little 43 of their share of the common good^{3,4,10}. Therefore, cheaters will have a fitness advantage over fully 44 participating cooperators, and their frequency will increase rapidly, eventually leading to the 45 collapse of cooperative behavior¹¹. This "tragedy of the commons" is predicated by natural selection

46 and game theory 12,13 , and has been widely illustrated in various cooperation systems 14,15 .

Despite the exploitation of public goods by cheating individuals, cooperation principally 47 survives cheating during the evolutionary history¹⁶. Several mechanisms have been proposed to play 48 significant roles in maintaining cooperation by preventing cheater invasion^{3,16,17}, mainly including 49 kin selection/discrimination that selectively direct cooperation to genetic relatives^{18,19}, facultative 50 cooperation regulated by quorum-sensing (QS) system²⁰ or nutrient fitness cost²¹, coupling 51 production of public and private goods²², punishment of cheating individuals by 52 cooperator-produced antibiotics^{10,23}, partial privatization of public goods under certain 53 conditions 24,25 , and spatial structuring to surround the producers more likely by other cooperators 26 . 54 In general, the emergency of multiple sanction strategies is a consequence of natural selection, 55 which suppress social cheaters and promote public goods production, thereby maintaining microbial 56 community stability and improving their adaptation in different niches³. 57

58 Microbial social cheating can occur either at the genotypic or phenotypic level. The genotypic 59 cheaters indicate the lost or mutation in specific gene(s) thus deficiency in the related biological 60 function^{14,27}; while the phenotypic cheaters are individuals with identical genetic background but 61 silencing or down-regulation in public goods production (heterogeneous expression or division of

62 labor)^{25,28}. Despite the well-studied mechanisms of cheater control on the genotypic level³, those 63 regarding to the phenotypic level remain largely unknown^{3,25}; also unlike the definite significance of 64 suppressing obligate genotypic cheaters¹⁷, the ecological roles of controlling phenotypic cheaters in 65 mediating microbial population fitness have been rarely concerned²⁹. Accordingly, lacking of the 66 knowledge about phenotypic cheating limits our understanding of the cooperation behavior within 67 microbial social communities.

Biofilms are extracellular matrix (ECM)-enclosed multicellular communities that sustain 68 bacterial survival in diverse natural environments³⁰⁻³², where the tightly associated cells are 69 heterogeneously expressed with only a subpopulation of matrix producers³³⁻³⁵. As the ECM 70 components (mainly include extracellular polysaccharides (EPS) and TasA fibers) are costly public 71 72 goods shared by all cells within the biofilm, the nonproducing phenotypic cheaters can emerge, and thus disrupt the biofilm and community fitness^{25,36}. Although a few studies have investigated the 73 matrix production-cannibalism overlap and ECM privatization within biofilm individuals^{25,29}, the 74 75 molecular mechanism involved in punishment of nonproducing cheaters, as well as the ecological 76 significance of the policing system in regulating population stability and fitness, remain unclear. Bacillus velezensis SOR9 (formerly B. amyloliquefaciens SOR9) is a well-studied beneficial 77 rhizobacterium that form robust and highly structured biofilms on air-liquid interface and plant 78 roots³⁷⁻⁴⁰. Production of toxic bacillunoic acids (BAs), encoded by a unique genomic island in strain 79 SOR9, was proved to occur in subfraction of cells with the self-immunity ability induced by BAs 80 during biofilm formation, where the nonproducing siblings will be lysed by BAs^{41,42}. Based on the 81 82 manifestation that the BA-mediated cannibalism enhanced biofilm formation of strain SQR9, we

83	hypothesized the ECM and BAs synthesis can be co-regulated to restrain cheaters and sustain
84	population stability. Using a combination of single-cell tracking technique, molecular approaches,
85	and ecological evaluation, we demonstrated the ECM and BAs production are coordinated in the
86	same subpopulation by the same regulator during biofilm formation, which enforces punishment of
87	the nonproducing phenotypic cheaters to maintain community stabilization; also this genomic
88	island-governed policing system is significant to promote community fitness in various conditions.
89	
90	Results
91	Coordinated production of extracellular matrix (ECM) and autotoxin bacillunoic acids (BAs)
92	punishes public goods-nonproducing cheaters in <i>B. velezensis</i> SQR9 community
93	To test the hypothesis that secretion of cannibal toxin eliminates the public goods-nonproducing
94	cheaters in B. velezensis SQR9 community, we firstly tried to determine whether ECM (public
95	goods) production and BAs (autotoxin) biosynthesis/BAs-induced self-immunity occur in the same
96	subpopulation. We fused promoters for genes related to extracellular polysaccharides (EPS) and
97	TasA fibers biosynthesis with <i>mCherry</i> , while the promoters for genes related to the autotoxin BAs
98	biosynthesis and the self-immunity with gfp , obtained the P_{eps} -mCherry, P_{tapA} -mCherry, P_{bnaF} -gfp,
99	and P_{bnaAB} -gfp, respectively. Their expression patterns were monitored using confocal laser scanning
100	microscopy (CLSM) during the biofilm community formation. Photographs show that expression of
101	the P_{eps} -mCherry, P_{tapA} -mCherry, P_{bnaF} -gfp, and P_{bnaAB} -gfp were all observed in a subpopulation
102	cells of the whole community (Fig. 1), which suggests a differential expression pattern of each
103	function among subpopulations during biofilm formation, where the ECM-nonproducers can be

recognized as phenotypic cheaters²⁵. Importantly, the overlay of the double fluorescent reporters 104 105 indicates that ECM and BAs production is generally raised in the same subpopulation (Fig. 1; the 106 yellow cells represent co-expression of *mCherry* and *gfp*); as expected, since the self-immunity gene *bnaAB* was reported to be specifically activated by endogenous BAs^{42} , it was also 107 108 preferentially expressed in the same subpopulation with ECM-producers (Fig. 1). These 109 observations demonstrate a general coordination of ECM production and BAs synthesis/immunity 110 in the same subpopulation of *B. velezensis* SOR9 biofilm community. 111 Based on the co-expression pattern, we postulated that the ECM-nonproducing cheaters, 112 synchronously being sensitive to the BAs, will be killed by their siblings that produce both public 113 goods ECM and the autotoxin BAs. Combining propidium iodide (a red-fluorescent dye for labeling 114 dead cell) staining with reporter labelling, we monitored the cell death dynamics during the biofilm 115 formation process in real time. It was observed that a portion of the cells that didn't produce public 116 ECM (Fig. 2A & 2B) or toxic BAs (Fig. 2C), or silenced in expression of the self-immunity gene 117 bnaAB (Fig. 2D), were killed during the biofilm development process, while the corresponding 118 producers remained alive throughout the incubation (red arrows indicate the dead cells in Fig. 2; 119 Movies S1 \sim S4). This lysis can be attributed to the BAs produced by the *gfp*-activated cells, as cannibalism of B. velezensis SQR9 was largely dependent on the production of this secondary 120 metabolism⁴². Taken together, the double-labelling observation and cell death dynamics detection 121 122 indicate that the subpopulation of ECM and BAs producers selectively punish the nonproducing 123 siblings depend on a coordinately activated cell-differentiation pathway.

124

125 Spo0A is the co-regulator for triggering ECM production and BAs synthesis/immunity

126	To identify the potential co-regulator(s) of ECM production and BAs synthesis/immunity in B.
127	velezensis SQR9, we evaluated the BAs production in an array of mutants that known to be altered
128	in ECM synthesis ($\Delta degU$, $\Delta comPA$, $\Delta abrB$, $\Delta sinI$, $\Delta sinR$, and $\Delta spoOA$), by measuring their
129	antagonism towards B. velezensis FZB42, a target strain specifically inhibited by BAs but no other
130	antibiotics secreted by SQR9 ⁴¹ . The crude extract of BAs of wild-type SQR9 showed remarkable
131	antagonism to the of lawn of strain FZB42 (Fig. 3A & 3B); only $\Delta spoOA$ but no other mutants (all
132	with the equal cell density of the wild-type), revealed significantly reduced inhibition zone towards
133	FZB42, and the complementary strain generally restored the antagonistic ability (Fig. 3A & 3B).
134	Spo0A is a well-investigated master regulator that governs multiple physiological behaviors in B.
135	subtilis and closely-related species ^{43,44} ; as expected, the EPS production and biofilm formation was
136	seriously impaired in $\Delta spo0A$ (Fig. S1). Intriguingly, $\Delta spo0A$ but neither its complementary strain
137	nor the wild-type, can be substantially inhibited by the crude extracted BAs of strain SQR9, while
138	$\Delta spo0A$ was not inhibited by $\Delta GI3$ that disabled in BAs production (Fig. 3C), suggesting Spo0A
139	does participate in the immunity to BAs. In addition, we constructed gfp transcriptional fusions to
140	the promoter of genes involved in ECM production (eps & tapA) and BAs biosynthesis/immunity
141	(bnaF/bnaAB), and discovered that under both liquid culture (Fig. 3D) and plate colony conditions
142	(Fig. S2), their expression level was significantly decreased in $\Delta spo0A$ as compared with the
143	wild-type, which was restored in the complementary strain $\Delta spo0A/spo0A$. These results suggest
144	that the global regulator Spo0A is the co-regulator for controlling ECM production and BAs
145	biosynthesis/immunity in B. velezensis, which is probably dependent on the transcriptional

146 regulation of certain relevant genes.

147

Spo0A activates acetyl-CoA carboxylase (ACC) to support BAs synthesis and self-immunity 148 149 Despite the well-known SpoOA pathway in governing ECM production and biofilm formation in 150 *Bacillus*⁶, how does SpoOA regulate BAs synthesis and self-immunity remains unknown. By using 151 the biolayer interferometry analysis (BLI) for detecting molecular interaction, we revealed that the 152 purified protein Spo0A cannot directly bind to the promoter of *bnaF*, suggesting it doesn't induce BAs production through direct transcriptional activation (Fig. S3). Alternatively, SpoOA has been 153 reported to stimulate the expression of *accDA* that encodes acetyl-CoA carboxylase^{45,46}, which 154 155 catalyzes acetyl-CoA to generate malonyl-CoA, an essential precursor for BAs biosynthesis (Fig. 156 $(4A)^{41}$; therefore we postulated *accDA* may be involved in the regulation of BAs production/immunity by Spo0A. We firstly verified the positive regulation of Spo0A on accDA 157 158 expression in B. velezensis SQR9 by gfp fusion (Fig. 4B & Fig. S4). Since knockout of accDA, the 159 essential gene for fatty acids biosynthesis, significantly impact bacterial growth, we alternatively 160 constructed a strain in which the original promoter of accDA was replaced by a xylose-inducible promoter (P_{xyl}) , and monitored its BAs synthesis/immunity under different xylose induction 161 conditions. The SQR9- P_{xyl} -accDA lost the antagonism ability towards target strain FZB42 in the 162 163 absence of xylose, while the inhibition was significantly enhanced with the induction of xylose in a 164 dose-dependent manner (Fig. 4c & 4d). Since exogenous xylose didn't influence the suppression of 165 wild-type SQR9 on FZB42 (Fig. 4C & 4D), these results suggest that accDA expression positively contribute to BAs production. Importantly, the SQR9-P_{xyl}-accDA was proved to be sensitive to 166

167	SQR9-produced BAs without xylose addition, and the immunity was gradually restored with xylose
168	supplement (Fig. 4E). The xylose-induced transcription of accDA, also resulted in enhanced
169	expression of genes involved in self-immunity (bnaAB; Fig. 4F & Fig. S5A) but not BAs synthesis
170	(bnaF; Fig. 4F & Fig. S5B), as the AccDA-derived malonyl-CoA accumulation affects BAs
171	production in a post-transcriptional manner. The CLSM photographs also reveal that the activation
172	of accDA (mCherry fusion) and bnaAB (gfp fusion) was located in the same subpopulation cells
173	(Fig. S6). Accordingly, these results indicate the positive regulation of Spo0A on BAs
174	production/immunity in B. velezensis SQR9, is strongly dependent on accDA that encodes
175	acetyl-CoA carboxylase.

176

177 The co-regulation policing system enhances population stability and fitness

Having illustrated the molecular mechanism of the co-regulation pathway for punishing 178 nonproducing cheaters in B. velezensis SQR9, we wondered the broad-spectrum ecological 179 180 significance of this policing system for B. velezensis SQR9 in a community level. We constructed 181 two mutants with disabled sanction mechanism, the $\Delta bnaV$ deficient in BAs synthesis (loss of the punishing weapon) and the SOR9- P_{43} -bnaAB that continually expresses the self-immunity genes 182 183 (cheaters cannot be punished by the weapon BAs), both mutants showed similar growth characteristics with the wild-type (Fig. S7). We firstly applied flow cytometry analysis to test 184 185 whether lack of the policing system ($\Delta bnaV$ and SQR9- P_{43} -bnaAB) impair the punishment of public 186 goods nonproducing cheaters during biofilm formation. The proportion of matrix-producing 187 cooperators (eps & tapA active cells) in the wild-type community, as well as the average expression

188 level of corresponding genes, were significantly higher than that in the $\Delta bnaV$ or SOR9- P_{43} -bnaAB 189 community (Fig. 5A & 5B), suggesting the cheating individuals were not effectively controlled in 190 the two mutants population. Consequently, the wild-type established a more vigorous biofilm as 191 compared with the two mutants, as shown by the earlier initial progress, larger maximum biomass, 192 and delayed dispersal process (prolonged stationary phase) (Fig. 5C & 5D). Additionally, the robust 193 biofilm formed by the wild-type also endowed them stronger resistance against different stresses, 194 including antibiotics, salinity, acid-base, and oxidation (Fig. 5D, Figs. S8 & S9). 195 Besides the well-known regulation on biofilm matrix production, SpoOA also controls the production of other public goods, such as proteases and siderophore^{44,47}; it can be recognized as a 196 197 critical switch that governs the cell transition from a free-living and fast-growing status (Spo0A-OFF), to a multicellular and cooperative style (Spo0A-ON)^{34,48}. Intrinsically, the punishing 198 199 targets of this policing system are supposed not limited to the matrix-nonproducing cheaters, but all 200 of the Spo0A-OFF individuals (cells that don't express the immune genes *bnaAB*). Therefore we 201 determined the production of extracellular proteases and siderophore among the three strains, 202 revealing that these public goods were also accumulated more in the wild-type than in these two 203 mutants community (Fig. 5E & Fig. S10). Importantly, the wild-type SOR9 demonstrated a 204 significantly stronger root colonization comparing with the two mutant strains losing the cheater 205 punishing system (Fig. 5F). In summary, the SpoOA governed co-regulation punishment system 206 effectively excludes the nonproducing cheaters of public goods in *B. velezensis* population, thereby 207 improving the population stability and ecological fitness under different conditions.

208

10

209 Discussion

210 Microbes have evolved diverse strategies for preventing cheaters in their communities. Despite the well-established mechanisms for controlling genotypic cheaters^{3,16,17,49}, those regarding the 211 phenotypic cheaters remain largely unknown^{25,29}. Phenotypic cheaters are ordinarily derived from 212 heterogeneous expression of different biological functions within a cell population³⁵, this division of 213 214 labor is postulated to afford bacterial community a better adaptation to unexpected environmental fluctuations³⁴; however, when cells are supposed to be developed into a certain type in response to 215 216 the surroundings, such as producing ECM to form surface-attached biofilm, or secreting 217 extracellular enzymes to excavate resources, the individuals that don't perform these assignments 218 (but still share the community's public goods) become actual cheaters and may disturb the community stability and fitness^{15,29}. In the present study, we demonstrated that during biofilm 219 220 formation, the beneficial rhizobacterium B. velezensis SQR9 engages a policing system that 221 coordinately actives ECM production and autotoxin synthesis/immunity, to punish the phenotypic 222 cheaters silencing in public goods secretion and reduce their proportion in the community (Fig. 6). This finding coincides with the coordinated cannibalism phenomenon reported in biofilm formation 223 by B. subtilis²⁹. Specifically, the toxic BAs for punishment is synthesized by a horizontal gene 224 transfer (HGT)-acquired genomic island⁴¹, where its production is regulated by a 225 226 precursor-dependent post-transcriptional manner (Fig. 4), and self-immunity is induced by the BAs through a two-component system⁴²; importantly, this sanction mechanism not only facilitates ECM 227 228 accumulation, but also contributes to enhanced production of other public goods including proteases 229 and siderophore, thereby effectively improving the community fitness under different stressful

conditions and in plant rhizosphere (Fig. 5). Actually, the coordination policing system eliminates phenotypic cheaters that stay in a fast-growing, motility phase (Spo0A~OFF state), to promote the population to a stationary, resource-mining phase (Spo0A-ON state) when environment required (Fig. 6). It should be noted that the phenotypic cheaters are not so obligate or detrimental, and this punishment is relatively temperate than those for genotypic cheaters^{10,50} as only a subpopulation of the cheaters were killed (Fig. 2); we think this scene is a balance between restraining the temporary cheaters and retaining the advantages of heterogeneous population^{34,51}.

The diversified cheater-controlling mechanisms used by microorganisms, reveal different 237 applicability features and can occur in various types of microbial cooperation¹⁷. For instance, kin 238 discrimination is effective for controlling non-kin cheaters with different genetic backgrounds^{52,53}, 239 240 but appears incapable of preventing spontaneous genotypic cheaters in the same population, quite apart from the phenotypic cheaters³; facultative cooperation enables microbial population to 241 242 optimize the occasion for producing public goods, which is an economic-style strategy for minimizing resource exploitation by cheaters while is unlikely to suppress them directly^{20,54,55}; 243 partial privatization and spatial structuring can immediately restrain the cheaters by physical 244 separation^{25,26}. Comparatively, the targeted benefit (private benefit) and punishment mechanisms 245 afford cooperators direct fitness advantage over cheaters^{10,22}, especially the latter precisely 246 antagonizes the cheating individuals to eliminate them from the community^{4,10}. The punishment 247 248 strategy is usually elaborately regulated by QS or QS-like system for coupling the public goods production and autotoxins synthesis/immunity⁵⁶, therefore it is both complicated for cheaters to 249 overcome and costly for cooperators to implement¹⁶. Here we prove that the policing system in *B*. 250

velezensis SQR9 contributes to optimized cell differentiation and population fitness, suggesting its
ecological benefits does overcome the costs for expressing antibiotic production and immunity (Fig.
5). Alternatively, this sanction system can work in concert with privatization strategy to collectively
prevent cheater invasion during biofilm formation²⁵.

255 Interestingly, the secondary metabolites applied by *B. velezensis* SQR9 to punish the cheaters, are governed by a unique genomic island acquired through HGT⁴¹. Since *accDA* that is important 256 for both BAs biosynthesis and the corresponding self-immunity, and eps and tapA operon required 257 for ECM production, are all activated by Spo0A with moderate phosphorylation level (Fig. 4)^{6,42,45}, 258 these genes constitute an ingenious co-regulatory network to appoint the cooperators to be BAs 259 260 producers and defenders, while the cheaters to be sensitive individuals that can be eliminated (Figs. 261 1 & 2). It was known that clusters carrying antibiotic biosynthesis and resistance genes (ARGs) are usually transformed among microbes through HGT in natural environment^{57,58}, but since these 262 263 elements also brought certain costs such as DNA replication and metabolic burden, they must produce considerable benefits to be reserved in the new host. Here the SQR9-acquired GI3 not only 264 act as a weapon for antagonizing closely related competitors⁴¹, but also establishes a policing 265 266 system for punishing cheaters within the internal community. We consider this dual function of the antibacterial fatty acids could explain why this large cluster was integrated in the genome of B. 267 268 velezensis SQR9, and this case can provide inspirations for discovering novel molecular regulatory 269 mechanisms and understanding microbial evolution events.

270 In conclusion, the present study highlights the beneficial rhizobacterium *B. velezensis* SQR9 271 engages a policing system that coordinately actives ECM production and autotoxin

272	synthesis/immunity, to eliminate the phenotypic cheaters silencing in public goods secretion thereby
273	enhancing the community fitness. This study provides insights of the molecular mechanism
274	involved in controlling phenotypic cheaters, as well as the ecological roles of the policing system,
275	which deepens our understanding of maintenance and evolution of microbial cooperation.

276

277 Materials and Methods

278 Bacterial strains and growth conditions

The strains and plasmids used in this study are listed in Table S1. Bacillus velezensis SQR9 279 (formerly B. amyloliquefaciens SQR9, China General Microbiology Culture Collection Center 280 281 (CGMCC) accession no. 5808) was used throughout this study. B. velezensis FZB42 (Bacillus 282 Genetic Stock Center (BGSC) accession no. 10A6) was used to test the bacillunoic acids (BAs) production by wild-type SQR9 and its mutants. Escherichia coli TOP 10 (Invitrogen, Shanghai, 283 284 China) was used as the host for all plasmids. E. coli BL21 (DE3) (Invitrogen, Shanghai, China) was 285 used as the host for recombinant protein expression. All strains were routinely grown at 37°C in low-salt Luria-Bertani (LLB) medium (10 g L⁻¹ peptone, 5 g L⁻¹ yeast extract, 3 g L⁻¹ NaCl). For 286 biofilm formation, B. velezensis SOR9 and its mutants were cultivated in MSgg medium (5 mM 287 potassium phosphate, 100 mM morpholine propanesulfonic acid, 2 mM MgCl₂, 700 µM CaCl₂, 50 288 µM MnCl₂, 50 µM FeCl₃, 1 µM ZnCl₂, 2 mM thiamine, 0.5% glycerol, 0.5% glutamate, 50 µg of 289 tryptophan per milliliter, 50 μ g of phenylalanine per milliliter, and 50 μ g of threonineper milliliter) 290 at 37°C⁵⁹. To collect the fermentation supernatant for antagonism assessment, B. velezensis SQR9 291 and its mutants were cultured in Landy medium⁶⁰ containing 20 g L⁻¹ glucose and 1 g L⁻¹ yeast 292

293 extract. When necessary, antibiotics were added to the medium at the following final concentrations: zeocin, 20 μ g mL⁻¹; spectinomycin, 100 μ g mL⁻¹; kanamycin, 30 μ g mL⁻¹; ampicillin, 100 μ g mL⁻¹; 294 chloramphenicol, 5 μ g mL⁻¹ for *B. velezensis* strains and 12.5 μ g mL⁻¹ for *E. coli* strains; 295 ervthromycin, 1 µg mL⁻¹ for *B. velezensis* strains and 200 µg mL⁻¹ for *E. coli* strains. The medium 296 297 was solidified with 2% agar. 298 299 **Reporter construction** For single-labelled strain, the promoter region of the testing gene and gfp fragment were fused 300 301 through overlap PCR, and this transcriptional fusion was cloned into vector pNW33n using primers 302 listed in Table S2. For double-labelled strains, one promoter region was fused with gfp fragment and 303 the other promoter region was fused with *mCherry* fragment. The two fusions were then fused in 304 opposite transcription directions and cloned into vector pNW33n using primers listed in Table S2. 305 All constructions were transferred into competent cells of B. velezensis SQR9 and mutants when 306 required. 307 308 **Promoter replacement** Strain SQR9- P_{xyl} -accDA was constructed by replacing the original promoter of accDA (P_{accDA}) by a 309 xylose-inducible promoter P_{xyl} . The approximately 800 bp fragments of upstream and downstream 310

- 311 of the P_{accDA} region were amplified from the genomic DNA of strain SQR9; the Spc^r fragment was
- amplified from plasmid P7S6⁶¹, and the P_{xyl} promoter was amplified from the plasmid PWH1510⁶².
- 313 The four fragments were fused using overlap PCR in the order of the upstream fragment, Spc^{r} , P_{xyl} ,

and the downstream fragment. The fusion was transferred into competent cells of *B. velezensis* SQR9 for generating transformants. Strain SQR9- P_{43} -bnaAB was obtained by replacing the original promoter (P_{bnaAB}) by a constitutive promoter P_{43} . The primers used for constructing the four-fragment fusion are listed in Table S2.

318

319 Fluorescence microscopy

320 Cells were inoculated from a fresh pre-culture and grown to mid-exponential growth at 37°C in 321 LLB medium. Bacterial cultures were centrifuged at $4000 \times g$ for 5 min, the pellets were washed 322 and suspended in liquid MSgg to reach an OD_{600} of 1.0. One μ L suspension was placed on solid 323 MSgg medium and were cultured at 37°C for 12 h. Agarose MSgg pads were then inverted on a 324 glass bottom dish (Nest). Cells were imaged using the Leica TCS SP8 microscope with the 63 \times 325 oil-immersion objective lens. For GFP observation, the excitation wavelength was 488 nm and the 326 emission wavelength was 500~560 nm; for mCherry observation, the excitation wavelength was 327 587 nm and the emission wavelength was 590~630 nm. Wild-type biofilms containing no 328 fluorescent fusions were analyzed to determine the background fluorescence.

For time-lapse experiment, after staining with propidium iodide (PI) for 15 min, images of colonies on the agarose pad were recorded for 20 min, with interval of 5 min. Image acquisitions were also performed with the Leica TCS SP8 microscope with the $63 \times$ oil-immersion objective lens. Detectors and filter set for monitoring of GFP and PI (excitation wavelength of 536 nm and emission wavelength of 608~652 nm) were used.

334

16

335 Preparation of the crude extract of BAs

336	The crude extract of BAs was prepared by thin layer chromatography (TLC). According to a			
337	previous study ⁴¹ , the fermentation supernatant of strain SQR9 were separated on a TLC plate, and			
338	the inhibition zone on the lawn of strain FZB42 indicated the position of BAs. Then, silica gel			
339	powder with BAs was scraped and extracted by MeOH, which was used as the crude extract of			
340	BAs.			
341				
342	Oxford cup assay			
343	Inhibition of different SQR9-derived mutants on <i>B. velezensis</i> FZB42 was evaluated by Oxford cup			
344	method. The suspension of strain FZB42 (~ 10^6 CFU mL ⁻¹) was spread onto LLB plates (10×10 cm)			

to grow as a bacterial lawn. A volume of $100 \,\mu$ L crude extract of BAs produced by different mutants

346 was injected into an Oxford cup on the lawn of strain FZB42. The plates were placed at 22°C until a

- 347 clear zone formed around the cup, and the inhibition diameter was scored. Each treatment includes
- 348 three biological replicates.

349

350 **BAs-sensitivity assessment**

351 Cells were inoculated from a fresh pre-culture and grown to mid-exponential growth at 37°C in

352 LLB medium. Afterwards, diluted cell suspension (~10⁶ CFU mL⁻¹) was spread onto LLB plates to

353 grow as a bacterial lawn. A volume of 100 µL crude extract of BAs from the wild-type SQR9 was

injected into an Oxford cup on the lawn. The plates were placed at 22°C for observation and

determination of the inhibition zone. Each treatment includes three biological replicates.

356

357 Biolayer interferometry (BLI) measurements

358	To confirm whether Spo0A can bind P_{bnaF} directly, determination of binding kinetics was performed
359	on an Octet® RED96 device (ForteBio, Inc., Menlo Park, US) at 25°C with orbital sensor agitation
360	at 1000 rpm. Streptavidin (SA) sensor tips (ForteBio) were used to immobilize 100 nM
361	biotin-labeled P_{bnaF} . Then, a baseline measurement was performed in the buffer PBST (PBS, 0.1%
362	BSA, 0.02% Tween-20) for 300 s. The binding of Spo0A at different concentrations (100 nM, 250
363	nM, 500 nM, and 1000 nM) to P_{bnaF} was recorded for 600 s followed by monitoring protein
364	dissociation using PBST for another 600 s. The BLI data for each binding event were summarized
365	as a "nm shift" (the wavelength/spectral shift in nanometers) and KD values determined by fitting to
366	a 1:1 binding model.

367

368 **Promoter activity testing via fluorescence intensity**

For colony fluorescence, cells were inoculated from a pre-culture into fresh LLB medium and grown at 37°C with 170 rpm shaking until OD_{600} reached 0.5. One μ L of the suspension were inoculated on solid LLB medium and were cultured at 37°C. Colony morphology and fluorescence were recorded by the stereoscope. ImageJ software was used to measure GFP intensity. For liquid culture fluorescence, overnight cultures were transferred to fresh LLB medium. Fluorescence intensity was determined by a microtiter plate reader. Each treatment includes three biological replicates.

376

377 Xylose induction assay

378	For the xylose-induced BAs production assay, 30 μ L overnight culture of SQR9- P_{xyl} -accDA or
379	wild-type SQR9 was transferred respectively into 3 mL fresh LLB liquid with different
380	concentrations of xylose (0%, 0.1%, 0.2%) and incubated at 37°C, 170 rpm for 24 h. Cell
381	suspensions were adjusted to the same $OD_{600}and$ were centrifuged at $12000\times g$ for 1 min. The
382	cell-free supernatant was mixed with MeOH (volume ratio 2:1) to extract BAs. A volume of 100 μ L
383	extract was injected into an Oxford cup on the lawn of strain FZB42 (as described above). The
384	plates were placed at 22°C.
385	For the xylose-induced self-immunity assay, strain SQR9- P_{xyl} -accDA was grown in LLB
386	without xylose for 24 h. Cell suspension was spread onto LLB plates containing different
387	concentrations of xylose (0%, 0.1% and 0.2%) to grow as the lawn. A volume of 100 μL (1×) or 200
388	μ L (2×) crude extract of BAs from the wild-type SQR9 was injected into an Oxford cup on the lawn.
389	The plates were placed at 22°C.
390	For xylose-induced gene expression assay, cells were inoculated from a pre-culture into fresh
391	LLB medium with different concentrations of xylose (0%, 0.1%, 0.2%), and were grown at 37°C
392	with 170 rpm shaking until OD_{600} reached 0.5. One μL of suspension was inoculated on solid LLB
393	medium and was cultured at 37°C, colony morphology and fluorescence were recorded by the
394	stereoscope.
395	Each treatment in these assays includes three biological replicates.

396

397 **Biofilm formation**

398	Cells were inoculated from a fresh pre-culture and grown to mid-exponential growth at 37°C in
399	LLB medium. Bacterial cultures were centrifuged at $4000 \times g$ for 5 min, the pellets were washed
400	and suspended in MSgg medium to an OD_{600} of 1.0. For colony observation, 1 μ L of suspension
401	were inoculated on solid MSgg medium and were cultured at 37°C, then the colony morphology

402 was recorded by the stereoscope. For pellicle observation, suspension was inoculated into MSgg 403 medium with a final concentration of 1% in a microtiter plate well, and the cultures were incubated 404 at 37°C without shaking.

405 Besides, the ability of strain to form biofilm under stress was measured in the 48-well 406 microtiter plate according to the method described above. When required, reagents that simulate 407 stress were supplemented in the MSgg medium before inoculating, including oxidative stress 408 (0.0025% H₂O₂), salt stress (7% NaCl), acid stress (pH 5), alkaline stress (pH 8), and antibiotic stress (4 µg mL⁻¹ tetracycline or 20 µg mL⁻¹ streptomycin). The amount of reagent added was 409 410 determined according to a concentration gradient in pre-experiment, and a concentration was chosen 411 to inhibit wild-type growth without killing it. At different stages of biofilm development (initiation, 412 progress, maturity, and dispersal), the MSgg medium underneath the biofilm was carefully removed 413 by pipetting and then the biofilm was taken and weighed.

414 Each treatment includes three biological replicates.

415

416 Flow cytometry

417 Biofilms were collected and re-suspended in 1 mL PBS buffer, and single cells were obtained after 418 mild sonication. Cells were centrifuged at $4000 \times g$ for 5 min and washed briefly with PBS. For

flow cytometry, cells were diluted to 1:100 in PBS and measured on BD FACSCanto II. For GFP
fluorescence, the laser excitation was 488 nm and coupled with 500-560 nm. Every sample was
analyzed for 20000 events. FlowJo V10 software was used for data analysis and graphs creating.
Three replicates for each treatment were analyzed.

423

424 **Root colonization assay in hydroponic culture**

Bacterial suspension was inoculated into 1/4 Murashige-Skoog medium to make the final OD₆₀₀ value to be 0.1, into which sterile cucumber seedlings with three true leaves were immersed. After cultured with slowly shaking for two days, cells colonized on cucumber roots were determined by plate colony counting. In detail, roots were washed eight times in PBS to remove free and weakly attached bacterial cells. After vortexing for 5 min until colonized bacteria were detached from roots, 100 μ L of the bacterial suspension was plated onto LLB agar plates for quantification. Each treatment includes three biological replicates.

432

433 Measurement of public goods production

Qualitative measurement of proteases production was done by inoculating 1 μ L of bacterial suspension on solid 2% skim milk medium and cultured at 30°C until transparent zone formed around colonies; quantitative measurements of alkaline protease and neutral protease activity were conducted according to a previous study⁶³. Qualitative and quantitative measurement of siderophore production were based on the universal chemical assay described by Schwyn and Neilands⁶⁴. Each treatment includes three biological replicates.

440

441 Acknowledgements

- 442 This work was financially supported by the National Natural Science Foundation of China
- 443 (31870096, 42090064, 31972512, 32072665, and 32072675), the Fundamental Research Funds for
- 444 the Central Universities (KYZZ2022003), and the National Key Research and Development
- 445 Program (2021YFD1900300).

446

447 **Competing Interests Statement**

448 The authors declare no conflict of interest.

449

450 **References**

451	1.	Rakoff-Nahoum, S., Foster, K.R. & Comstock, L.E. The evolution of cooperation within the gut
452		microbiota. Nature 533, 255-259 (2016).
453	2.	Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159
454		(2021).
455	3.	Smith, P. & Schuster, M. Public goods and cheating in microbes. Curr. Biol. 29, R442-R447 (2019).
456	4.	Chen, R. et al. Social cheating in a Pseudomonas aeruginosa quorum-sensing variant. Proc. Natl.
457		Acad. Sci. USA 116, 7021-7026 (2019).
458	5.	Griffin, A.S., West, S.A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature
459		430 , 1024-1027 (2004).
460	6.	Vlamakis, H. et al. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev.
461		<i>Microbiol.</i> 11 , 157-168 (2013).
462	7.	Dragoš, A. & Kovács, Á.T. The peculiar functions of the bacterial extracellular matrix. Trends
463		Microbiol. 25, 257-266 (2017).
464	8.	Lyons, N.A. & Kolter, R. Bacillus subtilis protects public goods by extending kin discrimination to
465		closely related species. mBio 8, e00723-17 (2017).
466	9.	Kraigher, B. et al. Kin discrimination drives territorial exclusion during Bacillus subtilis swarming
467		and restrains exploitation of surfactin. ISME J. 16, 833-841 (2022).
468	10.	Wang, M. et al. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc.
469		Natl. Acad. Sci. USA 112, 2187-2191 (2015).
470	11.	Stewart, A.J. & Plotkin, J.B. Collapse of cooperation in evolving games. Proc. Natl. Acad. Sci. USA
471		111 , 17558-17563 (2014).

472	12.	Hardin, G. The tragedy of the commons. Science 162, 1243-1248 (1968).
473	13.	West, S.A. <i>et al.</i> Social evolution theory for microorganisms. <i>Nat. Rev. Microbiol.</i> 4 , 597-607 (2006).
474	14.	Sandoz, K.M., Mitzimberg, S.M. & Schuster, M. Social cheating in <i>Pseudomonas aeruginosa</i>
475		quorum sensing. <i>Proc. Natl. Acad. Sci. USA</i> 104 , 15876-15881 (2007).
476	15.	Martin, M. et al. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis
477	101	biofilms. <i>ISME J.</i> 14 , 2302-2312 (2020).
478	16.	Travisano, M. & Velicer, G.J. Strategies of microbial cheater control. <i>Trends Microbiol.</i> 12 , 72-78
479		(2004).
480	17.	Özkaya, Ö. et al. Maintenance of microbial cooperation mediated by public goods in single- and
481		multiple-trait scenarios. J. Bacteriol. 199 , e00297-17 (2017).
482	18.	Diggle, S.P. et al. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450,
483		411-414 (2007).
484	19.	McNally, L. et al. Killing by Type VI secretion drives genetic phase separation and correlates with
485		increased cooperation. Nat. Commun. 8, 14371 (2017).
486	20.	Allen, R.C. <i>et al.</i> Quorum sensing protects bacterial co-operation from exploitation by cheats. <i>ISME</i>
487		J. 10, 1706-16 (2016).
488	21.	Sexton, D.J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial
489		siderophore cooperation. Nat. Commun. 8, 230 (2017).
490	22.	Dandekar, A.A., Chugani, S. & Greenberg, E.P. Bacterial quorum sensing and metabolic incentives
491		to cooperate. <i>Science</i> 338 , 264-266 (2012).
492	23.	García-Contreras, R. et al. Quorum sensing enhancement of the stress response promotes resistance
493		to quorum quenching and prevents social cheating. ISME J. 9, 115-125 (2015).
494	24.	Jin, Z. et al. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to
495		resist cheater invasion. Nat. Commun. 9, 1383 (2018).
496	25.	Otto, S.B. et al. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems 5,
497		e00425-20 (2020).
498	26.	van Gestel, J. et al. Density of founder cells affects spatial pattern formation and cooperation in
499		Bacillus subtilis biofilms. ISME J. 8, 2069-2079 (2014).
500	27.	Andersen, S.B. et al. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc.
501		Natl. Acad. Sci. USA 112, 10756-10761 (2015).
502	28.	Dragoš, A. et al. Division of labor during biofilm matrix production. Curr. Biol. 28, 1903-1913
503		(2018).
504	29.	López, D. et al. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 74,
505		609-618 (2009).
506	30.	Branda, S.S. et al. Biofilms: the matrix revisited. Trends Microbiol. 13, 20-26 (2005).
507	31.	Vlamakis, H. et al. Control of cell fate by the formation of an architecturally complex bacterial
508		community. Genes Dev. 22, 945-953 (2008).
509	32.	Cairns, L.S., Hobley, L. & Stanley-Wall, N.R. Biofilm formation by Bacillus subtilis: new insights
510		into regulatory strategies and assembly mechanisms. Mol. Microbiol. 93, 587-598 (2014).
511	33.	López, D. et al. Paracrine signaling in a bacterium. Genes. Dev. 23, 1631-1638 (2009).
512	34.	López, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS
513		<i>Microbiol. Rev.</i> 33 , 152-163 (2009).

514	35.	López, D. & Kolter, R. Extracellular signals that define distinct and coexisting cell fates in Bacillus
515		subtilis. FEMS Microbiol. Rev. 34, 134-149 (2010).
516	36.	West, S.A. et al. The social lives of microbes. Annu. Rev. Ecol. Evol. S. 38, 53-77 (2007).
517	37.	Cao, Y. et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant
518		roots. Biol. Fert. Soils 47, 495-506 (2011).
519	38.	Xu, Z. et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal
520		activity and biofilm formation. Appl. Environ. Microbiol. 79, 808-815 (2013).
521	39.	Qiu, M. et al. Comparative proteomics analysis of Bacillus amyloliquefaciens SQR9 revealed the key
522		proteins involved in in situ root colonization. J. Proteome Res. 13, 5581-5591 (2014).
523	40.	Xu, Z. et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus
524		velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep. 29, 1192-1202 (2019).
525	41.	Wang, D. et al. A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial
526		fatty acids and a self-protection shield to enhance its competition. Environ. Microbiol. 21, 3455-3471
527		(2019).
528	42.	Huang, R. et al. A unique genomic island-governed cannibalism in Bacillus enhanced biofilm
529		formation through a novel regulation mechanism. bioRxiv, doi: 10.1101/2021.10.04.462985. (2021).
530	43.	Hamon, M.A. & Lazazzera, B.A. The sporulation transcription factor Spo0A is required for biofilm
531		development in Bacillus subtilis. Mol. Microbiol. 42, 1199-1209 (2001).
532	44.	Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683-1701 (2003).
533	45.	Pedrido, M.E. et al. Spo0A links de novo fatty acid synthesis to sporulation and biofilm development
534		in Bacillus subtilis. Mol. Microbiol. 87, 348-367 (2013).
535	46.	Diomandé, S.E. et al. Role of fatty acids in Bacillus environmental adaptation. Front. Microbiol. 6,
536		813 (2015).
537	47.	Fujita, M., Gonzalez-Pastor, J.E. & Losick, R. High- and low-threshold genes in the SpoOA regulon
538		of Bacillus subtilis. J. Bacteriol. 187, 1357-1368 (2005).
539	48.	Shank, E.A. & Kolter, R. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin.
540		Microbiol. 14, 741-747 (2011).
541	49.	Bruger, E. & Waters, C. Sharing the sandbox: Evolutionary mechanisms that maintain bacterial
542		cooperation. F1000Res. 4, 1504 (2015).
543	50.	Özkaya, Ö. et al. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr. Biol.
544		28 , 2070-2080 (2018).
545	51.	Momeni, B. Division of labor: how microbes split their responsibility. Curr. Biol. 28, R697-R699
546		(2018).
547	52.	Strassmann, J.E., Gilbert, O.M. & Queller, D.C. Kin discrimination and cooperation in microbes.
548		Annu. Rev. Microbiol. 65, 349-367 (2011).
549	53.	Rendueles, O. et al. Rapid and widespread de novo evolution of kin discrimination. Proc. Natl. Acad.
550		Sci. USA 112, 9076-9081 (2015).
551	54.	Lyons, N.A. & Kolter, R. A single mutation in rapP induces cheating to prevent cheating in Bacillus
552		subtilis by minimizing public good production. Commun. Biol. 1, 133 (2018).
553	55.	Xavier, J.B., Kim, W. & Foster, K.R. A molecular mechanism that stabilizes cooperative secretions in
554		Pseudomonas aeruginosa. Mol. Microbiol. 79 , 166-179 (2011).
555	56.	Whiteley, M., Diggle, S.P. & Greenberg, E.P. Progress in and promise of bacterial quorum sensing

556		research. Nature 551, 313-320 (2017).
557	57.	Steinke, K. et al. Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species
558		complex. mSystems 6, e00057-21 (2021).
559	58.	Xia, L. et al. Biosynthetic gene cluster profiling predicts the positive association between antagonism
560		and phylogeny in Bacillus. Nat. Commun. 13, 1023 (2022).
561	59.	Branda, S.S. et al. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98,
562		11621-11626 (2001).
563	60.	Landy, M., Rosenman, S.B. & Warren, G.H. An antibiotic from Bacillus subtilis active against
564		pathogenic fungi. J. Bacteriol. 54, 24 (1947).
565	61.	Feng, H. et al. Identification of chemotaxis compounds in root exudates and their sensing
566		chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol.
567		<i>Plant Microbe Interact.</i> 31 , 995-1005 (2018).
568	62.	Xu, Z. et al. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into
569		Bacillus velezensis strain SQR9XYQ. Phytopathology 109, 36-43 (2019).
570	63.	Kunitz, M. Crystalline soybean trypsin inhibition: II. General properties. J. Gen. Physiol. 30,
571		291-310 (1947).
572	64.	Schwyn, B. & Neilands, J. Universal chemical assay for the detection and determination of
573		siderophores. Anal. Biochem. 160, 47-56 (1987).
574		
575		

576 **Figure captions**

577 Fig. 1 Expression of extracellular matrix (ECM) production and bacillunoic acids (BAs) 578 biosynthesis/immunity were located in the same subpopulation. Colony cells of different 579 double-labeled strains were visualized using a confocal laser scanning microscopy (CLSM) to monitor the distribution of fluorescence signal from different reporters. P_{eps} -mCherry and 580 581 P_{tapA} -mCherry were used to indicate cells expressing extracellular polysaccharides (EPS) and TasA 582 fibers production, respectively; P_{bnaF} -gfp and P_{bnaAB} -gfp were used to indicate cells expressing BAs 583 synthesis and self-immunity, respectively. The bar represents 5 µm. 584 Fig. 2 ECM and BAs producing subpopulation eliminated the nonproducing cheaters. Colony 585 cells of different gfp-labeled strains were stained with propidium iodide (PI, a red-fluorescent dye 586 for labeling dead cell) for 15 min, and then visualized by a CLSM to monitor the distribution of 587 fluorescence signal from reporters and the PI dye, at 0, 10, and 20 min after treatment. Peps-gfp and P_{tapA} -gfp were used to indicate cells expressing EPS and TasA fibers production, respectively; 588 P_{bnaF} -gfp and P_{bnaAB} -gfp were used to indicate cells expressing BAs synthesis and self-immunity, 589 590 respectively. 591 Fig. 3 Spo0A is the co-regulator for triggering ECM production and BAs synthesis/immunity. 592 (A) Inhibition of the lawn of *B. velezensis* FZB42 by the crude extracted BAs of wild-type SQR9, 593 its different mutants altered in ECM production, and complementary strain $\Delta spo0A/spo0A$. (B) 594 Diameter of the inhibition zones observed in (A). (C) Sensitivity of wild-type SQR9, $\Delta spo0A$, and 595 $\Delta spo0A/spo0A$ (as the lawn) to the extracellular extract of SQR9 and its mutant Δ GI3 that disable in

596 BAs synthesis. (**D**) Expression level of *eps*, *tapA*, *bnaF*, and *bnaAB* in wild-type SQR9, Δ spo0A,

and $\Delta spo0A/spo0A$, as monitored by using *gfp* reporters fused to the corresponding promoters. Data are means and standard deviations from three biological replicates. * indicates significant difference with the Control (SQR9) column as analyzed by Duncan's multiple range test (*P* < 0.05).

600 Fig. 4 Spo0A activates acetyl-CoA carboxylase (ACC) for BAs synthesis and self-immunity. (A)

- 601 Involvement of ACC in biosynthesis of BAs in B. velezensis SQR9. ACC catalyzes acetyl-CoA to
- 602 generate malonyl-CoA, which is transformed to malonyl-ACP under the catalyzation of ACP
- transacylase; then malonyl-ACP and acetyl-CoA are aggregated into a C₅ primer, the precursor for
- BAs synthesis. (B) Expression level of *accDA* in wild-type SQR9, $\Delta spo0A$, and $\Delta spo0A/spo0A$, as
- 605 monitored by using the P_{accDA} -gfp reporter. (C) Inhibition of the lawn of B. velezensis FZB42 by the
- 606 crude extracted BAs of wild-type SQR9 and SQR9- P_{xyl} -accDA, with addition of different

concentrations of xylose (0%, 0.1% and 0.2%). (**D**) Diameter of the inhibition zones observed in

607

- 608 (C). (E) Sensitivity of wild-type SQR9 and SQR9- P_{xyl} -accDA (as the lawn) to the crude extracted
- BAs of SQR9 (100 μ L (1×) or 200 μ L (2×)), with addition of different concentrations of xylose (0%,

610 0.1%, and 0.2%). (F) Expression of *bnaF* and *bnaAB* in the colony cells of wild-type SQR9 and

611 SQR9- P_{xyl} -accDA, with addition of different concentrations of xylose (0%, 0.1% and 0.2%).

612 Colonies were observed under both bright field (BF in the figure) and GFP channel, to monitor the

613 florescence of P_{bnaF} -gfp and P_{bnaAB} -gfp reporters in different strains. Data are means and standard

614 deviations from three biological replicates. * in (**B**) indicates significant difference (P < 0.05) with

615 the Control (SQR9) column as analyzed by Duncan's multiple range tests; columns with different

616 letters in (**D**) are statistically different according to the Duncan's multiple range test ("a" for

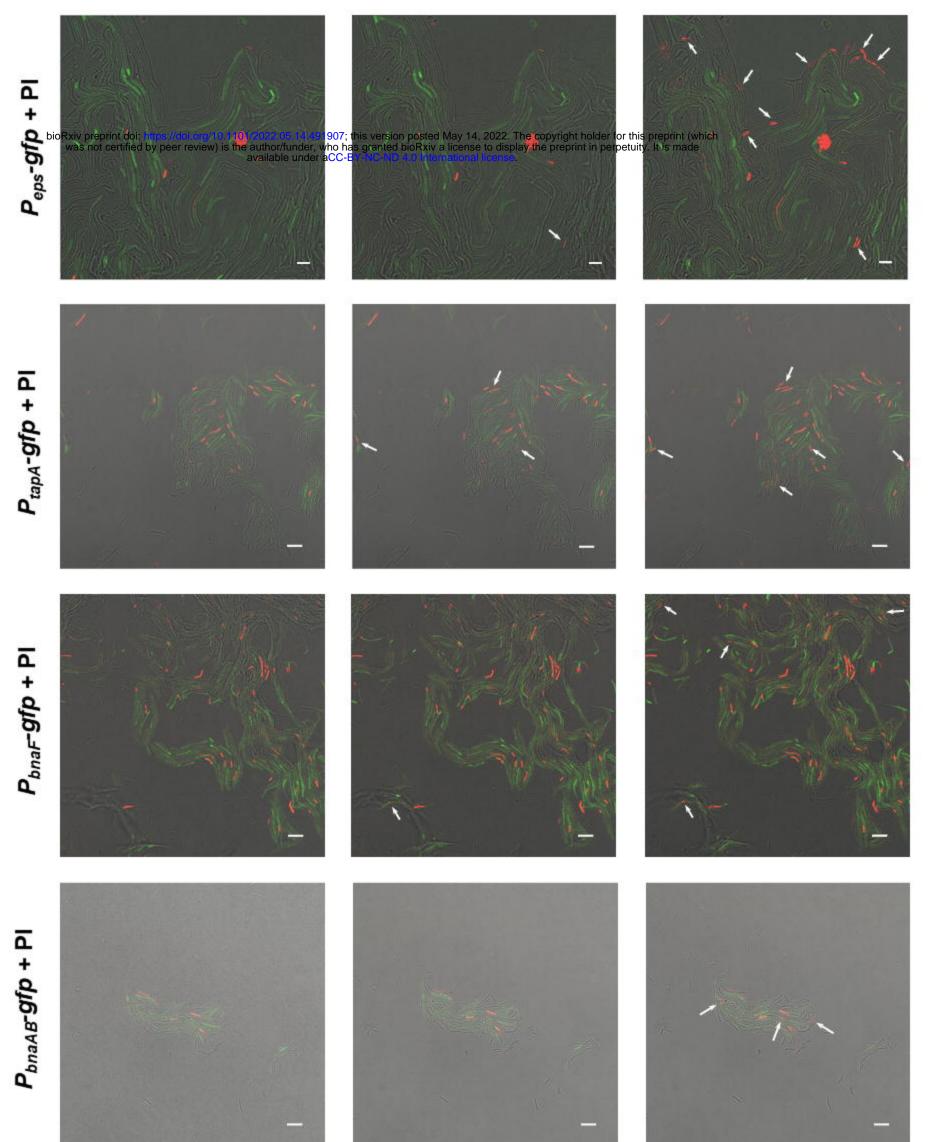
617 wild-type SQR9 under different concentrations of xylose and "a" for SQR9- P_{xyl} -accDA; P < 0.05).

618 Fig. 5 The co-regulation policing system eliminates cheaters and enhances population fitness.

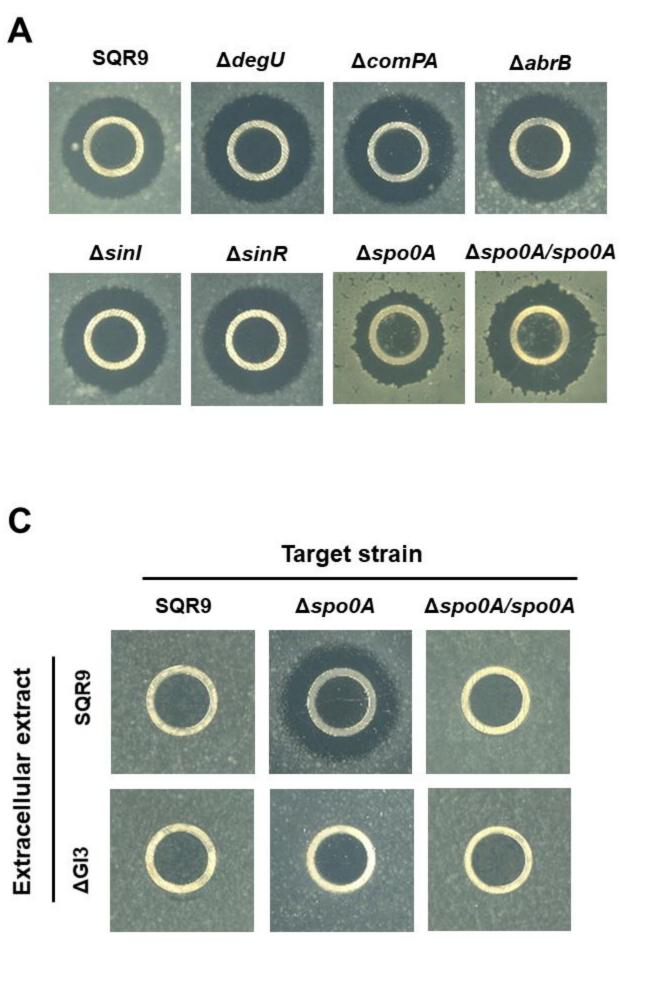
619	(A) Flow cytometry monitoring the expression of P_{eps} -gfp and P_{tapA} -gfp reporters in wild-type SQR9,
620	SQR9 $\Delta bnaV$ and SQR9- P_{43} - $bnaAB$. (B) Proportion of the active cells (%) and average FITC in
621	wild-type SQR9, SQR9 $\Delta bnaV$ and SQR9- P_{43} - $bnaAB$, as monitored by P_{eps} - gfp and P_{tapA} - gfp
622	reporters using flow cytometry. (C) Pellicle formation dynamics of wild-type SQR9, SQR9 $\Delta bnaV$
623	and SQR9- P_{43} -bnaAB in MSgg medium. (D) Pellicle weight dynamics of wild-type SQR9,
624	SQR9 $\Delta bnaV$ and SQR9- P_{43} - $bnaAB$ in MSgg medium under normal (corresponds to (C)) or stressed
625	conditions (H ₂ O ₂ , tetacycline, or 7% NaCl). (E) Production of proteases and siderophore by
626	wild-type SQR9, SQR9 $\Delta bnaV$ and SQR9- P_{43} - $bnaAB$ colonies. (F) Comparison of root colonization
627	of wild-type SQR9, SQR9 $\Delta bnaV$ and SQR9- P_{43} - $bnaAB$. Data are means and standard deviations
628	from three biological replicates; columns with different letters are significantly different according
629	to Duncan's multiple range tests, $P < 0.05$.

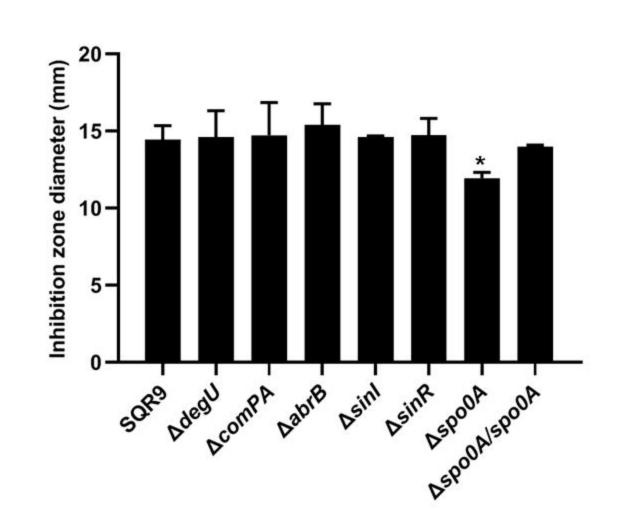
630 Fig. 6 Working model and ecological significance of the co-regulation policing system in B.

631 velezensis. In certain conditions (e.g., environmental or self-produced clues, surface attachments, 632 etc.), Bacillus cells can differentiate into Spo0A-ON (~moderate phosphorylated) and Spo0A-OFF (unphosphorylated) subpopulation. The SpoOA-ON subpopulation are cooperators that produce 633 public goods for the community, such as extracellular matrix (ECM) or proteases; simultaneously 634 they express AccDA to produce malonyl-CoA as the precursor for bacillunoic acids (BAs) 635 636 biosynthesis, and the endogenous autotoxin activates immunity-required transporter BnaAB to 637 pump them out. Comparatively, the Spo0A-OFF subpopulation are phenotypic cheaters that 638 silenced in public goods secretion, which are also disable in malonyl-CoA production and BAs

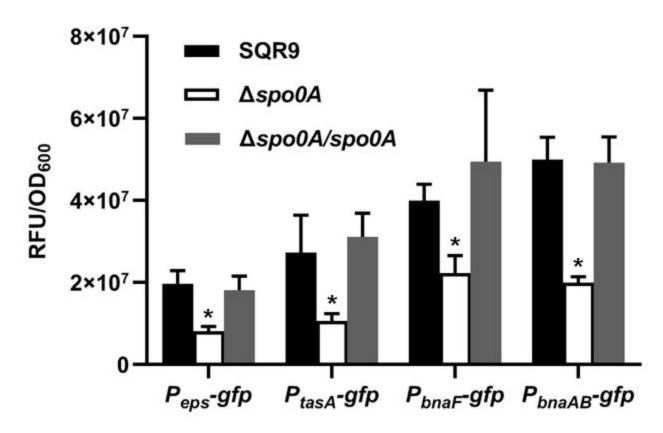

- 639 biosynthesis/self-immunity. Consequently, the cooperators-produced BAs can effectively eliminate
- 640 the cheating individuals, thereby enhancing the population stability and fitness.

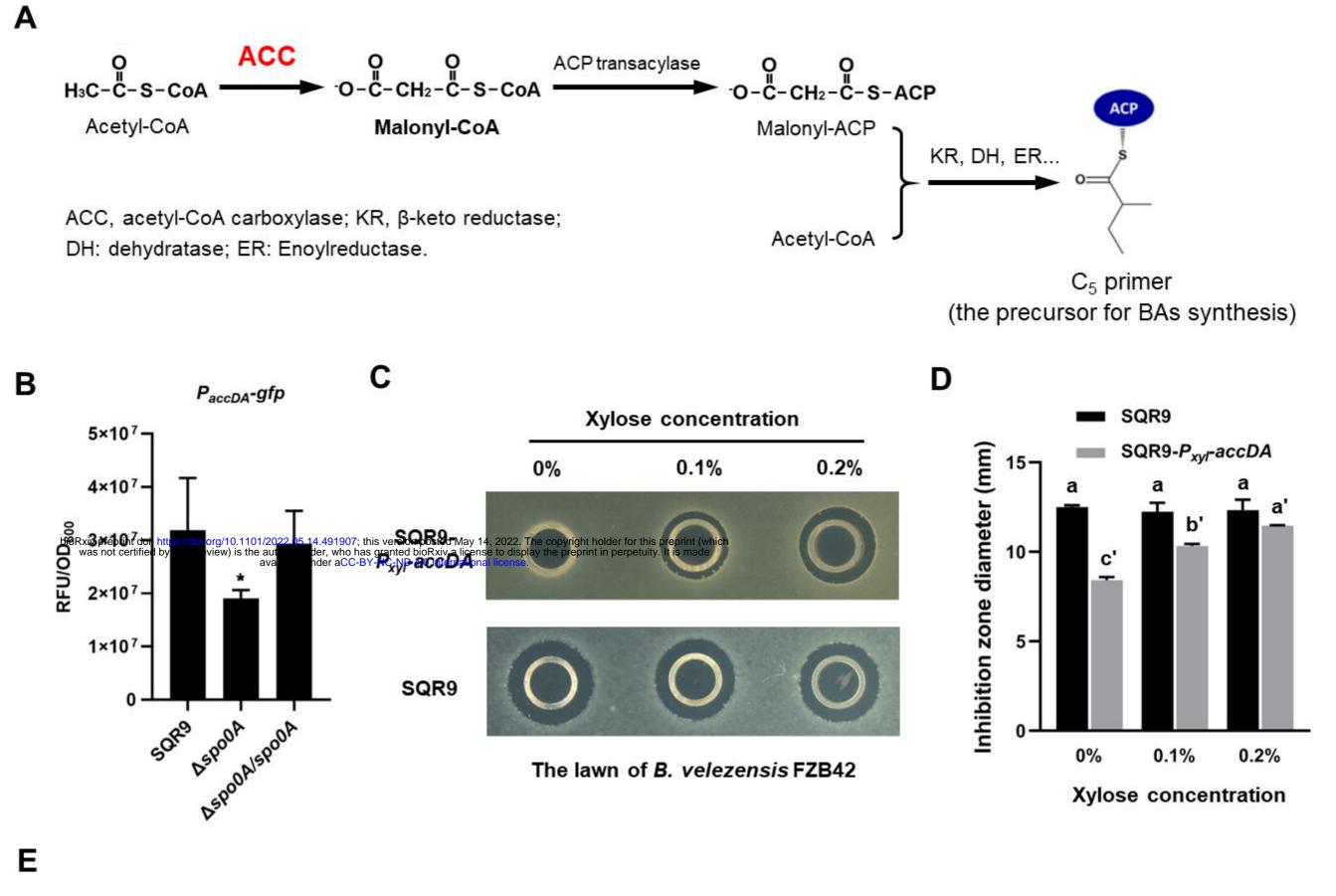
Overlay **Bright field** mCherry GFP bioRxiv preprint doi: https://doi.org/10.1101/2022.05.14.491907; this version posted May 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder available under CC-BY-NC-ND 4.0 International license Peps-mCherry Pbnaf-gfp P_{tapA}-mCherry P_{bnaF}-gfp Peps-mCherry PbnaAB-gfp P_{tapA}-mCherry P_{bnaAB}-gfp

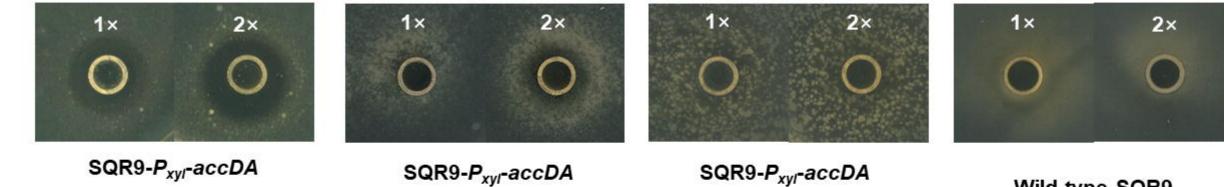

0 min


10 min

20 min

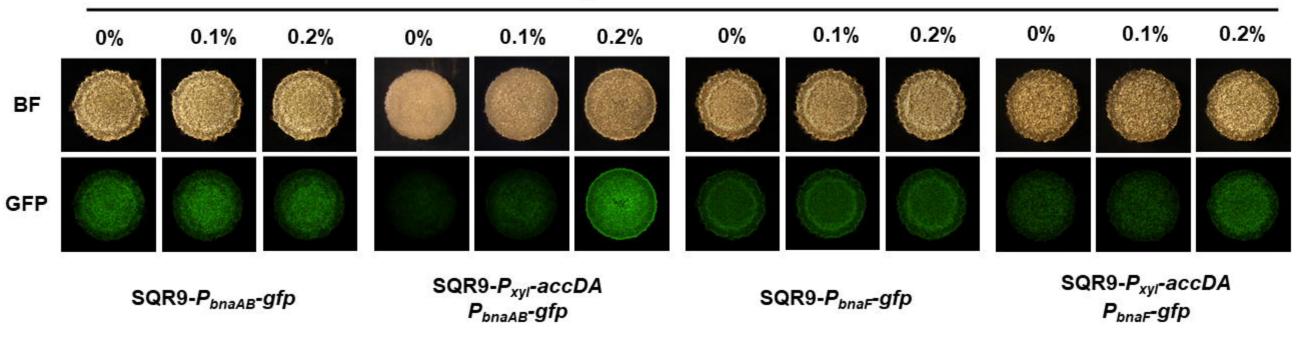

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

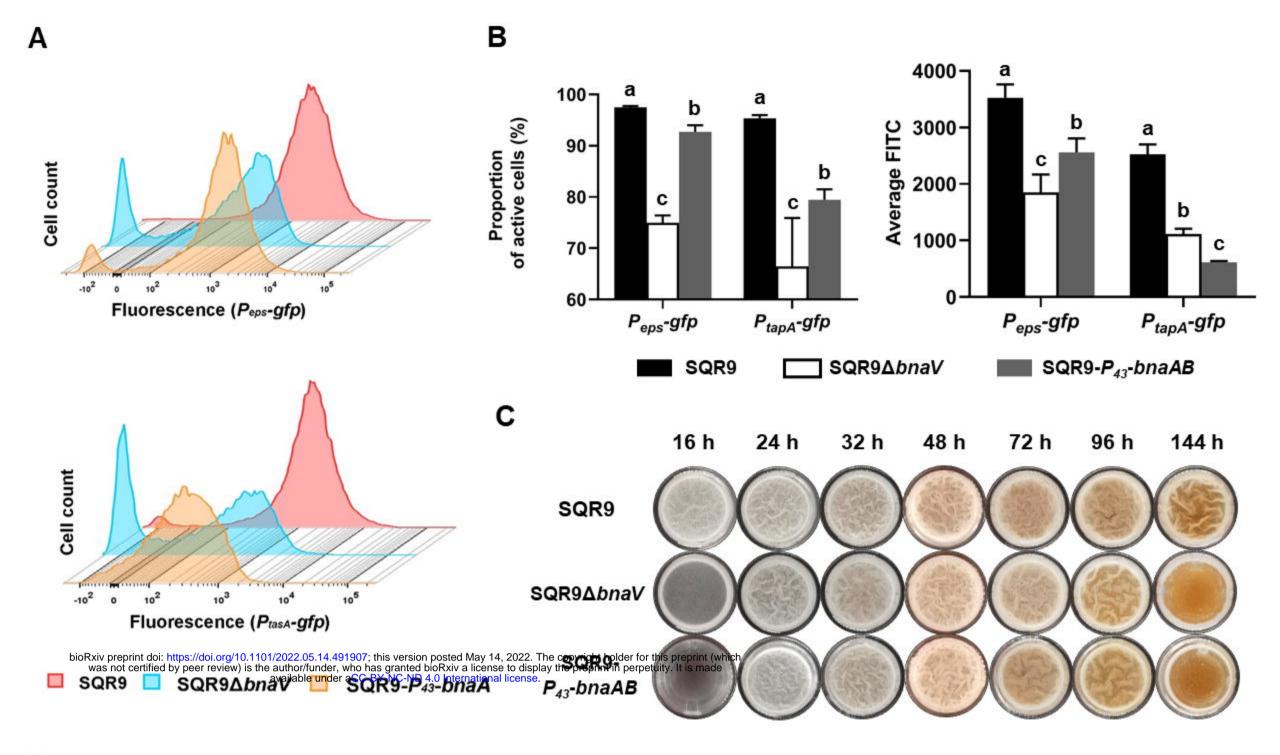


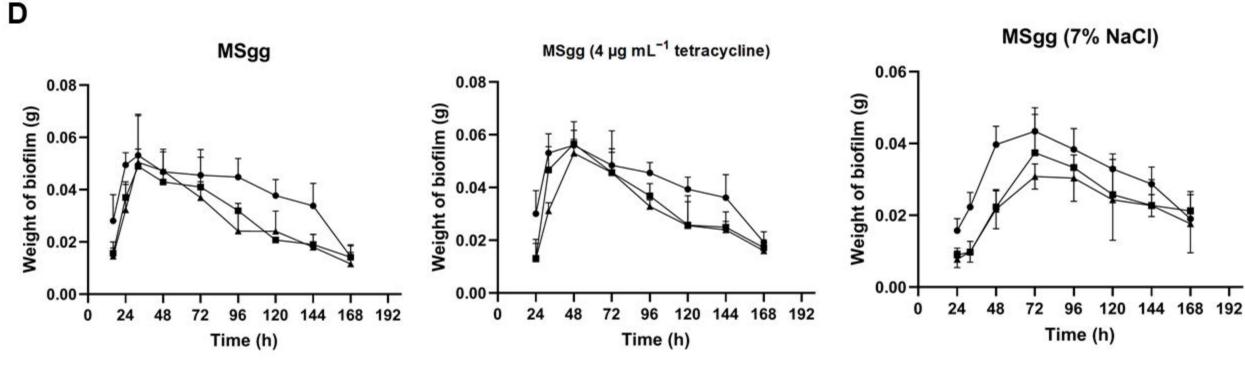


D

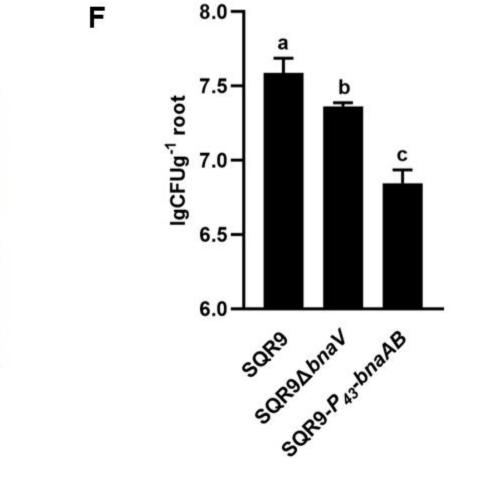
В

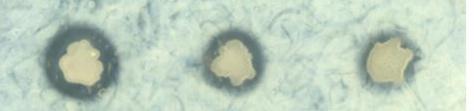

0% xylose


0.1% xylose


0.2% xylose

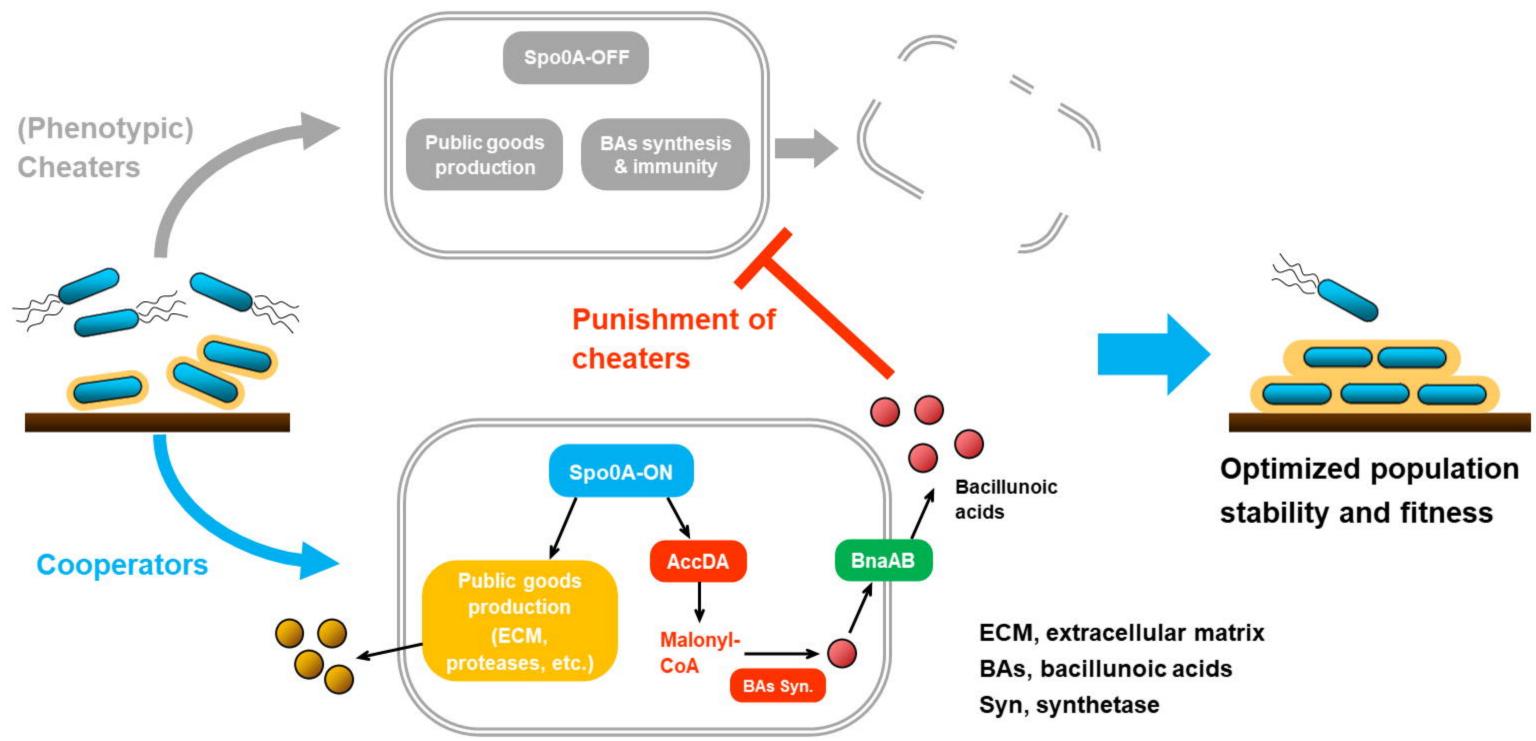
Wild-type SQR9


Xylose concentration



SQR9-P43-bnaAB SQR9∆bnaV

SQR9-SQR9 SQR9∆bnaV P₄₃-bnaAB



SQR9

Protease (12 h)

Siderophore (48 h)

