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Fig. 5: MultiCens on multi-brain-region networks in disease: Study of changes in MultiCens gene rankings of
four-layer networks of control and Alzheimer affected population. We rank genes of frontal pole (FP), superior temporal
gyrus (STG) and inferior frontal gyrus (IFG) using MultiCens centralities calculated using a query-set of synaptic
signaling genes in parahippocampal gyrus (PHG). (a) Bar-plot showing region-wise shift of centrality scores of the
three regions. (b) Reactome pathways and Gene Ontology-based process (GO-BP) enrichment analysis of each region
in control and AD state. Color map represents the normalized enrichment score from WebGestalt. The highlighted
boxes pass the 0.01 FDR cut-off. If centrality-based gene rankings of a region do not pass the 0.05 FDR cut off for an
enrichment, we set the corresponding normalized enrichment score to 0.
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MultiCens also offers an across-region view of gene importance in the AD or CTL multilayer networks. In the
AD network, irrespective of brain regions, genes JMJD6, SLC5A3, CIRBP, TARBP1 and AHSA1 are among the top
ten central genes correlated with the SSG set, of which AHSAI (activator of HSP90 ATPase activity 1) is already
known to correlated with AD progression by promoting tau fibril formation [39]. On the other hand, CIRBP (cold
inducible RNA binding protein) shields neurons from amyloid toxicity mediated by antioxidative and antiapoptotic
pathways, making it a favourable molecule contending for AD prevention or therapy [10]. It may be worth studying the
other three genes experimentally to test their connections to AD pathology. Similar to these individual genes, certain
biological pathways were also enriched for top ranks, irrespective of the brain region, in the AD network (see Fig. 5b)
— examples include HSP90 chaperone cycle for steroid hormone receptors (R-HSA-3371497) pathway and negative
regulation of nervous system development (GO:0051961). Heat shock protein 90 (Hsp90), "a molecular chaperone",
is known to induce microglial activation leading to amyloid-beta (AS3) clearance [41]. The across-region consistency
of top-ranking genes/pathways in the AD network is not observed in the CTL multilayer network. For example, gene
CDK5R2 (Cyclin Dependent Kinase 5 Regulatory Subunit 2) is ranked 3rd in FP, rank 224 in STG, and 2076 in
IFG. Pathway enrichments are also more region-specific in the CTL network (relative to AD network; see Fig. 5b),
such as Axon guidance in FP, Cell-cell junction organization in STG, and immune system in IFG. The intricate links
between immune system and neuronal signaling is well-appreciated. Other enrichments that serve as a positive control
to increase confidence in our MultiCens rankings are those of biological processes like ‘regulation of trans-synaptic
signaling’ in FP and STG, and ‘synapse organization’ in IFG.

Finally, to find out whether changes in AD-network is specific to the query pathway or similar across pathways,
we further use plaque-induced genes (PIGs, total 57 genes), prominent in the later phase of AD, as query set in PHG
instead of the SSG set and repeat the same analysis with MultiCens. We found predominant similarities as well as
certain interesting differences in centrality ranks between the two query gene sets. While pathways related to heat
stress was common for both query sets, synaptic signalling related process like “cell-cell junction organization” was
prominent for SSG set and interleukin signaling was exclusively noted for PIG set (see Suppl Figs. S4,55 and Suppl
Results for a detailed discussion). In aggregate, these results on alterations of brain networks in Alzheimer’s disease
using different query sets show how MultiCens can provide a new network-centric perpsective and related hypotheses
for prioritizing experimental investigations of disease mechanisms.

Discussion

We propose a computational framework for modeling a multi-tissue system as a multilayer network and then introduce
a set of centrality measures MultiCens to capture the influence of a gene at the tissue and across-tissue levels. MultiCens
specifically harnesses the multilayer network structure to decompose the overall centrality of a gene into its local /within-
layer vs. global influences, and further into the gene’s influence on a particular tissue or a query set of genes in that
tissue. Our extensive set of experiments demonstrates the effectiveness of MultiCens on both synthetic and real-
world multilayer networks. For instance, with real-world networks learnt from multi-tissue genomic data, MultiCens
revealed gene mediators of endocrine hormonal signaling between human tissues, which were then validated via overlap
with known hormone-gene relations in HGv1 ground-truth database or in PubMed literature corpus, and via hormonal
disease enrichment analysis. Further, out-of-ground-truth gene predictions supported by PubMed literature corpus can
in turn be used to prioritize annotation and curation efforts of ground-truth databases. Specifically, these MultiCens
predictions can be used to update the current HGv1 database and underlying GO terms with new hormone-producing
or responsive genes. In addition to predicting hormone-gene relations, when applied to a multi-brain-region dataset,
MultiCens can point to specific genes and pathways whose centrality scores change between AD vs. CTL groups. The
novel predictions/hypotheses generated and ranked by MultiCens in both these applications can guide downstream
experiments, and thereby foster the emerging field of studying the whole body at the molecular (gene) yet holistic
(multi-organ /tissue) levels.

MultiCens performance in predicting hormone-gene relations depends on the quality of the underlying network
and that of the query set. Hence, our method would’ve difficulty with networks inferred from multi-tissue datasets
of small sample sizes, and with poorly-studied hormones with very few known gene regulators that could be used as
the query set. We get around the sample size issue by applying MultiCens to data from two tissues at a time (the
source and target tissue of a hormone profiled in GTEx; see Methods), rather than all tissues at once, which suffers
from small sample sizes. To work around the query set issue, we restrict MultiCens predictions to only hormones with
sufficient query genes (i.e., at least 10 hormone-producing or responding genes in the ground-truth database). These
workarounds have enabled MultiCens to systematically identify known as well as novel gene regulators of hormone-
mediated inter-tissue communication. In addition to identifying the involvement of protein-coding genes in inter-tissue
communication, our method recognizes potential IncRNAs that may play a crucial role in hormonal signaling pathways
[42]. The participation of IncRNA genes in tissue-tissue communication was not known until very recently. Based on
our study, experimental studies can be designed to investigate the top-ranked genes to identify their roles in driving
cross-tissue communication.
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The concept of brain gene network structure and its shift in neurodegenerative disease such as AD is emerging
rapidly. MultiCens helps to understand this shift from a new perspective — we specifically observe how the influence of a
given set of genes in a particular brain region on the genes of other brain regions changes in the AD population relative
to the control group. We observe the predominance of heat shock protein related pathway (HSP90 particularly) in AD
gene-gene network both under the influence of synaptic signaling and PIG related gene set. This may be AD specific
change irrespective of region, or may be the result of influence by PHG on AD pathology. Pathways and biological
process specific to network in CTL group are also revealed. Major repositioning of genes is seen between AD and CTL
group, expect for a few genes, particularly RBM3 (RNA Binding Motif Protein 3), which is top ranked gene with
high centrality score (> 0.9) in both conditions, in all three brain regions and in case of both the query sets. RBM3 is
known to maintain neural stem cell self-renewal and neurogenesis [43]. Does it act as a hub gene for networks linked
to PHG, or is an universal hub gene for most of the brain subnetworks? It will be interesting to find the role RBM3
in brain gene-gene network. Results from this study will help to design specific experiments and give us much better
understanding about the brain network structures that are conserved across regions and disease/healthy states, as well
as those that are specific to disease states.

The encouraging results from applying MultiCens to understand hormone-gene signaling network and brain network
rewiring in AD holds promise for future applications. For instance, MultiCens can be used for “Multi-tissue(-network)-
expanded Gene Ontology” analysis of a given set of genes of interest — i.e., computing MultiCens on this query gene set
using the underlying multilayer network and coupling it with enrichment analysis can reveal not only pathways directly
enriched in this query set as is usually done, but also pathways enriched in the (within-/across-tissue) neighborhood of
this query set. MultiCens applications has been human-centric in this study — our preliminary exploration of applying
MultiCens to data from a different species like mouse showed that species-specific tuning of our framework may be
required, and would be in the scope of future work. Further, MultiCens can also be extended to interpret ligand-receptor
interactions. Thus, applicability of MultiCens to study biological systems is manifold.

Beyond the field of biological networks, our measures represent an advance in the overall field of network centrality
as well, since existing measures are primarily based on either direct inter-layer interactions [13], or handle multi-
hop connectivity but fail to distinguish between within- vs. across-layer interactions [12]. MultiCens accounts for
the multilayer multi-hop network connectivity structure of the underlying system. For these reasons and the diverse
applications we’ve demonstrated above, we believe our work on multilayer centrality opens up several future application
areas in the area of multi-organ systems-level modeling.

Methods
Our MultiCens framework: context and rationale

Recently, multilayer network modeling has been used to predict functional categories of proteins in multi-tissue systems
[44], corroborate experiment findings with open access databases [45], determine potential avenues in the advancement
in biomedicine [46], etc. The existing methods of finding multilayer centrality either utilize only the inter-layer degree
of the nodes [13] or do not distinguish between within-layer and across-layer connections [12]. While predicting genes
involved in inter-tissue communication, we need to emphasize the inter-tissue connections, specifically, connections to
hormone-producing or responding tissues,/gene-sets. Also, we rely on the hypothesis that hormonal signaling is not
simply caused by merely direct connections between hormone-producing and responding genes; other intermediatory
genes within the same tissue or in other tissues play the part of mediators in carrying these signals. To accommodate
our requirements, we propose a set of centrality measures that can capture the effect of genes at different levels, such
as within the same tissue, across tissues, to a specific tissue, or a query set of genes in a particular tissue. This section
introduces our proposed methods, starting with degree-based centrality scores and a version of well-known PageRank
centrality for multilayer networks, called versatility.

Background and Preliminaries
Multilayer network representation

A multilayer network is represented by G = (V,L, E), where V represent the set of n nodes which is the same across
all layers, L is the set of L number of layers and F represents the set of inter and intra layer edges. The set of nodes
in layer « is represented by V = {v, 0%, ..., v2}. The total number of nodes in the multilayer network is N = n x L.
Following the convention used in ([17,48]), we represent the multilayer network by a supra-adjacency matrix M of
dimension N x NN as,
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W(ia,jg) if (v¥,07) € E

M(ia, js) = {0 % (1)

otherwise

The supra-adjacency matrix can further be decomposed to represent the network with only intra-tissue edges by
A and the network with only inter-tissue edges by C such that,

A=A+C
Al 2l olnsl Al 0 0 ... 0 ciAolsl |
21 gl ol28]) -, 0o Al o . clz1 o 23 -,
. = g |t .
cB1 B2 AB - 0 0 ABl - oB1 oB2

Degree-based methods

Definition 1 Intra-layer centrality vector of a multilayer network can be computed by the following equation.

degintra = AT (2)
Inter-layer degree is a count of the edges that cross the layers. These edges make the backbone of layer-layer commu-
nication. The inter-layer degree can be computed using the C' matrix as follows.

Definition 2 Inter-layer centrality vector of a multilayer network can be computed by the following equation.
deginter = CT (3)

A more robust way of computing degree-based centrality uses p-values associated with edges instead of weights.
A recent method known as Ss.. makes use of this method to find the prominent set of hormones between a pair of
tissues ([13]). Ssec is based only on the inter-layer degree of nodes and is used to find hormonal genes that are strongly
connected in a pair of tissues.

Definition 3 For a given p-value matrix P, the Ssec score can be computed as follows

Ssec = —In(P)T (4)
Recently, degree and connectivity patterns such as shortest paths in multilayer networks are being deployed to complete
private data with the help of open datasets [15]. Apart from degree-based centrality, there are methods such as

PageRank centrality that can capture multihop effects in a network. We will now discuss an existing framework that
extends PageRank centrality to a multilayer network.

Versatility

Domenico et al., in their seminal paper ([12]), described a mathematical framework for centrality computation in
multiplex networks. The proposed approach assigns a ranking to the nodes based on their interconnectedness. By
setting proper weights of the layers (based on the number of nodes/edges), such a ranking method can reveal versatile
nodes in the network. For a user-defined constant p € [0,1), and N dimensional vector T, the versatility vector can be
defined as follows:

Definition 4 Multilayer network PageRank centrality (also known as versatility ([12])) x of a supra-adjacency network
can be defined by the following equation.
(1-p)
N

1 (5)

x=pMx +
= () (5

The method itself does not distinguish between the within-layer and cross-layer edges, thus making it unavailing
to distinguish the local vs. global effect of nodes. However, the mathematical formulation of a multilayer network
described in this work can be extended to define the desired centrality measures, as we will discuss in the upcoming
parts. There exist another line of work that focuses on centrality methods for multilayer networks with either no inter
layer connections or restricted between identical nodes [19,50,51,52]. We model our multi-tissue datasets by multilayer
networks with inter layer connections between any pair of nodes.
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Our proposed methods - MultiCens measures

In the previous section, we discussed methods based on inter-layer degrees and PageRank. Both these methods have
shown their usefulness in revealing information about the underlying system. However, the multilayer structure of the
network allows us to capture the effect of nodes at multiple levels such as within layer, across the layer, to a target
layer, or a query set of genes in a target layer. The existing methods do not capture these effects and thus are limited
in their usability. Capturing such effects can have immediate applications in several areas, such as systems biology,
where we can identify genes that regulate hormonal communication between two tissues via multiple hops. In order
to capture such effects, we propose the following set of centrality measures, as shown in the Fig. 1.

Local centrality
A node in a layer can affect other nodes in the same layer as well as different layers. In order to capture the within
layer effect of a node, we define the local centrality as follows

Definition 5 Local centrality vector is defined as the following iterative equation

zszl+(1;p)f (6)

It can be noticed that the local centrality of a node is defined by using only within-layer connections; thus, it does
not capture any effects beyond the layer where the node is located. Since local centrality considers the effect of only
within-layer connections, the remaining effect is captured by global centrality.

Global centrality
The global centrality of a node is a measure of its influence on all nodes irrespective of their layers. While computing
this centrality score, we use both - within and across tissue connections in the following manner.

Definition 6 For a given local centrality [, global centrality vector in a multi-layer network can be defined by the
following iterative equation

g:p[(A+C)g+C’l}+(1];p)f (7)

The global centrality of a node can be thought of as seeing an infinite length random walker on that node where at
each step, the random walker can do one of the following.

1. With probability p,
(a) Jump to a neighboring node v, in the same layer with probability proportional to the weight of the connection.
(b) Jump to a neighboring node v, in a different layer with probability proportional to the weight of the connection
and the local centrality of v,,.
2. Restart the walk from any node in the network with probability (1 — p).

Convergence and Decomposability We now prove the convergence of the proposed centrality measures. The local
centrality measure is similar to the Pagerank centrality and its convergence follows from the Pagerank centrality
convergence itself. Whereas, global centrality has additional terms in the equation and we provide a proof for its
convergence.

Theorem 1 For 0 < p < 1, global centrality, as defined by Equation 7 always converges.

Proof From equation 7,

QZP[(A—l—C)g—FCl}—i—(l];p)T
—p (A+C)(p[(A+C)g+Cl]+(1]:fp)f)+0l +(1J;p)f
=p p(A—I—C)Qg-i-p(A-i-C)Cl—&-(A—&-C’)(l]:[p)f—&-CZ +(1;,p)
:pk(A+0)kg+prk<A+C)kcz+zpk<A+C)k(lj‘Vp)f+ (lj‘vp)f

k k
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The first term on the right side converges as k grows larger. The second and third terms give rise to two geometric
series generated by p(A + C). We know that (A + C) is a row stochastic matrix and the product (p(A + C)) can have
maximum eigenvalue, |\'| < 1. A geometric series generated by a matrix with eigenvalues less than 1 always converges.
This completes the proof.

Kindly refer to the supplementary text for the convergence proofs of the remaining centrality measures defined in this
section.

We define global centrality and local centrality in a way that they add up to the versatility in the multilayer network,
which the following proof can verify.

Theorem 2 Versatility of a multilayer network can be decomposed into local centrality and global centrality with a
scaling factor.
l+g==x

Proof
From equation 6
1-p)-
L= par+ LDy
n

from equation 7

g:p[(A+C)g+Ol} ) Gt U1
(l+g):p[(A+C)g+(A+c)z —‘r(l—p)(%-F%)f
(1+9)=p[(A+C)(1+9)] + (L+1])\§1_p)(1”)

Where L is the total number of layers. Since [, g, and z are centrality vectors, they are scale agnostic, so the constant
factor (L + 1) on the right side of the equation can be ignored. This completes the proof.

In the remaining section, we decompose global centrality into layer-specific centrality and further into query set cen-
trality. The theoretical proofs for the same are given in the supplement section.

Layer-specific centrality

We are interested in finding the effect of node(s) on a specific layer (target layer) in the multilayer network. In doing
so, we define the layer-specific centrality as follows.

Definition 7 For a given [, layer-specific centrality vector in a multi-layer network can be defined by the following
iterative equation
(1-p)
N

Giayer(i) = p[(A + C)glayer(i) + CM l:| + T (8)
where CU represents the matriz C' with all but ith column-block entries set to 0.
Theorem 3 For 0 < p <1, giayer(s) defined by Equation 8 always converges.

Proof Kindly refer to Theorem 3 in the supplementary section.

Theorem 4 Global centrality, as defined in the main text, can be decomposed for each layer being a specific target
layer.

L
Z Jiayer(i) — 9 (9)
i=1
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Proof Kindly refer to Theorem 4 in the supplementary section.

Our proposed centrality framework is highly generic, and the definition of centrality can further be customized to
capture the effect of a node on a set of nodes on a specific target layer. We propose another refinement in the
layer-specific centrality by decomposing it into multiple query-node sets in the specific target layer.

Query set centrality

We introduce query-set centrality that can capture the effect of a node on a query set of nodes present in any specific
layer in the multilayer network. We begin by defining local — set centrality, a variation of local centrality which
assigns scores to the nodes in a specific target layer.

Definition 8 For a given set of query nodes set(k), the local-set centrality in a multilayer network can be defined by
the following equation.

lset(k) — pAlset(k) +
Where 1k represents the vector of 1's at indices corresponding to the node-set k and 0 otherwise.
Theorem 5 For 0 < p < 1, I°***¥) defined by Equation 10 always converges.
Proof Kindly refer to Theorem 5 in the supplementary section.

Theorem 6 Local-set centrality defined by equation 10 can be added for each set k to obtain the local centrality .

K
leet(k) =1 (11)
k=1

Proof Kindly refer to Theorem 6 in the supplementary section.

We use this local-set centrality to define query-set centrality as follows.

Definition 9 For a given set of query genes set(k) in a layer i, the query-set centrality in a multilayer network can
be defined by the following equation.

(1-p)
N

set(k set(k i]7se 7
Gty = p[(A+ C)gitin, + cllpe®] 4 1k (12)

layer(i)

The query-set centrality is defined in order to capture the effect of nodes on a query set of genes in a specific target
layer. As shown in Fig. 1, our centrality equations are based on the principle of decomposability.

set(k
layer

Theorem 7 For 0<p<1,g )(i) defined by Equation 12 always converges.

Proof Kindly refer to Theorem 7 in the supplementary section.
Theorem 8 Layer-specific centrality defined by equation 8 can be decomposed into query-set centrality defined over
collectively exhaustive subsets of nodes.
set(k
g;:yt(zr)(i) = YGlayer(i) (13)

k

Proof Kindly refer to Theorem 8 in the supplementary section.

We restrict our experiments to multilayer networks of only two tissues at once. Having more tissues leaves us with
a tiny number of common samples, resulting in a dubious network structure. Our centrality method is designed to
handle multiple tissues at once, as we will discuss these experiments in the later section.
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Synthetic multilayer networks

To understand the working of our MultiCens measures, we generate an extensive set of synthetic multilayer networks.
As shown in Fig. 2, we begin with a two-layered multilayer network where each layer has 500 nodes. Following the
popular ER-random graph generation model [53], we consider all possible pairs of nodes (within and across layer) and
put an edge with probability p = 0.05. This multilayer network is called the base network, and we mark 50 nodes in
layer two as the query set. On top of the base network, we add additional edges among the nodes in the query set
by another ER-based process of adding random edges. To add these additional edges, we vary this additional edge
probability p (called connection strength) from p = 0.05 to p = 1 at steps of 0.05, and obtain a network structure at
each step. If a node pair, say (4, 7), gets connected in the base network and gets another edge while adding additional
edges, we assign weight of two units to the original edge. Similarly, in the first layer, we mark a community of 50
nodes directly connected to the query-set, and call it source set 1. Another community of 50 nodes, source set 2,
is connected to source set 1. The connection strength within these two communities and between source set I and
source set 2, and between source set 1 and query set is varied from 0.05 to 1. In our hormonal signaling example,
query-set can be thought of as a set of genes that respond to a hormone, say insulin in skeletal muscle tissue. Source
set 1 and source set 2 can be considered as genes in the pancreas tissue that interact with the query set either by
direct or two-hop long dense connections. Since the tissues will have multiple other clusters of genes that are not in
the proximity of insulin-related genes, we mark three such communities of 50 nodes each. Connection strength within
these three communities and across them is also varied.

In this synthetic multilayer network structure, our goal is to understand whether genes from source set 1 (direct
connections) and source set 2 (two-hop connections) get top centrality-based ranks for a given query set, across different
values of connection strength.

Real-world Application I: Hormone-related multilayer data, networks, and gene ranking evaluations
Hormone-related multi-tissue data

We work with human multi-tissue datasets and use the following resources.

1. GTEx.v8 Single-Tissue cis-QTL Data [5]': This data is a result of the Genotype-Tissue Expression (GTEx) project.
The dataset contains gene expression profiles of hundreds of individuals from over 30 tissues. The dataset is pre-
processed to account for some known as well as derived covariates?.

2. Stanford Biomedical Network Dataset Collection [15]3: This dataset provides a tissue-specific protein-protein edge
list for humans. The data is derived from a global protein-protein network. In the global interactions, if a pair
of proteins is tissue-specific or if one protein is tissue-specific and the other protein is ubiquitous, then the tissue
information is associated with the interaction, and hence the tissue-specific networks are obtained. Physical protein-
protein interactions experimentally support the edges in the networks.

We retrieve the hormone-producing and responding gene sets from HGv1 database [16]*. In HGv1, the source and
target genes of hormones are first retrieved in a tissue-agnostic manner, and then through biomedical literature mining
source and target tissues of a given hormone is designated. We treat these hormone producing and responding gene
sets as the ground truth genes for hormonal signaling.

Hormone-related network construction

Gene coexpression networks are known to capture the patterns of underlying gene expression data that can reveal
important biological biomarkers, functional associations between different genes, etc. In human experiments, we make
use of the GTFEz.v8 Single-Tissue cis-QTL data and compute Spearman correlation to find the correlation coefficients
between all gene pairs (within and across tissue) and use it as an edge weight (absolute value) to signify the strength
of interactions. In order to avoid the blowup in the size of the multilayer network, we only use the top 10k varying
genes in each tissue and take the union of these genes while constructing the multilayer network.

! File “GTEx_ Analysis_v8 eQTL _expression matrices.tar" accessed from “https://gtexportal.org/home/datasets" on Sep
25, 2020.

2 List of covariates in file “GTEx_Analysis_ v8 eQTL _covariates.tar.gz" accessed from
“https://gtexportal.org/home/datasets" on Sep 25, 2020.

3 File “PPT-Ohmnet_ tissues-combined.edgelist" accessed from “https://snap.stanford.edu/biodata/datasets/10013,/10013-
PPT-Ohmnet.html" on Sep 25, 2020.

4 Files accessed from “https://cross-tissue-signaling.herokuapp.com/" on Jan 10, 2021.
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We also use the protein-protein interaction data as described earlier, in addition to using a gene coexpression
network. For every gene-gene pair, if it is present in the protein interaction data, we increase its weight by 1 unit
(adding edge weights) and work with the resultant network. In this paper and its supplementary text, we report results
on this resultant network unless mentioned otherwise.

In GTEx dataset, combining multiple tissues in a network leads to fewer common samples and, hence, a less robust
network; we restrict these experiments to multilayer networks only with two tissues (the predominant source and
target tissue for a hormone; so these multilayer networks we construct and analyze are hormone-specific). However,
our network generation mechanism as well as the MultiCens framework to compute centrality can be readily used for
any number of tissues, as we illustrate in the Alzheimer’s brain network application with four brain regions/tissues.

Evaluation of hormone-gene predictions

In one of MultiCens’ applications, we use hormone-producing set as the query-set of genes and rank all genes in the
target tissue to predict the hormone-responsive set; this process is repeated vice versa to predict hormone-producing
genes from an input query set of hormone-responsive genes. We use the HGv1 database [16] as ground truth and validate
our gene rankings against it. We also perform disease enrichment analysis to find that whether our centrality-based
gene rankings are enriched for hormone-related diseases using WebGestalt®. To obtain the enriched set of diseases for
human gene rankings, we use the WebGestalt portal and select "Homo sapiens" as the Organism of Interest. Method
of interest and Functional Database are set to Gene Set Enrichment Analysis (GSEA) and disease, respectively. We
select OMIM functional database and set the significance level to 0.05 FDR. We give the gene symbols, and their
corresponding centrality scores as input, and the portal returns the set of diseases enriched at the given FDR cut-off.
The gene symbols and their corresponding centrality scores are shared in the supplementary file SD1.

From the gene rankings obtained using our centrality measure, we find the support for top protein-coding genes
based on co-occurrence with hormone-related terms in the PubMed corpus®. More information about these evaluation
approaches are given below.

1. Recall-at-k plot: This plot can be used to validate the results visually. Both in synthetic as well as real-world
datasets, we have a set of ground truth genes that we expect to come at the top as per their centrality scores. This
can be verified by visualizing recall-at-k plots where the x-axis reports the top k predictions and the y-axis marks
the number of hits from the ground truth at any given k.

2. Area under recall-at-k curve: Higher recall-at-k curve implies the better performance of a method. One way to
quantify it is by calculating the area under it. We normalize the maximum possible area under recall-at-k curve to
be 1 and report the area obtained by curves corresponding to the proposed method.

3. Support from literature: The evaluation metrics discussed above require the ground truth for evaluation. Many
times, especially in biology, it is tough to have access to the complete ground set of hormone-producing/responding
genes. Continuous research like this study pushes our knowledge boundaries, and we get access to more reliable and
more complete ground truth datasets. In order to validate the novel findings, we rely on support from literature
and use the following two metrics.

(a) Co-occurrence in the PubMed database: We use articles present in the PubMed data and find the support
for predicted genes. The support is calculated as an overlap between the gene name and the hormone/disease
name. The support is calculated using the following formula.

HNnG

Support =

number of articles on PubMed x G
Where H and G denote the number of articles that mention the hormone name and gene name, respectively,
and H N G denote the number of articles that contain both the hormone name and gene name. While finding
support for the gene-disease association, we use articles that contain the disease name instead of hormone name.
We use 27 million as the number of articles present in the PubMed database.

(b) Cosine similarity in the embedding space: We find cosine similarity between the embedding vector of a gene
symbol and that of a hormone or disease name. Since cosine similarity can range between -1 and 1, a positive
number indicates that the gene-hormone or gene-disease association is supported in the embedded space. Our
embeddings (also called as word embeddings or embedding vectors) are from BioWordVec”, a deep learning
model pretrained on the PubMed corpus [25].

5 Tool http://webgestalt.org/ accessed on Aug 5, 2021.
5 Data accessed from “https://pubmed.nchi.nlm.nih.gov/" on Aug 1, 2021.
" BioWordVec model /embeddings are downloaded from https://github.com/ncbi-nlp/BioSentVec.
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Both these metrics use articles present in the PubMed database, but they differ because the co-occurrence is
based solely on the presence of two terms in an article, whereas the second metric also captures the contextual
dependencies in the embedding space.

Our PubMed literature analysis focuses only on the peptide hormones insulin and somatotropin (out of all the four
primary hormones considered), since we wanted to apply an informative filter to inspect predictions that are only
among genes involved in peptide secretion®. This filter was inspired by a similar filter applied in an earlier study
on endocrine interactions [13].

Real-world Application Il: Alzheimer’s vs. Control multilayer data, networks, and rankings
Multi-brain-region data - preprocessing and correction

The covariate-adjusted transcriptomic (RNA-sequencing) data with the following synapse ids - syn16795931 — Brod-
mann Area (BM10) — frontal pole (FP), synl16795934 - BM22 - superior temporal gyrus (STG), syn16795937 -
BM36 - parahippocampal gyrus (PHG), syn16795940 — BM44 - inferior frontal gyrus (IFG), were downloaded from
AD Knowledge Portal — The Mount Sinai/JJ Peters VA Medical Center Brain Bank cohort (MSBB) study [35]
(10.7303/syn3159438). The preprocessed data is corrected for library size differences using the trimmed mean of M-
values normalization (TMM method — edge R package) and linearly corrected for sex, race, age, RIN (RNA Integration
Number), PMI (Post-Mortem Interval), sequencing batch, exonic rate and rRNA (ribosomal RNA) rate. The normal-
ization procedure was performed on the concatenated data from all four brain regions to avoid any artificial regional
difference as before [35].

The clinical (MSBB _ clinical.csv) and experimental metadata (MSBB _RNAseq covariates November2018Update
files available on the portal are used to classify the samples into control (CTL) and Alzheimer’s disease (AD) based
on CERAD score (Consortium to Establish a Registry for AD). CERAD score 1 was used to define CTL samples, and
2 ('Definite AD’) was used for defining AD samples [35]. Probable AD (CERAD = 3) and Possible AD (CERAD =
4) samples were not considered for this study.

To mitigate the confounding effect of cellular composition on gene-gene coexpression relations, we corrected (lin-
early adjusted) the RNAseq gene expression data for cell type frequencies of four major brain cell types: astrocytes,
microglia, neuron, and oligodendrocytes. We estimated these cell type frequencies in each brain region/tissue sepa-
rately from the bulk tissue expression of the marker genes of these cell types using a cellular deconvolution method
called Cell CODE (Cell-type Computational Differential Estimation) [54]. Specifically, we used the get AlISPVs function
from the Cell CODE, and provided its input arguments to select robust marker genes that do not change between AD
vs. CTL groups (specified via the mix.par argument set at 0.3) from a starting set of 80 marker genes (top 20 per cell
type, obtained from the BRETIGEA (BRain cEll Type speclfic Gene Expression Analysis) meta-analysis study [55].

Network construction and enrichment analysis of gene rankings

AD and CTL networks are separately constructed as before by computing the Spearman correlation between all pairs
of genes in the four brain regions and taking absolute value of these correlations as the edge weights. To make the
analysis computationally tractable, we restrict our focus to a subset of genes as follows - identify the 9000 most varying
genes in each region for both AD and CTL populations, and then consider the union of all these gene sets as the final
set of nodes in each layer of the multilayer network.

MultiCens scores are then calculated for all the nodes in the AD or CTL multilayer networks to obtain gene
rankings, which were then subjected to enrichment analysis with WebGestalt as described before. Additionally, we
applied redundancy reduction methods (affinity propagation and weighted set cover) and selected the significantly
enriched terms, which passed both the methods. We use the centrality score of each of the three brain regions other
than the query brain region to find the significantly enriched terms considering both Reactome pathways and Gene
Ontology based Biological Process (GO-BP).

Code and Data Availability

The code that implements both network construction and MultiCens measures is available here: https://github.
com/BIRDSgroup/MultiCens.

8 List of genes involved in peptide secretion accessed from this URL- www.ebi.ac.uk/QuickGO /G Term?id=G0:0002790 on
Dec 1, 2020

.CSV)
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