
1 
 

Pan-cancer scale screening reveals NRF2 associated 
immunoevasive characteristics in non-small cell lung 

cancer and squamous malignancies 
 

Jouni Härkönen1,§, Petri Pölönen1,2,§, Ashik Jawahar Deen1, Ilakya Selvarajan1, Hanna-Riikka 
Teppo3,4,5, Elitsa Y Dimova6, Thomas Kietzmann6, Maarit Ahtiainen7, Tiia Eklund8, Teijo 

Kuopio8,9, Eva-Maria Talvitie10, Pekka Taimen11,12, Markku Kallajoki12, Minna U Kaikkonen1, 
Merja Heinäniemi2, Anna-Liisa Levonen1* 

1Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of 
Eastern Finland, Kuopio, 70210, Finland 

2Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio, 
70210, Finland 

3Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, 90220, 
Finland 

4Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, 90570, 
Finland 

5Department of Pathology, Oulu University Hospital, Oulu, 90220, Finland 

6Faculty of Biochemistry and Molecular Medicine, University of Oulu and Biocenter Oulu, 
Oulu, 90570, Finland 

7Department of Education and Research, Hospital Nova of Central Finland, Jyväskylä, 40620, 
Finland 

8Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, 
40100, Finland 

9Department of Pathology, Hospital Nova of Central Finland, Jyväskylä, 40620, Finland 

10Department of Genomics, Turku University Hospital and University of Turku, Turku, 20520, 
Finland 

11Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, 20520, 
Finland 

12Department of Pathology, Turku University Hospital, Turku, 20521, Finland 

§Equal contribution 

*Correspondence: anna-liisa.levonen@uef.fi 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.489654doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.489654
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Summary 

The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis 
of its effects across different malignancies is currently lacking. We developed a robust NRF2 
activity metric and utilized it to conduct a pan-cancer wide analysis of oncogenic NRF2 signaling. 
We identified a distinct immunoevasive phenotype where high NRF2 activity is associated with 
low interferon-gamma (IFNγ), HLA-I expression and T-cell infiltration spanning non-small cell 
lung cancer (NSCLC) and squamous malignancies of head and neck area, cervix and esophagus. 
In squamous cell cancers, NRF2 overactive tumors comprise a molecular phenotype with 
SOX2/TP63 amplification, TP53 mutation and CDKN2A loss. These immune-cold NRF2 
hyperactive diseases are associated with upregulation of immunomodulatory NAMPT, WNT5A, 
SPP1, SLC7A11 and SLC2A1 that represent candidate NRF2 target genes, suggesting direct 
modulation of the tumor immune milieu. Based on single-cell mRNA data, coupled with a priori 
information on intercellular ligand-receptor interactions, cancer cells of this subtype exhibit 
decreased expression of IFNγ responsive ligands, and increased expression of immunosuppressive 
ligands NAMPT, SPP1 and WNT5A that mediate signaling in intercellular crosstalk. As we 
observed differential cytokine mRNA expression with IFNγ treatment in NSCLC adenocarcinoma 
subtype, we explored the cytokine secretome in vitro. We found that secreted neutrophil 
chemoattractants interleukin-8 (CXCL8) and ENA-78 (CXCL5) are elevated in NRF2 overactive 
cells, suggesting contribution of immunosuppressive neutrophils in NRF2 driven immune escape. 
Importantly, as overactive NRF2 is associated with immune-cold characteristics, our results 
highlight the utility of NRF2 pathway activation as a putative biomarker for stratifying immune-
checkpoint blockade responders and non-responders across NSCLC and squamous cancers.  
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Introduction 

Carcinogenesis – the gradual path from normal cellular behavior to malignant growth – requires a 
cell to acquire a set of distinct hallmark properties over time. These properties comprise functional 
changes in pre-malignant cells, as well as in various proximate stromal cells through intercellular 
crosstalk. From this standpoint, malignant tumors can be considered as complex organs harnessed 
to sustain neoplastic growth (Hanahan and Weinberg, 2011). Due to the increase in proliferation 
and cellular metabolism, an inevitable consequence of malignant growth is increased oxidative 
stress, which renders pathways with antioxidant effects under positive selection (Hayes, Dinkova-
Kostova and Tew, 2020). The principal regulator of the cellular redox homeostasis is the 
transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2, NFE2L2 gene), which is 
frequently hyperactive in malignant disease. Especially in non-small cell lung cancer, the 
oncogenic activation of NRF2 is highly frequent: somatic NRF2 activating mutations alone are 
among the most frequently occurring subtype specific aberrations (Campbell et al., 2016). The 
cytoplasmic inhibitor of NRF2, Kelch-like ECH Associated Protein 1 (KEAP1), is an E3 ubiquitin 
ligase substrate adaptor targeting NRF2 for proteasomal degradation under unstressed conditions. 
In oxidative or electrophile stress, the interaction is disrupted and de novo synthesized NRF2 is 
translocated to the nucleus to drive target gene expression. NRF2 target genes have antioxidant 
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and detoxifying effects via various mechanisms including upregulation of glutathione S-
transferases, as well as NAD(P)H quinone oxidoreductase, which has multiple roles in adaptive 
cellular responses to stress (Ross & Siegel, 2017). In cancer, the regulation of NRF2 is disturbed 
rendering NRF2 constitutively active. Mechanisms of NRF2 activation include somatic mutations 
and copy-number variation in NFE2L2 (gain-of-function or amplification) and KEAP1 (loss-of-
function or deletion), as well as positive regulation by p62 (Leinonen et al., 2014; Pölönen et al., 
2019). Along with its antioxidant effects, NRF2 hyperactivity is known to promote cancer cell 
proliferation and survival via various other mechanisms, e.g. by promoting anabolic metabolism 
and increasing chemoresistance via enhanced phase II enzyme and drug efflux transporter 
expression (Rojo de la Vega, Chapman and Zhang, 2018). 

One hallmark property of cancer is its ability to evade destruction by the immune system (Hanahan 
and Weinberg, 2011). The past decade has complemented oncogene-centric targeted therapies 
with treatments that modulate the antitumor immune response. However, current diagnostic 
approaches fail to detect the clinical responders for immune-checkpoint blockade (ICB) with 
reproducible precision (Ancevski Hunter et al., 2018). From this vantage, the effect of frequent 
oncogenic events on the crosstalk between cancer cells and immune cells needs further elucidation 
to dissect the contribution of major oncogenic processes on tissue microenvironment (TME) 
modification and to provide novel predictive biomarkers for ICB. It has been previously shown 
that NRF2 drives PD-L1 expression and leads to reduced leukocyte infiltration in mouse allograft 
models of melanoma and lung adenocarcinoma (Best et al., 2018; Zhu et al., 2018), but a 
comprehensive characterization of the effect of NRF2 overactivity on cancer immunity is currently 
lacking. The aim of this study was therefore to characterize NRF2 hyperactivity at a pan-cancer 
scale and interrogate unknown biological effects of oncogenic NRF2 activation, with a special 
emphasis on cancer immunity. To this end, we utilized The Cancer Genome Atlas (TCGA) and 
Cancer Cell Line Encyclopedia (CCLE), which are publicly available multi-omics databases of 
tumors and cell lines, respectively. Furthermore, the key findings of this work were validated 
experimentally and by using independent clinical cohorts.  

Results 

NRF2 activity score improves detection of NRF2 driven malignancies 

We developed a NRF2 activity scoring metric from experimentally confirmed robust NRF2 target 
genes (Figure 1A). The utility of such a score is to overcome the limitations of using gold-standard 
mutations as a classifier, namely low sample size and the lack of statistical power, as well as 
ambivalent functionality of rare variants. Furthermore, alternative NRF2 activation mechanisms 
exist (Leinonen et al., 2014; Pölönen et al., 2019), highlighting the importance of using NRF2 
target gene expression as a marker of activity instead of somatic variants. Our goal was to generate 
a metric that is: a) based on expression of evident target genes with robust responses to NRF2 
activity; b) tissue-agnostic; and c) unbiased towards signal arising from the TME. The score was 
developed as follows: first, we used A549 lung adenocarcinoma cells harboring the KEAP1 
inactivating mutation G333W rendering NRF2 overactive (A549-NRF2OE) and knocked out NRF2 
with Cas9-sgNRF2 (comparison of A549 NRF2 overexpressed vs knockout, hereafter referred to 
as A549-NRF2OEvsKO) to detect NRF2 dependent differentially expressed genes (Figure S1A & 
S1B, list of genes in supplementary table 1). Second, we used publicly available functional 
genomics data (See materials & methods, Functional genomics analysis of NRF2 target genes) to 
subset the genes that are directly regulated by NRF2 (See supplementary table 2 for a complete 
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reference of candidate targets). Third, we utilized public tissue as well as stromal cell 
transcriptomic data from Genotype Tissue Expression portal (GTEx) and Database of Immune 
Cell Expression (DICE), respectively, to discard genes that are clearly tissue specific or 
prominently expressed in TME-populations (Figure S1C and Figure S1D). The final NRF2 
signature comprised genes CBR1, SRXN1, GCLC, GCLM, AKR1C3 and ME1 and the final score 
was defined as a geometric mean of their linear TMM normalized mRNA-expression. The score 
values were scaled within disease entities (to density distribution peak) in TCGA-samples to 
decrease variance between cancer types.  

We assessed the score performance with ROC-analysis against OncoKB (Chakravarty et al., 2017) 
defined hotspots in NFE2L2 and KEAP1 and functional variants (KEAP1-truncating aberrations) 
in TCGA-data (Figure 1B). The score exhibited excellent overall discrimination (AUC = 0.94) 
and all of the genes showed markedly different distributions in mRNA-expression in TCGA 
KEAP1/NFE2L2 mutated vs wild type samples (Figure 1C). Individual ROC analyses for cohorts 
with somatic mutations in NFE2L2/KEAP1 are shown in Figure S1E. Score variance correlated 
considerably with KEAP1/NFE2L2 mutation frequency (r = 0.8, P < 0.0001) and thus evidently 
predicts the oncogenicity of NRF2 irrespective of activating mechanism (Figure S1F). By this 
rationale, diseases associated with > 5 % mutation frequency or σ2 > 0.75 were defined to harbor 
significant oncogenic NRF2 activity. From these malignancies, we discarded TCGA cohorts with 
N < 100 to maintain high statistical power across the datasets. The score distribution and cohort 
selection is shown in Figure 1D (colored mutations above the specified hyperactivity cutoff of 
TPR > 0.85 are shown in Figure S1G. NRF2 activity scores for all TCGA samples are listed in 
supplementary table 3). Notably, malignancies in the lung, uterus, bladder, kidney and those with 
squamous histology had a significant proportion of high scoring samples.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.489654doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.489654
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.489654doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.489654
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 

Enriched pathways in NRF2 overactive cancers reveal differential 
immunomodulatory association across cancer types 

For TCGA cohorts meeting the inclusion criteria, as well as for the A549-NRF2OEvsKO and CCLE 
transcriptome and proteome data, we conducted gene-set enrichment analysis (GSEA) to assess 
the pathways enriched with NRF2 hyperactivity (Figure 2A. See supplementary table 4 for all 
data). Interestingly, two directly oncogenic signaling pathways, MYC and WNT, showed 
prominent global positive enrichment. Other global pathways associated with NRF2 hyperactivity 
were mainly metabolic, drug efflux and redox-regulatory processes, whereas immune 
microenvironment related processes were negatively enriched in NSCLC and squamous diseases 
in contrast to other diseases, which exhibited positive enrichment. With the curated data, cohorts 
clustered into two populations based on the immune milieu associated gene sets. Notably, IFNγ 
response, HLA- and T-cell signaling gene sets enriched to the negative end in lung 
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), esophageal carcinoma (ESCA), 
cervical carcinoma (CESC) as well as head and neck cancer (HNSC), while the same pathways 
had positive enrichment scores in kidney renal papillary cell carcinoma (KIRP), uterine corpus 
endometrial carcinoma (UCEC), bladder carcinoma (BLCA) and liver hepatocellular carcinoma 
(LIHC) (Figure 2A and 2B) . As the immunological gene-sets were not enriched in the pure cell 
populations (A549-NRF2OEvsKO or CCLE), they likely emerge from the crosstalk between cancer- 
and TME-cell populations. Of note, downregulation of cytokines, HLA-I, IL-12, IFNγ and TCR 
signaling are all characteristic to ‘immune cold’ tumors with documented poor responses to ICB 
therapies (Duan et al., 2020). Upon further characterization of the genes responsible for the 
negative enrichment in the TME-associated pathways, we observed genes linked to both major 
HLA-I and HLA-II associated antigen presentation as well as T-cell co-receptors in the antigen 
processing and presentation pathway gene set (Figure 2c). Since HLA-II genes are expressed only 
in professional antigen presenting cells and CD4, CD8A and CD8B are exclusive to T-cells, 
whereas HLA-I genes are also expressed in cancer cells, these data suggest that oncogenic NRF2 
signaling is, in the context of NSCLC and squamous diseases, associated with less lymphocyte 
infiltration and/or a weaker response to IFNγ. The data also shows a dichotomous association of 
NRF2 to IFNγ high and low tumors.  

Figure 1: NRF2 score development, performance and distribution across TCGA malignancies.  

A: Schematic of the score development procedure.  

B: Receiver operating characteristic (ROC) curve for the NRF2 score in classifying functionally relevant somatic 
variants defined in OncoKB.  

C: Differential log2 CPM gene expression distribution between NFE2L2/KEAP1 mutated and non-mutated 
NRF2 score comprising genes in TCGA cohorts.  

D: NRF2 score with NFE2L2/KEAP1 mutations shown as a boxplot across TCGA-cohorts sorted by variance. 
The cohorts chosen into subsequent analyses are colored in black. The hyperactivity threshold was chosen with 
values of TPR > 0.85 and FPR < 0.1.  
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Figure 2: NRF2 activity associates with disease specific immunoevasive characteristics.  

A: Pan-cancer GSEA analysis. GSEA normalized enrichment scores for pathways correlated to NRF2 activity 
shown as a Heatmap for TCGA, A549-NRF2OEvsKO, CCLE mRNA and CCLE protein. Significance of enrichment 
is shown as: < 0.1, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. For TCGA, combined p-values (Stouffer’s 
method) are shown. Redundant pathway terms were discarded, See Table S2 for full list of pathway terms. 
Pathways were curated to reflect cancer hallmarks that are shown on the right.  

B: Correlation of ssGSEA Hallmarks IFNγ response and NRF2 score. Cohorts in blue, red and grey have negative, 
positive or insignificant correlation, respectively.   

C: Word cloud of the core-enrichment terms in the antigen processing and presentation pathway within the 
negatively correlating cohorts.   
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Squamous diseases comprise a distinct NRF2 hyperactive subtype with differentially 
expressed metabolic genes inflicting resistance to T-cell mediated killing 

Since we observed similar immune-cold characteristics across the TCGA squamous diseases, we 
proceeded to study subtype-effects within the diseases using Uniform Manifold Approximation 
and Projection (UMAP) and community detection-based clustering. We identified a distinct pan-
squamous subtype with hyperactive NRF2 (identified communities are shown in Figure 3A, 
TCGA cohorts in Figure 3B and NRF2 activity in Figure 3C). Associated to this subtype, we 
observed co-occurring copy number variation (CNV) and a characteristic mutational landscape, 
most notably amplified SOX2/TP63 (q-arm of chromosome 3) and loss of CDKN2A/CDKN2B 
(9p21) (Figure 3D and S3 A-D), as well as mutated TP53 and CDKN2A (Figure S3 e & F). 
Furthermore, we identified a group of cell lines with similar genomic profiles using the 
CCLE/DepMap dataset, confirming the genomic determinants of this subtype (Figure S3G, H, I, 
J, K, L, and M). There were no prominent peaks in chromosome 6, suggesting that HLA-I loss 
events do not contribute to the phenotype. To confirm this, we defined HLA-I loss as at least one 
shallow deletion or LoF-mutation in major HLA-I genes, and did not observe an association 
between the two variables with Fisher’s test (OR = 0.40, P = 0.09). The association of tumor 
mutational burden and NRF2 overexpression has been reported before (Liu et al., 2021). Thus, we 
assessed the prospect of immunological effects arising from differential neoantigen load by 
computing mutational burden (log2 total mutation count) across the cluster comprising cohorts 
with respect to NRF2 activity, and did not observe a uniform trend between mutation count and 
NRF2 (Figure S3N). To follow up on amplified transcription factors SOX2 and TP63, we 
downloaded publicly available ChIP-seq data (GSE46837) in squamous cancer cell lines and 
generated a list of target genes (pipeline as in Figure 1A, functional genomics) to interrogate direct 
targets of these transcription factors (see supplementary tables 5 and 6 for a complete reference of 
targets). To specifically assess differentially expressed, putative direct targets in 
immunomodulatory genes, we studied the overlap of the differentially expressed genes in the 
squamous cluster and the target gene list as well as curated genes from the CellPhoneDB 
framework (Efremova et al., 2020) and TISIDB (Ru et al., 2019)  (Figure 6E). From these results, 
SLC7A11, NAMPT, SLC2A1 and MPP3 were identified to confer resistance to T-cell mediated 
killing by high-throughput screening. Moreover, all of these genes had evidence for upstream 
activation by NRF2. SLC7A11, NAMPT and SCL2A1 are genes attributed to metabolism, involved 
in cysteine uptake, NAD+ biosynthesis and glucose uptake, respectively. From the literature 
annotated genes, while most were ambivalent, SOX2 was shown to be a) upregulated in the case 
of effector cell resistance in co-culture; b) downregulate IFN type I response in vitro and c) 
decrease T-cell infiltration in a HNSC murine model (Tan et al., 2018). Interestingly, we observed 
increased NFE2L2 mRNA in SOX2 amplified TCGA squamous cell carcinoma (SqCC) cases, 
suggesting the presence of an upstream regulator in Chr3 q2 locus (Figure S3O). Finally, in the 
squamous NRF2 cluster, we identified prominent downregulation of the IFNγ response similar to 
the initial GSEA analysis (Figure 3F). Taken together, if the immunological effects are attributable 
to oncogenic signaling, the downregulation of IFNγ-response and/or HLA-I genes may be 
downstream of NRF2 or other co-expressed transcription factors (SOX2 or TP63). Moreover, 
based on the identified hits with functional evidence (Figure 3E), metabolic reprogramming and 
the metabolic microenvironment may prove relevant to the immunoevasive characteristics of 
NRF2 driven malignancies.  
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Interferon-gamma response pathway is downregulated in NRF2 hyperactive cancer 
cells in situ 

To follow up on the identified targets, we proceeded to further explore signaling between NRF2 
hyperactive cancer cells and immune cells in higher resolution in an in situ setting in a relevant 
cancer type. Thereby, we assigned NRF2 activity score to cells in a publicly available HNSC 
single-cell-RNAseq dataset (GSE103322). UMAP projection of single-cells revealed distinct 
clustering of cancer cells with high NRF2 score across patient samples, suggesting that NRF2 
activation could be linked to global shifts in cell phenotype (Figure 4A and 4B). Similar to bulk 
tumors, the cluster exhibited high expression of SOX2 (Figure 4C). In addition, TP63 was also 
overexpressed in the NRF2 hyperactive cancer cell cluster, although its expression was also 
present in other clusters (Figure S4A). In further agreement with the bulk-tumor analysis, 
inflammatory response- and IFNγ-signaling were the most prominent negatively enriched 
pathways in the NRF2 cluster relative to other cancer cell clusters (Figure 4D). The single cell 
analysis distinguished that the response to interferon is downregulated in malignant cells with 
NRF2 hyperactivity (Figure S4B). These data suggest that the negative correlation between IFNγ 
response and NRF2 in squamous cancer types originates from the response in cancer cells, either 
due to low interferon ligand or by intrinsic properties of NRF2 hyperactive cancer cells.  

NRF2 hyperactive cancer cells are associated with less TME interactions via HLA-I 
and increased interactions via NAMPT, SPP1 and WNT5A 

We used the statistical framework of CellPhoneDB to interrogate putative intercellular ligand-
receptor interactions between cancer- and TME cells in the whole HNSC single-cell dataset. With 
integration of our NRF2 target catalogue and a priori IFNγ gene sets from MSigDB (Hallmarks 
and Reactome), we identified multiple differential ligand-receptor interactions between the cancer 
clusters against TME-clusters with either direct NRF2 targets or genes involved in IFNγ mediated 
signaling. The most prominent hits were downregulated HLA type I interactions with cytotoxic 
T-cells, and upregulated NAMPT, SPP1, WNT5A (Figure 4E and 4F), all of which were also 
differentially expressed genes in the earlier pan-SqCC bulk tumor analysis and in CCLE cell lines 
mRNA, while SPP1 and WNT5A proteins were also upregulated (Figure S4C, D and E). 

Figure 3: NRF2 hyperactivity is associated with a distinct squamous subtype with SOX2/TP63 amplification, 
CDKN2A/CDKN2B loss and downregulated IFNγ-response in TCGA.  

A: UMAP representation and Louvain clustering of included TCGA cohorts. 

B: TCGA diseases in UMAP clusters. 

C: NRF2 score in UMAP clusters. 

D: Gistic2 copynumber profile of the NRF2 hyperactive cluster*. The G-score in gistic2 is CNV amplitude 
multiplied by CNV frequency, which measures the significance of a CNV event in a dataset.  

E: Differentially expressed immunomodulatory genes between the NRF2 hyperactive cluster and other SqCC 
putatively regulated by NRF2, SOX2 or TP63. From the TISIDB-database, genes colored with green indicate a 
literature cited effect, whereas genes colored in magenta depict a hit from CRISPR/Cas9 functional screens.  

F: Enriched pathways in the NRF2 hyperactive cluster*.  

*All analyses were conducted against squamous samples; LUSC, HNSC, ESCA and CESC. 
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Furthermore, NAMPT and SPP1 were differentially expressed in A549OEvsKO and all of the hits 
were in our NRF2 target catalogue (Figure S4F). Moreover, in line with earlier observations, PD-
L1 - PD1 interaction between NRF2 hyperactive cancer cells and T-cells was statistically 
significant, further corroborating the role of PD-L1 in NRF2 driven immune-escape, and 
suggesting that its effect extends the previously studied melanoma (Zhu et al., 2018) (Fig S4G). 
From the direct targets, NAMPT is the rate-limiting enzyme in the biosynthesis of NAD+. While 
its interaction with P2RY6 in CellPhoneDB was inferred with protein pulldown and lacks 
functional data, NAMPT knockdown was recently shown to increase CD8+ T-cell infiltration in 
murine tumors via attenuating inducible PD-L1 expression (Lv et al., 2021). The second hit, 
Osteopontin (SPP1), has been shown to inhibit T-cell proliferation and IFNγ production in vitro 
(Klement et al., 2018). The third hit, WNT5A with frizzled receptors, also has implications in 
tumor immunity: WNT5a signaling in cancer cells has been attributed to immunosuppressive 
metabolite induction via dendritic cells through FZD (Zhao et al., 2018). To assess the clinical 
relevance of these findings, we downloaded a publicly available targeted mRNA-expression 
dataset of PD-1 inhibitor treated HNSC and NSCLC patients and established SPP1 mRNA as a 
negative predictive biomarker to treatment-response (Odds ratio = 0.20 for response with high 
SPP1 expression; P < 0.05, Fisher’s test) and therapy associated progression-free survival (mPFS 
2.8 vs mPFS 12.33 months, P < 0.01) in pan HNSC-LUSC-LUAD (n = 5; n = 22; n = 13, 
respectively) (Figure 5G). The inferior survival may either be directly caused by effects of SPP1, 
or arise from NRF2 activation where SPP1 mRNA acts as a surrogate marker. From a biomarker 
perspective, the clinical observation is relevant for classifying non-responders to ICB, since 
currently the insight on ICB treatment response in cancer patients is widely elusive. In summary, 
these data demonstrate that NRF2 hyperactive cancer cells overexpress unique TME interacting 
ligands NAMPT, SPP1 and WNT5A, which have been shown to cause immunoevasion in cancer.  
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Figure 4: NRF2 hyperactive cancer cells have a dampened IFNγ response in situ and exhibit unique 
immunomodulatory intracellular interactions.  

A: UMAP representation for cell populations. 

B: UMAP representation for NRF2 score. 

C: UMAP representation for SOX2 mRNA.  

D: GSEA of NRF2 hyperactive vs other cancer cells.  

E: Curated interactions from the CellPhoneDB analysis. Statistical significance denoted as: * P < 0.05; * P 
<0.001. 

F: UMAP representation for SPP1 mRNA.  

G: Kaplan-Meier survival for SPP1 high vs low in pan-HNSC-LUAD-LUSC. 
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NRF2 regulates IFNγ-responsive genes in lung adenocarcinoma in vitro 

The single-cell data indicated that the repression of IFNγ-responsive genes in the NRF2 
hyperactive tumors may be caused either by low production of IFNγ ligand (that is, negligible 
infiltration of proinflammatory cells) or is attributed to intrinsic properties of the NRF2 
hyperactive cancer cells (lower response to IFNγ). IFNγ binding to its receptor cause a cascade of 
phosphorylation events which activates the transcription of interferon-stimulated genes via 
phosphorylated nuclear localized STAT1. Among the plethora of its effects, IFNγ stimulation 
leads to direct effector functions in many immune cell types, and to the expression of MHC I genes 
for neoantigen presentation in cancer cells (Ivashkiv, 2018). We sought to assess the causality by 
subjecting the A549-NRF2OEvsKO cells to IFNγ and measuring the transcriptomic response with 
RNA-seq. The IFNγ pathway was not downregulated by NRF2 in response to IFNγ (Fisher’s test, 
OR = 1.26, P = 0.37, Hallmarks gene set). However, IFNγ treatment revealed a distinct set of 
differentially expressed genes, potentiated or exclusive to IFNγ treatment, between the genotypes 
(Figure 5A and Figure S5A). Gene set enrichment analysis (performed with GeneSCF, Subhash 
and Kanduri, 2016) revealed enriched processes within these genes, most notably increased 
chemokine expression and neutrophil chemotaxis (positive end in Figure 5B). To characterize 
transcriptional changes attributable to immunological processes and NRF2 transcriptional activity, 
we integrated the IFNγ induced differentially overexpressed genes with our NRF2 target catalogue 
as well as genes defined in TISIDB and InnateDB (Breuer et al., 2013) (Figure 5C). Based on our 
NRF2 target list, 25 % of these genes had evidence for promoter or enhancer mediated regulation 
via NRF2. The main analyses were conducted for the upregulated genes due to higher amount of 
hits and context relevance of the associated pathway terms (downregulated genes are presented in 
Figure S5A-C). To assess other putative transcriptional events responsible for the differentially 
overexpressed genes in the IFNγ treatment group, we utilized the ChEA Transcription Factor 
Targets (ChEA-TF) dataset (Lachmann et al., 2010) for the assessment of overrepresented 
transcription factors in the gene list using Fisher’s test. The most prominently enriched 
transcription factors in addition to ARE-binding NRF2 and BACH1, excluding explicit repressors, 
were RELA and IRF1 (Figure S5D). Based on the ChEA-TF dataset and our NRF2 enhancer 
catalogue, RELA, IRF1 and NRF2 together covered 68 % of the A549-NRF2OEvsKO differentially 
upregulated genes in the IFNγ treatment group (Figure S5E). Due to the clear difference in 
expression patterns of several cytokines (CXCL8, CXCL5, CXCL3 and CCL5), we went ahead to 
explore paracrine immunomodulatory signaling arising from the differential response to IFNγ. To 
this end, we collected conditioned media (CM) from the cells with and without IFNγ and utilized 
a cytokine array for detection of 104 targets. Most notably, we observed increased secreted IL-18 
binding protein (IL18BP) and IL-8 (CXCL8) in the A549-NRF2OEvsKO conditioned media with 
IFNγ-treatment (Figure 5D). In adfdition, ENA-78 (CXCL5) and MIF were increased regardless 
of treatment and in the untreated group, respectively, while Thrombospondin-1 (THBS1) and 
MCP-1 (CCL2) were downregulated in the untreated group (Figure 5D). IL18BP is a potent 
antagonist of IL-18. IL-18 stimulates multiple immune cell types to produce IFNγ and induces 
effector functions in T-cells (Zhou et al., 2020). ENA-78 and IL-8 are both neutrophil 
chemoattractants that mobilize neutrophils to the tumor site (Wu et al., 2019). Based on the ChEA-
TF analysis and NRF2 enhancer catalogue, IL18BP had an IRF1 peak on its promoter, while CCL2 
(MCP-1) had RELA, and CXCL8 (IL-8) as well as CXCL5 (ENA-78) had peaks for NFE2L2 and 
RELA. In this particular model, there was no difference in secreted SPP1, while its mRNA was 
differentially expressed (logFC = 2.6; FDR < 0.0001). While this data suggests that the negatively 
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correlating IFNγ response in tumors is not attributable to NRF2-dependent cancer intrinsic 
attenuation of the IFNγ mediated signaling, it shows that the response in a subset of IFNγ 
responsive genes is elevated in NRF2 hyperactive cells, connecting neutrophil mediated immune 
suppression and inhibition of T-cell effector phenotypes via IL18BP with NRF2 biology in the 
context of cancer.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.489654doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.489654
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 

NRF2 hyperactivity associates with reduced total tumor lymphocyte infiltration in 
NSCLC and pan-squamous cancers 

Finally, to explore the relationship between NRF2 activity and the immune-milieu in greater detail, 
we performed deconvolution for the TCGA gene expression data with CIBERSORT (Newman et 
al., 2015) to infer immune cell content, and correlated the inferred cell type fractions to the NRF2 
score (Figure 6A). In the NRF2 hyperactive IFNγ negative malignancies (cohorts color coded as 
cadet blue), many lymphocyte populations and different macrophage polarization states correlated 
negatively with NRF2 activity, while the correlations of cell subsets varied between cancer types. 

Figure 5: IFNγ differentially induces immunomodulatory genes and cytokine secretion in A549-
NRF2OEvsKO. 

A: Venn-diagram of genes overexpressed in A549-NRF2 and genes differentially induced between genotypes 
with IFNγ.  

B: Gene set enrichment analysis (GeneSCF) for the IFNγ induced genes overexpressed in A549-NRF2OEvsKO 
with IFNγ treatment. 

C: Heatmap of IFNγ induced genes overexpressed in A549-NRF2OEvsKO with IFNγ treatment. Immunogenomic 
terms and putative NRF2 targets (colored red) are annotated on the right.  

D: Proteome profiler for human cytokines in A549-NRF2OEvsKO ± IFNγ.  
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In the NRF2 hyperactive IFNγ positive cancers (cohorts color coded as coral), we observed mostly 
positive correlations to different immune cells with variability in the correlating cell types between 
diseases: in KIRP, there was a strong association to macrophages and in UCEC to other antigen 
presenting cells. Due to high underlying variability in the immune landscape between different 
malignancies (Thorsson et al., 2018), we performed Mann-Whitney U tests for the immune cell 
content between the IFNγ response curated cancers, and observed that the negatively correlating 
diseases often had a higher disease-intrinsic content of the assessed cell types (Figure 6A, side 
panel). To evaluate the relationship of NRF2 and total T-lymphocyte content, we calculated the 
sum of T-cell fractions and observed less bulk lymphocytes in all of the IFNγ-negative NRF2 
hyperactive cancers (Figure 6B). We proceeded to validate the result in LUSC with a different 
approach utilizing a publicly available TIL dataset generated from TCGA H&E images with deep 
learning (Saltz et al., 2018), and observed a decrease in the median percentage of tumor-infiltrating 
lymphocytes (TILs) in the NRF2 hyperactive cases (P < 0.05, Figure 6C). To corroborate this, we 
stained an independent tissue-microarray dataset of NSCLC (117 and 211 cases of LUSC and 
LUAD, respectively) with NQO1 (a marker of NRF2 activity) and the universal T-cell marker 
CD3, and observed a similar result in LUSC, that is, NQO1 positive cases harbored less 
intratumoral CD3-positive cells (P < 0.05, Figure 6D-E). In our TMA-data, the cytotoxic T-cell 
marker CD8 showed a similar trend, but did not reach statistical significance (P = 0.09, Figure 
S6A), and in LUAD, the relationship was not observed (Data not shown). In addition, the 
contribution of NFE2L2 and KEAP1 mutations was assessed separately in TCGA LUSC cohort, 
and a lower median fraction of total lymphocyte infiltration was present in all groups, irrespective 
of mutated gene (Figure S6B). Taken together these data suggest that overactive NRF2 associates 
with less overall lymphocyte infiltration in NSCLC and pan squamous cell carcinoma, with 
variations in the specific subtypes of reduced lymphocytes between cancers.  
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Discussion 

Cancer immunotherapies, especially ICB, has become a mainstay in cancer care. Despite its 
undeniable success, biomarkers to stratify responders and non-responders are currently elusive. 
Recently, the relationship between oncogenic pathways and the TME have been explored. For 
instance, the effect of MYC and WNT signaling, as well as the loss of TP53, LKB1 and PTEN on 
tumor immune responses have been previously characterized (Spranger and Gajewski, 2018). In 
this work, we identified a phenotype of high NRF2 activity accompanied with low lymphocyte 
content, HLA-I and IFNγ, spanning multiple cancer types. Since the negative relationship between 
immune infiltration and immunotherapy responses has been clearly established before, it is 
reasonable to assume that NRF2 hyperactive cases of the characterized malignancies would 
associate with weaker responses, and that alternative strategies to activate the antitumor immune 
response should be studied. Indeed, during the course of this study, an association between NRF2 
pathway mutations and inferior ICB-response was shown in NSCLC (Singh et al., 2021). The 
present study, to our understanding, is the first attempt to provide pan-cancer wide perspective to 
NRF2 signaling and tumor immunity, with important implications for future studies: first, immune 
checkpoint inhibitor treatment efficacy should be assessed prospectively across all squamous 
malignancies with NRF2 hyperactivity and eligibility for ICB; and second, if proven inferior, 
alternative first-line or effective adjuvant treatment options should be explored.  

Figure 6: NRF2 hyperactive tumors display negative correlations to overall lymphocytes in NSCLC and 
pan-squamous diseases.  

A: Correlation matrix of NRF2 score vs CIBERSORT cell types. Right annotation panel depicts the distributions 
of respective immune cells in the IFNγ pathway classified diseases. Statistical significance is shown as: * P < 
0.05, ** P < 0.01, *** P < 0.001.  

B: Violin plots for CIBERSORT bulk T-lymphocyte fractions.  

C: Percentage of tumor-infiltrating lymphocytes (TIL) in digitized TCGA LUSC H&E images.  

D: Tissue microarray IHC staining of NQO1 (NRF2 activity marker) and CD3+ cells.   

E: Representative images of the NQO1-stained groups.  
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Characterizing cancers by mutational profiling of large datasets has been invaluable in gaining 
insight into the biological processes enabling and governing malignant growth. However, profiling 
only by mutational status has limitations: The functional consequences of individual mutations 
may be ambivalent, other mechanisms for perturbation of the same pathway are overlooked, or 
the frequency of events are too low for robust statistical inference. Relevant to NRF2 mediated 
oncogenic signaling, mutation-independent means of activation are common, necessitating the use 
of gene expression classifier to deduct NRF2 activation (Kansanen et al., 2013). Herein, we 
introduce a robust NRF2 scoring metric comprising genes that have minimal tissue specificity and 
sound evidence for direct, prominent activation. The score performs well in all of the tested TCGA 
cohorts (Figure S1E) and it can be applied to bulk tissue and single cell data. Moreover, the metric 
was constructed to support ease of use by utilizing a low number of genes and prioritizing global, 
robust targets. Finally, we demonstrated the utility of the score by predicting a distinct 
immunological phenotype in NRF2 hyperactive cases in an external dataset using IHC staining as 
an alternative method for NRF2 activity assessment.  

Our study provided a number of leads towards elucidating the mechanisms by which NRF2 
overactivity affects the host immune response. We outruled the contribution of HLA-I loss and 
neoantigen effects, and explored IFNγ induced signaling in a lung adenocarcinoma model. We 
identified a distinct squamous cell subtype that was characterized by NRF2 overactivation together 
with SOX2/TP63 amplification and immune cold TME. Sox2 is a key driver of malignant 
transformation and stemness in squamous type cancers (Porter and McCaughan, 2020). Our 
analysis showed the metabolic genes SLC2A1, SLC7A11 and NAMPT that associate with 
functional evidence in driving resistance to T-cell mediated killing as downstream candidates of 
NRF2. Previous work shows that the expression of SLC2A1 - a glucose transporter - is enhanced 
by p63 and Sox2 (Hsieh et al., 2019). Our work implicates functional synergy of NRF2 and 
p63/Sox2 in SLC2A1 driven glucose uptake. Increased glucose uptake via SLC2A1 has been shown 
to result in weaker anti tumoural immune responses in a murine model (Ottensmeier et al., 2016), 
supporting the functional role of this gene identified by the TISIDB high-throughput CRISPR-
screen. SLC7A11, a well characterized NRF2 target gene (Hayes and Dinkova-Kostova, 2014), is 
a glutamate-cystine antiporter that increases intracellular cystine while exporting glutamate. IFNγ 
has been reported to downregulate the glutamate-cystine antiporter members SLC7A11 and 
SLC3A2, lowering intracellular cystine resulting in increased T-cell induced ferroptosis (Wang et 
al., 2019). Thus, the higher expression of SLC7A11 in NRF2 overactive cancers may render the 
cells resistant to immune destruction by this mechanism. NAMPT driven NAD+ metabolism is 
involved in tumor immunity: increased NAD+ by NAMPT enables inducible PD-L1 expression 
by epigenetic regulation of Irf1, restricting the antitumor action of cytotoxic T-cells (Lv et al., 
2021). The results suggest metabolic crosstalk between NRF2 overexpressing and TME cells 
through multiple mechanisms.  

SPP1 and WNT5A were hits in both the bulk tumor and single cell analysis. Both genes have 
implications in tumor immunity. In line with the immunoevasive phenotype, soluble SPP1 has 
been shown to directly inhibit T cell proliferation, decrease T-cell activation and IFNγ production 
in vitro (Klement et al., 2018). The observed interaction of WNT5A and frizzled receptors in the 
single-cell data has intriguing implications in dendritic cell (DC) function: paracrine WNT5A 
signaling was shown to induce IDO1 in DCs, which increased extracellular kynurenine, supporting 
an immunosuppressive TME (Zhao et al., 2018).  
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In lung adenocarcinoma, immune-evasion via neutrophil recruitment and/or inhibition of effector 
phenotypes via antagonism of IL-18 were avenues revealed by comparing NRF2 overexpressing 
A549 vs knockout cells. Signaling associated with these processes was clearly different: ENA-78 
(CXCL5), IL-8 (CXCL8) and IL-18 binding protein (IL18BP) were upregulated in the 
transcriptome and the secretome of the NRF2 overexpressing cells. In line with the in vitro 
findings, we observed a statistically significant, albeit weak, positive correlation between NRF2 
signaling and CIBERSORT inferred neutrophils in LUAD. Recently, neutrophils have been shown 
to function as immunosuppressive players in the TME. The effect emerges from a subpopulation 
of suppressive neutrophils that inhibit T-cell proliferation via deprivation of L-arginine and by 
generating ROS (Granot, 2019). IL-18 binding protein has been shown to act as a secreted immune 
checkpoint, contributing to the exhaustion of CD8+ T-cells and inhibition of natural killer cells by 
inhibiting the IL-18-mediated stimulation and IFNγ secretion of these cells (Zhou et al., 2020).  

In summary, our results provide an integrated NRF2-centric resource in cancer biology, and 
establish a connection between immune-cold tumors and NRF2 signaling across NSCLC and 
squamous carcinomas from a pan-cancer wide perspective. Finally, these data highlight multiple 
avenues to pursue in future studies aiming to mechanistically characterize NRF2 signaling and its 
effect to the tumor immune milieu, including direct regulation via immunosuppressive ligands or 
immunosuppressive metabolites, as well as neutrophil recruitment into the tumor bed.  
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Figure S1 

A: Western blot for A549-NRF2 knockout vs wild type. 

B: RT-qPCR for A549 knockout vs wild type (mock) and parental (NT). 

C: Binary expression patterns (median log2 CPM > 1.5) of score NRF2 target gene candidates. Genes passing 
the threshold across the dataset are colored green.  

D: Median gene expression in DICE database. Genes selected as the final score are colored green.  

E: Benchmark ROC of the NRF2 score against functional somatic NFE2L2/KEAP1 mutations in cohorts with > 
5 % NFE2L2/KEAP1 mutation frequency. SINGH NFE2L2 targets was used as the reference gene set.   

F: Scatter plot of NRF2 score variance against NFE2L2/KEAP1 mutation frequency.  

G: Lollipop plots for mutations in NFE2L2 and KEAP1 in TCGA NRF2 hyperactive cases classified by the NRF2 
score (TPR > 0.85). 
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Figure S3 

A: UMAP representation of TCGA NRF2 cohorts.  

B: UMAP representation of identified TCGA clusters. 

C: UMAP representation of SOX2 copynumber.  

D: UMAP representation of SOX2 gene expression. 

E: UMAP representation of CDKN2A mutation. 

F:  UMAP representation of TP53 mutation.  

G: UMAP representation of CCLE diseases. 

H: UMAP representation of identified CCLE clusters. 

I: UMAP representation of NRF2 score in CCLE.  

J: UMAP representation of CCLE cell-lines.  

K: Boxplot for SOX2 mRNA in CCLE data.  

L: Boxplot for SOX2 copy number in CCLE data. 

M: Boxplot for NFE2L2 dependency scores in CCLE data. The dependency score is interpreted as probability of 
dependency from 0 to 1.  

N: Mutation burden in TCGA SqCC cohorts stratified by NRF2 hyperactivity. 

O: NFE2L2 and SOX2 CNVs effect on NFE2L2 mRNA in SqCC cohorts.  
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Figure S4  

A: TP63 expression across the single cell populations.  

B: IFNγ response (ssGSEA) and IFNG expression across the single cell populations.  

C: TCGA gene expression to NRF2 score correlations for hits from the single-cell analysis. The NRF2 catalogue 
hits, interferon gamma associated genes and A549OEvsKO differential expression are shown in the right annotation 
panel from left to right, respectively.  

D: NAMPT mRNA and protein expression in CCLE data in the identified adenocarcinoma and SqCC NRF2 
clusters.  

E: SPP1 mRNA and protein expression in CCLE data in the identified adenocarcinoma and SqCC NRF2 clusters.  

F: WNT5A mRNA and protein expression in CCLE data in the identified adenocarcinoma and SqCC NRF2 
clusters.  

G: PD-L1 (CD274) and PD-1 (PDCD1) expression across the single cell populations.  
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Supplementary tables 

Table 1: A549-NRF2OEVSKO RNAseq (.xlsx) 

Table 2: NRF2 candidate target genes (.xlsx) 

Table 3: NRF2 score values in TCGA samples (.xlsx) 

Table 4: Integrated GSEA (.xlsx) 

Table 5: SOX2 candidate target genes (.xlsx) 

Table 6: TP63 candidate target genes (.xlsx) 

 

 

Figure S5 

A: Venn-diagram of genes differentially downregulated in A549-NRF2OEvsKO and differentially repressed 
between genotypes with IFNγ.    

B: Gene set enrichment analysis (GeneSCF) for the IFNγ repressed genes downregulated in A549-NRF2OEvsKO 
with IFNγ treatment. 

C: Heatmap of IFNγ repressed genes downregulated in A549-NRF2OEvsKO with IFNγ treatment. Immunogenomic 
terms and putative NRF2 targets (colored red) are annotated on the right.  

D: Transcription factor overrepresentation in unique IFNγ induced genes (overlapping genes in Figure 5a) of 
NRF2 hyperactive A549. 

E: Differentially upregulated genes downstream of NRF2, RELA & IRF1 in A549-NRF2 with IFNγ 
(immunomodulatory genes from TISIDB & InnateDB are labeled).  

Figure S6 

A: Relationship of CD8 positive cells and NQO1 staining (P = 0.09) in LUSC.  

B: NFE2L2 and KEAP1 mutations and bulk T-cell content in TCGA LUSC cohort.  

C: Benchmark ROC of the sample total NQO1 area to human assessed NQO1 status.  
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Materials and Methods 

Processing of genome-wide multilevel data 

TCGA 

Processed multiomics data, sample level analysis results and clinical data, were retrieved from 
https://gdc.cancer.gov/about-data/publications/panimmune (Thorsson et al 2018) and 
https://gdc.cancer.gov/node/905/ (PanCanAtlas) for 33 cancer types available in TCGA cohort. 

CCLE 

Data was downloaded from https://portals.broadinstitute.org/ccle/data and 
https://depmap.org/portal/.  

Functional genomics analysis of NRF2 target genes 

Enhancer and promoter catalogue generation 

A549 and ENCODE genomic data for other cell types were used as reference to generate broad 
catalogue of candidate regulatory elements, that could be linked with NRF2 regulation. DNAse 
hotspots and ChromHMM classified genomic sites were downloaded from ENCODE for A549. 
Furthermore, DNAse clustered sites version 3 were downloaded from ENCODE for all cell types. 
Promoters were defined primarily based on A549 ChromHMM annotation, but if the annotation 
was missing from the data, promoters were defined as 500 bp upstream and 1500 bp downstream 
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from each transcription start sites. Next, A549 DNAse hotspot sites were integrated with 
ENCODE DNAse clusters for various cell types, with score above 400 and cluster identified in at 
least 20 cell types. Promoters were intersected with DNAse hotspots to identify regulatory sites at 
promoters. 

GRO-seq regression analysis of enhancer elements  

eRNA can be used to detect active enhancers and it correlates with the gene expression of the 
target gene (Bouvy-Liivrand et al., 2017). To infer enhancer-gene pairs, we utilized publicly 
available GRO-seq data curated from GEO (GSE51225, GSE51633, GSE53964, GSE60454, 
GSE62046, GSE62296, GSE52642, GSE66448, GSE84432, GSE67519, GSE67540, 
GSE101803, GSE96859, GSE102819, GSE86165, GSE91011, GSE67295, GSE154427, 
GSE136813, GSE118530, GSE94872, GSE92375 and GSE117086). The final dataset comprised 
336 samples representing 45 cell types. Homer analyzeRepeats.pl software was used for GRO-seq 
quantification of nascent RNA gene expression using gene introns as coordinates, with parameters: 
-strand + -noadj -noCondensing -pc 3. For enhancers, in case of intragenic enhancers, 
quantification was performed from the opposite strand and for intergenic enhancers from both 
strands, using the same parameters as before. Enhancer start and end coordinates were expanded 
by 500bp. Gene end coordinates were expanded by 5000bp for annotating intragenic gene 
enhancers and account for transcription at the end of transcripts. A linear model was fitted for each 
gene-enhancer pair in the same TAD that had Spearman’s Rho > 0 and P-value < 0.05. R2 value 
was used to estimate, how much of the gene expression could be explained by the eRNA 
expression.  

NRF2 target gene identification 

To infer transcription factor binding at the enhancer sites, ChIP-seq data for NFE2L2. The 
enhancer-gene pairs were defined as features with regression P-value < 0.05 and R2 > 0.1, and the 
maximum distance was set to 500kbp. To infer NRF2 bound regions, the preprocessed ENCODE 
ChIP-seq data for NFE2L2 was downloaded from GEO (Datasets GSE91997, GSE91894, 
GSE91809, GSE91565). The ARE-motif from JASPAR database (NFE2L2, MA0150.1) was 
queried across the ChIP-peaks with Homer annotatePeaks, and NRF2 motif score cutoff for a 
binding site was set to 6. From these data, the minimum amount of ChIP-seq datasets with the 
given peak was set to two. Using this analysis framework 3000 bidirectional and 2000 intragenic 
enhancers were identified for NRF2.  

Development of the NRF2 score 

A computational NRF2 score was developed by utilizing multiple datasets. The final gene set was 
derived by applying the following rationale: a) ChIP-seq peaks must be present at ChromHMM-
promoters across the ENCODE NFE2L2 ChIP-seq data b) the gene must be differentially 
expressed in A549-NRF2OEvsKO (log2 fold-change > 1.5, Bonferroni adjusted p < 1e-5); and c) 
mRNA-expression must be observed across tissues in GETxportal data 
(https://www.gtexportal.org/home/datasets) and expression must be uniform across cell types in 
DICE-database (https://dice-database.org/), to counter variance arising from tissue specific 
expression and the immune-milieu, respectively.   

Differential expression analysis for A549-NRF2OEVSKO was conducted with limma. Direct NRF2 
targets were defined as having a NRF2 binding in the NRF2 ChIP-seq data in the ChromHMM 
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promoters: the peaks were narrowed down to regions that intersect all four datasets and include an 
ARE-sequence (motif score > 6).  

Genes with tissue-specific expression patterns were excluded based on the expression profiles in 
the GETxportal data: median tissue expression cutoff was set to 1.5 log2 TPM for binary filtering 
(Figure S1A). Genes exhibiting high values or observable variance in median expression in 
immune-cells were excluded heuristically (Figure S1B).  

The genes passing all of the aforementioned steps were defined as the NRF2 signature. The 
samples were scored with a geometric mean from the genes linear mRNA-expression. For TCGA 
samples, the score was normalized within each disease to the peak of the score distribution (mode). 
Performance of the scores was evaluated with receiver operating characteristic against functional 
NRF2 activating somatic variants (defined in OncoKB) using the ROCR-package for R.  

Gene Set Enrichment Analysis 

GSEA (Java-GSEA) was performed for the selected TCGA-cohorts and CCLE cell lines of the 
matching diseases using NRF2 score as a continuous feature. Pan-cancer analysis for TCGA 
cancer types was conducted by calculating Stouffer’s statistic for each gene set across the selected 
cohorts. For the A549 cells, GSEA was conducted with a binary feature of NRF2-/- vs NRF2+/+. 
Multiple-comparison corrections were performed with the Benjamini-Hochberg (BH) –method.  

UMAP analysis and Louvain clustering of TCGA and CCLE data 

UMAP dimensionality reduction analysis was performed for 750 most variable genes using uwot 
R package, with parameters set to n.neighbors=12 and min.dist=0.4. Community detection based 
clustering for the same 750 most variable genes was performed using the Louvain algorithm, with 
k=4 implemented in igraph R package. Similarly, for CCLE 750 most variable genes were used 
with n.neighbors=6 and min.dist=0.3 and k=4. Various number of most variable genes were used 
for UMAP to confirm robustness of sample group detection. 

Functional genomics analysis of SOX2 and TP63 target genes 

Target genes for SOX2 and TP63 were inferred from ChIP-seq data of the respective transcription 
factors (GEO dataset GSE46837). All parameters were set as in the analysis for NRF2 target genes 
(NRF2 target gene identification) using the enhancer and promoter catalogues defined earlier.  

Differential expression analysis for the NRF2 squamous cluster 

Fold-differences across the transcriptome were computed between the NRF2 squamous cluster vs 
other squamous samples, and the statistical significance of differentials of gene-expression 
distributions were assessed with two-sided Wilcoxon tests, and subsequently multiple-comparison 
corrected with the BH-method. The result was filtered with FDR < 0.001 and a logFC threshold 
of 1 for absolute values. The overlap of the resulting genes were assessed with a) CCLE gene-
expression and protein correlation to NRF2-score; b) genes in CellphoneDB and TISIDB 
(literature annotation and CRISPR-screen resistance genes); and c) the candidate target gene 
catalogues of NRF2, TP63 and SOX2. High-confidence hits (shown in Figure 3E) were defined 
as genes that correlate in CCLE protein or mRNA (FDR < 0.1, R > 0.25), are listed in 
CellPhoneDB or TISIDB and are listed in the target gene catalogues for at least one of the 
transcription factors. 
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In vitro experiments 

Cell culture 

Cells were incubated in 37°C and 5 % CO2 throughout the experiments and the passage number 
was kept under 10 over the course of this study. Cell passaging was conducted before reaching 
confluency.  

CRISPR/Cas9 NRF2 knockout 

A549 cells were transfected with a 20bp NRF2 targeting (exon 4 of NFE2L2 
ENST00000397062.7, CAAGCTGGTTGAGACTACCA) single-guide-RNA and scramble-
sequence including plasmid vectors (SpCas9(BB)-2A-GFP (Addgene, PX458). Nrf2 knockout 
and control cells were generated via CRISPR-Cas9- mediated non-homologous end-joining 
(NHEJ). Transfection-positive cells were sorted with fluorescence-activated cell sorting (FACS) 
to obtain clonal populations. Validation of the clones was conducted with NRF2 western blot 
(Figure S1A), Sanger sequencing (Data not shown) and RT-qPCR (Figure S1B).   

IFNγ treatment 

A549 cells were seeded in 6-well plates and serum starved for 6 h with 0.5% FBS containing 
growth media. Cells were then treated with 10 ng/ml of IFNγ (catalog no. 300-02, Peprotech, 
USA) for 24 h and RNA extraction from the treated cells was done using High Pure RNA Isolation 
Kit (Roche, Lot#: 47931400). RNA samples were dissolved in nuclease-free water and stored in -
70⁰ C until use. 

Sanger sequencing and western blot 

DNA was extracted with Genejet Genomic DNA purification kit (Thermo Scientific, catalog. no: 
K0702) and using the GENEWIZ Sanger Sequencing Services. 

Cells were lysed and protein concentration measured using BCA kit (Pierce). 30 µg of total protein 
with 1X SDS-PAGE sample buffer (Biorad) was loaded in 4-20% mini-Protean TGX gels (Biorad) 
and the gel electrophoresis was done using Tris glycine running buffer containing SDS. Proteins 
were then transferred onto nitrocellulose membrane (0.2 µm, Biorad) using Owl Hep-1 semi-dry 
transfer system (Thermo scientific) following manufacturer’s instructions. The blots were blocked 
with 5% milk-TBST solution for 1 h at room temperature (RT). Blots were stained overnight at 4⁰ 
C with NRF2 (1:5000 dilution, catalog no.16396-1-AP, Proteintech) and beta-actin (1:5000 
dilution, catalog no. sc-47778, Santa Cruz, USA) antibodies in 5% milk-TBST solution. And 
secondary staining was done for 1 h at RT using Alexafluor 488- or 680- labelled anti-rabbit and 
anti-mouse antibodies (Invitrogen) in 2% milk-TBST solution. The blots were then visualized 
using Biorad documentation system.   

RNAseq & differential expression analysis 

RNAseq was conducted at FIMM genomics NGS transcriptomics service (University of Helsinki) 
aiming at 30 million reads per sample with 100 bp read length. Alignment was performed with 
Hisat2 and differential expression analysis was conducted with the limma R-package using the 
standard protocol from the user manual. 
(https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf) 
For IFNγ treatment, two separate differential expression analyses were conducted: a) differential 
expression between one factor - genotype - over the interferon-gamma treatment; and b) a model 
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with two factors - genotype and treatment - was used to assess the genes differentially induced by 
IFNγ between genotypes (ΔNRF2+/+

IFNγ-DMSO – ΔNRF2-/-
IFNγ-DMSO). The differentially expressed 

genes affected by interferon-gamma were defined as genes passing the following criteria: p < 0.01 
& logFC > 1.5 in analysis a and p < 0.01 & logFC > 0.5 in analysis b, that is, induction would de 
facto result in pronounced differential absolute expression with IFNγ.  

Proteome profiler 

Cells were seeded at 150000 cells per well in 12 well plates, incubated overnight and serum 
deprived the following day ± 10 ng/ml IFNγ (catalog no. 300-02, Peprotech, USA). Upon 48 h of 
IFNγ administration, the media was collected, centrifuged at 500g for 5 min, and processed 
according the Proteome Profiler XL Cytokine Array Kit (R&D Biosystems, catalog no. 
ARY022B) instructions with overnight primary antibody incubation at +4°C. The blots were 
imaged with Bio-Rad ChemiDoc MP Imaging System. The data was analyzed with ImageJ v. 1.47, 
normalizing mean intensity values of the dots to internal background and positive control. Students 
T-test was used to statistically assess group differences.  

Copy-number analysis 

Copy-number analysis was conducted for firehose-derived TCGA segment-files for HNSC, 
LUSC, ESCA, and CESC, stratified by the NRF2 subtype (cluster 8) with Gistic2 using the 
following parameters: -ta 0.1 -Peakpeel 1 -brlen 0.7 -cap 1.5 -conf 0.99 -td 0.1 -genegistic 1 -gcm 
extreme -js 4 -maxseg 2000 -qvt 0.25 -rx 0 -savegene 1 -broad 1. 

Processing of single cell data 

The HNSC single cell dataset was downloaded from GEO (GSE103322) and processed with 
Seurat R-package v3.  Cells with more than 8,000 detected genes were filtered out. Seurat 
SCTransform with 3,000 variable features was used for data normalization. 25 principal 
components and default parameters were used for UMAP projection and Louvain clustering. 
SingleR 1.0.1 (Aran et al., 2019) was used for the automated cell type annotation. These 
annotations were manually refined according to cell types identified in Puram et al., 2017.  

CellPhoneDB analysis 

The HNSC single-cell dataset was analyzed with CellPhoneDB statistical analysis method using 
1000 iterations and an expression threshold of 0.1. To assess the differential interactions, the data 
was visualized as a ratio of interactions means in the NRF2 cluster vs other cancer clusters, only 
including interactions that were exclusively statistically significant in either the NRF2 cluster 
(positive ratio) or the other clusters (negative ratio). Statistically non-significant ratios were 
removed from the heatmap for clarity.  

Survival analysis 

A pan-HNSC-NSCLC-SKCM dataset was downloaded from GEO (GSE110390) and the 
associated clinical data was obtained from TIDE-database (http://tide.dfci.harvard.edu/). SKCM 
samples were excluded from the analysis, and the nCounter PanCancer Immune Profiling Panel 
targets were normalized to 40 housekeeping genes with NanoStringNorm R-package. Mean 
normalized log2 mRNA expression was used as a cutoff to dissect SPP1 high and low expressing 
samples. Survival analysis was performed with survival R-package. The Kaplan-Meier curve was 
plotted with survminer R-package.  
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CIBERSORT analysis for TCGA data 

CIBERSORT was run for the TCGA data with the CIBERSORT R-package separately for each 
cancer type with the absolute method (sig.score), using 100 permutations and without quantile 
normalization. Correlations to NRF2 score were assessed with Pearson’s method. The bulk 
lymphocyte analysis was conducted by taking the sum of all T-lymphocyte fractions, and using a 
cutoff for NRF2 hyperactivity as TPR > 0.85 from the ROC-analysis. The statistics were computed 
with Mann-Whitney U.  

Immunohistochemistry 

NSCLC tissue microarray sections (LUAD n = 211, LUSC n = 117) were obtained from Auria 
Biobank, Turku University Hospital, Turku, Finland. NQO1 (Cell Signaling NQO1 A180 Mouse 
mAb, 1:250; catalog. no. 3187S) was stained by incubating overnight at +4C°. NQO1 signal was 
quantified as the mean of relative positive-stained area across replicates, and NQO1-positive 
samples were defined as Q3 of the mean NQO1-signal across biological replicates. The NQO1 
area quantification was benchmarked to a human evaluated assessment of binary NQO1 positivity 
of a sample (Figure S6B). For T lymphocyte immunohistochemistry, TMA-sections were stained 
with anti-CD3 (LN10, 1:200; Novocastra) and anti-CD8 (SP16, 1:400; Thermo Scientific) using 
a LabVision Autostainer 480 (ImmunoVision Technologies Inc.). Antigen retrieval was done with 
Tris-EDTA buffer at pH 9 by microwaving the slides in 98 degrees Celsius for 15 minutes. 
Samples were incubated with diluted antibodies for 30 minutes at room 
temperature.  Diaminobenzidine (DAB) was used as a chromogen and haematoxylin as a 
counterstain. Positive control tissue for CD3 and  CD8 immunohistochemistry was normal tonsil. 
The slides were digitized with a slide scanner (Nano Zoomer XR, Hamamatsu) and quantification 
of CD3+ and CD8+ T cells was performed using QuPath, an open-source bioimage analysis 
software (version 0.1.2) (Bankhead, P., Loughrey, M.B., Fernández, J.A. et al. QuPath: Open 
source software for digital pathology image analysis (Bankhead et al., 2017). With the a priori 
assumption of a negative relationship between the variables based on earlier observations, one-
sided Mann-Whitney U test was used for statistical inference between groups.  
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