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Abstract. With the evolution of multicellularity, communication among cells in different organs/tissues
became pivotal to life. Molecular basis of such communication has long been studied, but genome-wide
screens for biomolecules/genes mediating tissue-tissue signaling are lacking. To systematically identify
inter-tissue mediators, we present a novel computational approach MultiCens (Multilayer/Multi-tissue
network Centrality measures). Unlike single-layer network methods, MultiCens can distinguish within- vs.
across-layer connectivity to quantify the “influence” of any gene in a tissue on a query set of genes of
interest in another tissue. MultiCens enjoys theoretical guarantees on convergence and decomposability,
and excels on synthetic benchmarks. On human multi-tissue datasets, MultiCens predicts known and novel
genes linked to hormones. MultiCens further reveals shifts in gene network architecture among four brain
regions in Alzheimer’s disease. MultiCens-prioritized hypotheses from these two diverse applications, and
potential future ones like “Multi-tissue-expanded Gene Ontology” analysis, can enable whole-body yet
molecular-level investigations in humans.

Main

For any multicellular organism with specialized tissue or organ structures, communication among the different tis-
sues/organs is essential for coherent integrated functioning of the whole body. The molecular mechanisms of such
inter-organ communication, be it canonical communication routes such as the nervous system and hormonal sys-
tem (or) non-canonical recently-discovered routes such as ones mediated by fat-derived extracellular vesicles [1] and
microbiota-derived metabolites in the gut-brain axis, can be represented as a network of interactions among the
biomolecules residing in different tissues/organs (and called the inter-organ communication network or ICN) [2].
Rapidly gaining interest in the mapping of ICN [3] and detailed mechanistic characterization of specific interactions
in the ICN [4] have revealed a large ICN network among secreted proteins in model organisms like Drosophila, and
the key roles played by certain ICN molecules or interactions in healthy and disease conditions. But these experimen-
tal techniques for ICN mapping or ICN analysis are predominantly in vivo and hence of limited use in non-model
organisms including humans, and also quite time-consuming even in model organisms (due to the potentially huge
experimental space to cover the quadratic number of all pairwise interactions among thousands of biomolecules in tens
of tissues of interest). As a result, the ICN is vastly under-explored in both model as well as non-model organisms,
and there is an immediate need to accelerate mapping and analysis of ICNs in health and disease.

In this study, we propose a computational approach to rapidly map and analyze a multi-tissue network, comprising
both inter- and intra-tissue gene-gene interactions. Our work is enabled by the recently accumulating multi-tissue
genomic datasets (e.g., [5],[6]), which can be used to infer inter/intra-tissue networks using the concept of gene-gene
correlation or coexpression. Coexpression network mapping and analysis have been done before, for instance using
the popular WGCNA method [7], and gene prioritization using network based measures have also successfully guided
downstream experiments before [8,9,10]; but these existing studies have mostly focused on a single tissue of interest
in a healthy condition or the single most affected tissue in a disease. Our proposed centrality framework, termed
MultiCens, works in a multi-tissue setting and offers a systematic data/computation-driven prioritization of genes to
be key regulators of inter-tissue signaling.
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Specifically, a main contribution of our work is the design and application of a gene centrality measure that
quantifies the extent to which each gene in a tissue influences a query set of genes of interest in another tissue
via direct and multi-hop inter-/intra-tissue interactions. We extend traditional centrality measures like PageRank
[11] that work for a single-layer system to design new measures for a multilayer network model, wherein each layer
corresponds to a tissue and nodes (genes) can have within-layer and across-layer connections (gene-gene interactions).
We demonstrate the effectiveness of MultiCens in capturing multi-hop effects using both synthetic multilayer networks
as well as real-world multi-tissue datasets. On a real-world human multi-tissue gene expression dataset for instance,
we can uncover genes responsible for inter-tissue communication via mediating hormones, specifically genes involved
either in the production/processing/release of hormones in a source tissue or those that respond to hormones in the
target tissues. Even with well-studied hormones such as insulin, our study identifies not only known but also novel
regulators of insulin signaling, including lncRNAs (long non-coding RNAs) as well. MultiCens can also be applied
to multi-brain-region gene expression datasets obtained from postmortem brain samples of Alzheimer’s disease vs.
control individuals to highlight the large-scale changes in the centrality of specific genes and pathways in Alzheimer’s
disease. The diverse applications of MultiCens to find the molecular mediators of inter-tissue hormonal signaling in
healthy tissue or inter-brain-region dysregulation in disease is promising for its broader applicability and robustness
to dissect communication amongst other functional structures within the body of humans and other species.

Results

Overview of our proposed centrality measures: MultiCens

We introduce a set of centrality measures, termed MultiCens, to quantify the influence or effect a gene has at different
levels of granularity, such as the effect a gene has (i) “locally” within a tissue due to its connections to other genes in
the tissue, or (ii) “globally” across all tissues due to within- as well as across-tissue connections, or specifically (iii) to a
particular tissue, or (iv) to a query set of genes in a particular tissue. MultiCens measures account for the multilayer,
multi-hop network connectivity of the underlying system in a hierarchical fashion, by decomposing the overall centrality
(versatility pioneered by Domenico et al. [12]) of a gene into local vs. global centrality, and further into layer-specific
centrality specific to a tissue (referred to interchangeably as layer) or query-set centrality specific to a gene set in a
tissue (see hierarchical organization in Fig. 1 and Methods). We prove theoretical guarantees on the convergence and
decomposability of MultiCens measures (see Theorems in Methods section), and demonstrate empirical applications
of MultiCens to simulated networks as well as real-world healthy and disease multi-tissue datasets below. Our overall
pipeline starts with a multilayer network model (constructed for instance from transcriptomic data of a multi-tissue
system), represents it as a supra-adjacency matrix comprising two matrices (one for capturing within-layer connections
alone, and another for across-layer connections), and then uses these two matrices to define different centrality measures
(see Fig. 1 and Methods). Ranking nodes/genes by their centrality scores can readily help predict key genes involved
in inter-layer communication, amongst other applications.

Capturing multi-hop effects in synthetic multilayer networks

We first evaluate MultiCens on synthetic networks that simulate a real-world application scenario of identifying genes
involved in tissue-tissue hormonal signaling. In this scenario, we test if MultiCens assigns top ranks to hormone-
producing genes in a hormone’s source layer, when hormone-responsive genes in its target layer are provided as the
query set. Since “ground-truth” hormone-producing genes could be linked to the “query” hormone-responsive genes
via a mixture of direct connections (edges) or indirect one/more-hop connections (paths), we model our synthetic
networks accordingly as a two-layered network with a fixed query set in layer 2, and two communities source-set 1 and
source-set 2 in layer 1 that are strongly connected to layer 2 by direct and multi-hop connections respectively (Fig.
2a-b). We start with a ground truth set of nodes that has all source-set 1 nodes alone, and then replace a fraction of
these nodes with nodes from source-set 2 (Fig. 2c).

A recall-at-100 analysis shows that two existing methods, as well as MultiCens, can recover the ground truth nodes
when they are directly connected to the query-set (Fig. 2c, 0% curves). However, as we increase the fraction of nodes
from source-set 2 in the ground truth, our MultiCens query-set centrality performs increasingly better than other
methods (Fig. 2c). These benchmarks show MultiCens query-set can rank nodes with direct as well as indirect (multi-
hop) connections to a cross-layer query-set towards the top, due to its ability to distinguish intra- vs. inter-layer edges
(unlike the existing versatility method [12], which cannot make this distinction) and handle multi-hop connectivity
(unlike the existing inter-layer degree based method Ssec, proposed in a pioneering work on data-driven discovery of
endocrine hormone interactions [13], which handles only direct interactions). For completeness, we compared these
methods to local and global centrality-based rankings as well (see Suppl Fig. S1), and observed that MultiCens query-
set centrality performs better – this encourages the use of a query set of genes, whenever this information is available,
in our MultiCens applications.
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Fig. 1: Workflow of our MultiCens measures. (a) Each layer in the network represents a tissue, and connections
represent gene-gene interactions (e.g., inferred from transcriptomic data). (b) Supra-adjacency matrix (M) contains
within-tissue connections on the diagonal blocks (intra-layer matrix A), and across-tissue connections on the off-
diagonal blocks (inter-layer matrix C). The A,C matrices are used to compute different hierarchically-organized
centralities as shown. The centrality vectors (x, l, and g) have an entry for each gene in every tissue. (c) The centrality
scores are used to obtain gene rankings which are further validated using different methods, and interpreted to predict
novel mediators of inter-tissue signaling.

MultiCens ranks inter-tissue signaling genes at the top

After verifying MultiCens on synthetic multilayer networks, we now apply it to human multilayer networks, comprising
gene-gene coexpression relations inferred from a multi-tissue dataset GTEx (Genotype-Tissue Expression [14]) and
tissue-specific protein-protein interactions from a repository SNAP/BioSNAP (Stanford Biomedical Network Dataset
Collection [15]) (see Methods). To validate the MultiCens-based gene rankings obtained from any human multilayer
network of interest, we use a Gene Ontology (GO) based database of hormone-related genes HGv1 (Hormone-Gene
version 1 [16]) as the ground truth. Our task is to predict hormone-producing genes when only a query-set of hormone-
responding genes is given as input, and vice versa. To capture the communication paths between a hormone’s producing
and responding set of genes in the multilayer network, both sets should be sufficiently large. Hence, we restrict our
evaluation to hormones with at least 10 hormone-producing and at least 10 responding genes. Four hormones pass this
threshold, and are referred to as the primary hormones. For all but one of these primary hormones, viz., for Insulin,
Somatotropin, and Progesterone, our MultiCens query-set centrality ranks the ground truth hormone-related genes
towards the top (see recall-at-k plots in Fig. 3a). The complete gene ranking for these hormones is provided in Suppl
Dataset SD1.

We then expanded our application to all hormones with at least 10 genes in the hormone-producing set or the
responding set or both sets, and report such hormone’s Area Under recall-at-k Curve or AUC in Fig. 3b (see also
Suppl Fig. S2 and Suppl Table S1 for results on all tested hormones). For a majority of these hormones (all but 5
of the corresponding 16 prediction tasks in Fig. 3b), our MultiCens gene rankings yield AUCs better than that of
random rankings. When we remove SNAP-based protein interactions and keep only coexpression edges in the human
multilayer networks (Fig. 3b; lighter dots), performance drops slightly, but otherwise the trend of AUCs remain similar.
Taken together, these results affirm the robustness of MultiCens in ranking genes associated to hormonal inter-tissue
signaling at the top.
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Fig. 2: Synthetic multilayer network construction and evaluation. (a) Synthetic network construction starts
with a base random multilayer network with edge probability 0.05; (b) More edges are then added, according to the
connection strength desired, both within the selected communities (indicated by circles) and between certain pairs
of communities (indicated by thick dark edges connecting the pair; e.g. between source-set 1 and source-set 2 ). (c)
As more nodes from source-set-2 become part of the ground truth (shown as increasing percentages), our MultiCens
query-set centrality outperforms the existing methods to a larger extent. Each plot shows the connection strength
(x-axis) against the number of ground truth nodes in the top 100 ranked nodes (y-axis). See also Suppl Fig. S1.
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Fig. 3: MultiCens on human multilayer networks: ground-truth validation. (a) Recall (# of ground truth
genes recovered; y-axis) in the top k ranked genes (x-axis) are plotted using MultiCens query-set centrality based
ranking vis-à-vis a random ranking (random curve). Only primary hormones shown here; see Suppl Fig. S2 for plots
for the other tested hormones. (b) For hormones with 10 or more genes in either producing or responding set, the
smaller set is used as the query set, and the plot reports AUC score for predicting the bigger set (marked in bold-face
font in x-axis). For the four primary hormones having at least 10 genes on both producing and responding sets, plot
reports AUC for predicting both sets. See also Suppl Table S1.

MultiCens gene rankings are enriched for hormone-related diseases

The promising validation of MultiCens-based gene rankings using the ground truth HGv1 database encouraged us
to test if our top-ranking genes are enriched for the corresponding hormone-related disorders/diseases (as in our
earlier literature mining study [16]). Among all enriched disease terms at FDR 5% (Fig. 4a), many of them are well-
supported in the literature such as enrichment of Type-2 Diabetes for Insulin [17], breast cancer for progesterone [18],
and colorectal cancer for somatotropin [19]. Moreover, insulin resistance leads to chronic hyperinsulinemia, which is
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further associated with various types of cancer including breast, colorectal, prostate cancer among others [20,21], as
reflected in our enrichment results. Insulin resistance in skeletal muscle leads to a condition less studied called diabetic
myopathy, where the strength and mass of skeletal muscle is reduced [22]. In case of somatotropin, a growth hormone
secreted by the pituitary gland, our enrichment result confirms its association with increased colon polyps and cancer
[23]. Finally, mood-related disorders typically associated with Norepinephrine were not enriched in our analysis, in line
with the poor validation of this hormone against HGv1 ground truth; however, this hormone is an etiological factor
for different cancer types [24], including the ones found in our enrichment analysis (Suppl Fig. S3). Summarizing, for
three of our four primary hormones with sufficient gene associations, our MultiCens ranking reveals meaningful disease
enrichments.

PubMed literature analysis of MultiCens predictions reveals known and novel hormone-gene links

Ground-truth databases including our HGv1 could be incomplete and miss certain genuine hormone-gene relations. So
we turn to the PubMed literature corpus to search for known vs. novel hormone-related genes amongst the top-ranked
genes returned by our MultiCens on the hormone-specific human multilayer networks. We employ two PubMed-derived
scores to quantify the evidence for a potential link between a hormone and a gene: (i) co-occurrence or co-mention of
a hormone-gene pair in published articles in PubMed (see Methods), and (ii) contextual similarity between a hormone
and a gene in the corpus, which can also identify hormone-gene pairs not co-mentioned in any publication. Text-based
deep learning methods can successfully capture the contextual similarity between two words via cosine similarity of
their corresponding word embedding vectors [25], and this is what we adopt too (see Methods).

In this literature-based analysis, we focus on peptide hormones insulin and somatotropin, so that we can apply a
filter to test predictions that are only among genes involved in peptide secretion (see Methods). Fig. 4b shows the top
10 secretory genes in the MultiCens ranking for each hormone (when MultiCens centrality is obtained by taking the
hormone-responsive genes as the query set) along with their co-occurrence and contextual similarity scores with the
hormone-related terms. While a few genes (yellow background) from our predictions are already present in our ground
truth HGv1, there are other genes (green background) not present in HGv1 but whose associations are confirmed by
the high PubMed-based similarity scores with at least one of the hormone-related terms. For insulin for example, we
obtain two such out-of-ground-truth genes: LRRC8, which has been found to enhance insulin secretion in pancreatic
β-cells in a recent study [26], with later studies confirming its role in insulin resistance and glucose resistance [27];
similarly, EGFR gene is known to mediate diabetes-induced microvascular dysfunction [28].

For both hormones, we find certain novel gene predictions that are both absent in our ground truth and have
poor PubMed literature support scores (white-background genes in Fig. 4b). One such novel prediction is CD74 for
insulin - this gene’s role in insulin secretion and related diseases was not well-established until the recent discovery
of its participation in insulin resistance [29]. Another example of a novel prediction is RFX3 for somatotropin – this
gene has no direct co-occurrence with hormone-related terms, but is known to play a role in hydrocephalus disease
[30], which is associated with deficiency in this growth hormone [31]. Based on the top centrality ranks and the
above-discussed recent or indirect pieces of literature evidence, the role of genes like CD74 and RFX3 respectively
in insulin and somatotropin signaling warrant further exploration and can be prioritized in future experiments. For
further details, please see Suppl Results.

MultiCens identifies lncRNAs as integral part of hormone signaling networks

The role of protein-coding genes in hormonal signaling is well established, but that of long non-coding RNAs (lncRNAs)
in the endocrine system is only evolving. Uncovering lncRNA’s association to the hormones may provide a ground
for innovative treatment strategies for related diseases, and MultiCens provides a systematic data-driven discovery of
these associations. Table 1 shows the top 5 lncRNA genes among the top 1000 MultiCens-predicted genes in terms
of tissue-specific gene rankings for each primary hormone. Suppl Table S3 provides supporting references for each
predicted lncRNA (hence we do not cite all references explicitly in the following text).

For the insulin hormone, MultiCens detected PRKCQ-AS1, a natural antisense lncRNA for the diabetes drug-
target and insulin signaling regulator PRKCQ (Protein kinase C theta). Gene PRKCQ has higher activity in muscle
from obese diabetic patients and PRKCQ-AS1 is required to maintain a relatively constant level of PRKCQ. Recent
evidence indicates that lncRNAs, through β-cell mass modulation, affect insulin synthesis, secretion and signaling,
thereby enhancing the progression of type-2 diabetes mellitus (T2DM) [32]. MultiCens-predicted lncRNA MIR22HG
is reported for instance as a hub node in a competitive endogenous RNA (ceRNA) network related to T2DM, along
with other cancer signaling pathways. Further, PWAR6 (Prader Willi/Angelman region RNA 6) is reported to play
a major role in the Prader–Willi syndrome (PWS) phenotype, and PWS patients are often diagnosed with T2DM. It
will be interesting to find if there is any direct link between PWAR6 and T2DM.
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Fig. 4: MultiCens on human multilayer networks: prior support and novel predictions. (a) Shown are
all disease gene sets based on OMIM (Online Mendelian Inheritance in Man) that are enriched for top MultiCens
centrality scores at FDR 5%, as reported by WebGestalt (see Methods; when predicting somatotropin-responding
genes in liver, no disease enrichments pass this FDR cutoff; see also Suppl Fig. S3 for the other two primary hormones’
disease enrichments). (b) Literature support for our top 10 predicted genes (ranked only among genes involved in
peptide secretion) for the two peptide hormones, along with their co-occurrence scores and similarity in embedding
space with hormone-related terms. Genes with a yellow background are present in the ground truth (HGv1 database);
from the remaining genes, the green background represents genes supported by scores (co-occurrence score ≥ 1) for
either or both hormone-related terms, and white background represents the other genes not supported by scores for
both hormone-related terms. See also Suppl Table S2 for gene names corresponding to the gene symbols shown.

Somatotropin, a growth hormone secreted in the anterior pituitary gland, stimulates body growth, and also stim-
ulates liver and other tissues to produce Insulin-like growth factor I (IGF-I), which in turn results in cartilage cell
proliferation and bone growth [33,34]. Reassuringly, lncRNAs predicted for association to somatotropin in liver are in-
volved in many liver diseases and cancer. NEAT1 (nuclear paraspeckle assembly transcript 1) is significantly increased
in non-alcoholic fatty liver disease (NAFLD) and its’ high expression is correlated with worse survival in cancer pa-
tients. Expression of MIR210HG increases in hepatocellular carcinoma (HCC) cells relative to paired adjacent normal
liver tissue samples and relative to normal liver cell line. Similarly, LINC01278 mediates HCC metastasis by regulating
miR-1258 expression.
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Table 1: Top five ranked lncRNAs by MultiCens in source and target tissues of the four considered hormones.

Insulin
Pancreas Skeletal Muscle

1 LINC00672 ZEB1-AS1
2 HOXA-AS2 TNK2-AS1
3 PRR34-AS1 PWAR6
4 MIR22HG PRRT3-AS1
5 LINC00294 PRKCQ-AS1

Somatotropin
Pituitary Gland Liver

1 LINC01588 NEAT1
2 PTPRD-AS1 ZNF528-AS1
3 LINC01132 MIR210HG
4 UCA1 ALMS1-IT1
5 LINC01473 LINC01278

Progesterone
Ovaries Uterus

1 CCDC18-AS1 HAGLR
2 LINC00641 TAF1A-AS1
3 MIR210HG LINC00602
4 LINC01016 PCAT19
5 BEAN1-AS1 HHIP-AS1

Norepinephrine
Adrenal Glands Small Intestine

1 PGM5P4-AS1 RNF139-AS1
2 CCDC18-AS1 CARMN
3 MAGI2-AS3 SPATA41
4 LINC01291 GHET1
5 TOLLIP-AS1 ATP1B3-AS1

Although lncRNAs are correlated with multiple cancers in general, their molecular mechanisms in the context of
hormone signaling remain inadequately understood. Our predictions linking a hormone and its predicted lncRNA to
the same cancer type can thus accelerate and prioritize experimental investigations of these mechanisms. For instance,
breast, ovary and uterine endometrium are known targets of progesterone, and the lncRNAs with high progesterone-
related query set centrality are seen to be involved in cancer of these three regions (see Suppl Results). Suppl Results
also discusses how somatotropin’s involvement in proliferation is reinforced by MultiCens-detected lncRNAs, most of
which are linked to cancer cell growth.

Finally, MultiCens yields interesting lncRNA predictions for norepinephrine, a neurotransmitter which promotes
vasoconstriction and controls heart rate and also effects intestinal absorption and secretion by regulating the tone
of smooth muscle. CARMN, a smooth muscle cell-specific lncRNA, detected by MultiCens, is reported to regulate
cardiac cell differentiation and homeostasis. Further, lncRNA GHET1 has effects in development of pre-eclampsia, a
difficult pregnancy indicated by high blood pressure. Based on the role of these lncRNAs, they seem to be influenced
by norepinephrine, but exact mechanism of regulation requires further study. MultiCens therefore predicted lncRNAs,
a few of which are already present in our ground-truth database, as well as other novel ones with interesting links to
hormonal signaling and disorders.

MultiCens detects changes in brain networks between Alzheimer disease and control populations

After recognizing the potential of MultiCens in identifying genes (both protein coding and lncRNAs) in hormone
signaling pathways in health, we employ it to understand the change in the gene-gene network structures in disease,
specifically Alzheimer’s disease (AD) relative to a control (CTL) population. We retrieved data of 264 AD and 372
control human postmortem RNAseq samples from Mount Sinai Brain Bank dataset [35] for four brain regions: frontal
pole (FP), superior temporal gyrus (STG), parahippocampal gyrus (PHG), and inferior frontal gyrus (IFG). We
construct one multilayer network for the AD group of individuals and another for the CTL group, with four layers
in the network representing the four brain regions, and network nodes and edges representing respectively the genes
in these brain regions and gene-gene coexpression relations (after adjusting for covariates; see Methods). We use the
genes involved in synaptic signaling (SSG) in the PHG region as the query set of genes (134 genes), and identify the
disease-driven change in the centrality-based ranking of genes in the remaining three regions. We observed considerable
shift in the ordering of these three brain regions in the AD vs. CTL multilayer networks according to their median gene
centrality scores (see Fig. 5a, STG region’s ordering for instance). In terms of individual genes, ANKFN1, OR10AD1
and PLCD3 gain the highest positive shift in AD-based ranking in the FP, STG and IFG regions respectively. ANKFN1
is found to be upregulated in hippocampus tissues of AD patients [36]. Though OR10AD1 (olfactory receptor family
10 subfamily AD member 1) is not yet connected to AD, olfactory impairments is recently reported to be one of the
early phase’ pathophysiological changes in AD [37]. PLCD3 is known to be upregulated in the AD population along
with other regulators of lipid metabolism [38]. We provide the complete gene rankings of all three regions for AD vs.
CTL networks in Supplementary Dataset SD2.
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Fig. 5: MultiCens on multi-brain-region networks in disease: Study of changes in MultiCens gene rankings of
four-layer networks of control and Alzheimer affected population. We rank genes of frontal pole (FP), superior temporal
gyrus (STG) and inferior frontal gyrus (IFG) using MultiCens centralities calculated using a query-set of synaptic
signaling genes in parahippocampal gyrus (PHG). (a) Bar-plot showing region-wise shift of centrality scores of the
three regions. (b) Reactome pathways and Gene Ontology-based process (GO-BP) enrichment analysis of each region
in control and AD state. Color map represents the normalized enrichment score from WebGestalt. The highlighted
boxes pass the 0.01 FDR cut-off. If centrality-based gene rankings of a region do not pass the 0.05 FDR cut off for an
enrichment, we set the corresponding normalized enrichment score to 0.
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MultiCens also offers an across-region view of gene importance in the AD or CTL multilayer networks. In the
AD network, irrespective of brain regions, genes JMJD6, SLC5A3, CIRBP, TARBP1 and AHSA1 are among the top
ten central genes correlated with the SSG set, of which AHSA1 (activator of HSP90 ATPase activity 1) is already
known to correlated with AD progression by promoting tau fibril formation [39]. On the other hand, CIRBP (cold
inducible RNA binding protein) shields neurons from amyloid toxicity mediated by antioxidative and antiapoptotic
pathways, making it a favourable molecule contending for AD prevention or therapy [40]. It may be worth studying the
other three genes experimentally to test their connections to AD pathology. Similar to these individual genes, certain
biological pathways were also enriched for top ranks, irrespective of the brain region, in the AD network (see Fig. 5b)
– examples include HSP90 chaperone cycle for steroid hormone receptors (R-HSA-3371497) pathway and negative
regulation of nervous system development (GO:0051961). Heat shock protein 90 (Hsp90), "a molecular chaperone",
is known to induce microglial activation leading to amyloid-beta (Aβ) clearance [41]. The across-region consistency
of top-ranking genes/pathways in the AD network is not observed in the CTL multilayer network. For example, gene
CDK5R2 (Cyclin Dependent Kinase 5 Regulatory Subunit 2) is ranked 3rd in FP, rank 224 in STG, and 2076 in
IFG. Pathway enrichments are also more region-specific in the CTL network (relative to AD network; see Fig. 5b),
such as Axon guidance in FP, Cell-cell junction organization in STG, and immune system in IFG. The intricate links
between immune system and neuronal signaling is well-appreciated. Other enrichments that serve as a positive control
to increase confidence in our MultiCens rankings are those of biological processes like ‘regulation of trans-synaptic
signaling’ in FP and STG, and ‘synapse organization’ in IFG.

Finally, to find out whether changes in AD-network is specific to the query pathway or similar across pathways,
we further use plaque-induced genes (PIGs, total 57 genes), prominent in the later phase of AD, as query set in PHG
instead of the SSG set and repeat the same analysis with MultiCens. We found predominant similarities as well as
certain interesting differences in centrality ranks between the two query gene sets. While pathways related to heat
stress was common for both query sets, synaptic signalling related process like “cell-cell junction organization” was
prominent for SSG set and interleukin signaling was exclusively noted for PIG set (see Suppl Figs. S4,S5 and Suppl
Results for a detailed discussion). In aggregate, these results on alterations of brain networks in Alzheimer’s disease
using different query sets show how MultiCens can provide a new network-centric perpsective and related hypotheses
for prioritizing experimental investigations of disease mechanisms.

Discussion

We propose a computational framework for modeling a multi-tissue system as a multilayer network and then introduce
a set of centrality measures MultiCens to capture the influence of a gene at the tissue and across-tissue levels. MultiCens
specifically harnesses the multilayer network structure to decompose the overall centrality of a gene into its local/within-
layer vs. global influences, and further into the gene’s influence on a particular tissue or a query set of genes in that
tissue. Our extensive set of experiments demonstrates the effectiveness of MultiCens on both synthetic and real-
world multilayer networks. For instance, with real-world networks learnt from multi-tissue genomic data, MultiCens
revealed gene mediators of endocrine hormonal signaling between human tissues, which were then validated via overlap
with known hormone-gene relations in HGv1 ground-truth database or in PubMed literature corpus, and via hormonal
disease enrichment analysis. Further, out-of-ground-truth gene predictions supported by PubMed literature corpus can
in turn be used to prioritize annotation and curation efforts of ground-truth databases. Specifically, these MultiCens
predictions can be used to update the current HGv1 database and underlying GO terms with new hormone-producing
or responsive genes. In addition to predicting hormone-gene relations, when applied to a multi-brain-region dataset,
MultiCens can point to specific genes and pathways whose centrality scores change between AD vs. CTL groups. The
novel predictions/hypotheses generated and ranked by MultiCens in both these applications can guide downstream
experiments, and thereby foster the emerging field of studying the whole body at the molecular (gene) yet holistic
(multi-organ/tissue) levels.

MultiCens performance in predicting hormone-gene relations depends on the quality of the underlying network
and that of the query set. Hence, our method would’ve difficulty with networks inferred from multi-tissue datasets
of small sample sizes, and with poorly-studied hormones with very few known gene regulators that could be used as
the query set. We get around the sample size issue by applying MultiCens to data from two tissues at a time (the
source and target tissue of a hormone profiled in GTEx; see Methods), rather than all tissues at once, which suffers
from small sample sizes. To work around the query set issue, we restrict MultiCens predictions to only hormones with
sufficient query genes (i.e., at least 10 hormone-producing or responding genes in the ground-truth database). These
workarounds have enabled MultiCens to systematically identify known as well as novel gene regulators of hormone-
mediated inter-tissue communication. In addition to identifying the involvement of protein-coding genes in inter-tissue
communication, our method recognizes potential lncRNAs that may play a crucial role in hormonal signaling pathways
[42]. The participation of lncRNA genes in tissue-tissue communication was not known until very recently. Based on
our study, experimental studies can be designed to investigate the top-ranked genes to identify their roles in driving
cross-tissue communication.
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The concept of brain gene network structure and its shift in neurodegenerative disease such as AD is emerging
rapidly. MultiCens helps to understand this shift from a new perspective – we specifically observe how the influence of a
given set of genes in a particular brain region on the genes of other brain regions changes in the AD population relative
to the control group. We observe the predominance of heat shock protein related pathway (HSP90 particularly) in AD
gene-gene network both under the influence of synaptic signaling and PIG related gene set. This may be AD specific
change irrespective of region, or may be the result of influence by PHG on AD pathology. Pathways and biological
process specific to network in CTL group are also revealed. Major repositioning of genes is seen between AD and CTL
group, expect for a few genes, particularly RBM3 (RNA Binding Motif Protein 3), which is top ranked gene with
high centrality score (> 0.9) in both conditions, in all three brain regions and in case of both the query sets. RBM3 is
known to maintain neural stem cell self-renewal and neurogenesis [43]. Does it act as a hub gene for networks linked
to PHG, or is an universal hub gene for most of the brain subnetworks? It will be interesting to find the role RBM3
in brain gene-gene network. Results from this study will help to design specific experiments and give us much better
understanding about the brain network structures that are conserved across regions and disease/healthy states, as well
as those that are specific to disease states.

The encouraging results from applying MultiCens to understand hormone-gene signaling network and brain network
rewiring in AD holds promise for future applications. For instance, MultiCens can be used for “Multi-tissue(-network)-
expanded Gene Ontology” analysis of a given set of genes of interest – i.e., computing MultiCens on this query gene set
using the underlying multilayer network and coupling it with enrichment analysis can reveal not only pathways directly
enriched in this query set as is usually done, but also pathways enriched in the (within-/across-tissue) neighborhood of
this query set. MultiCens applications has been human-centric in this study – our preliminary exploration of applying
MultiCens to data from a different species like mouse showed that species-specific tuning of our framework may be
required, and would be in the scope of future work. Further, MultiCens can also be extended to interpret ligand-receptor
interactions. Thus, applicability of MultiCens to study biological systems is manifold.

Beyond the field of biological networks, our measures represent an advance in the overall field of network centrality
as well, since existing measures are primarily based on either direct inter-layer interactions [13], or handle multi-
hop connectivity but fail to distinguish between within- vs. across-layer interactions [12]. MultiCens accounts for
the multilayer multi-hop network connectivity structure of the underlying system. For these reasons and the diverse
applications we’ve demonstrated above, we believe our work on multilayer centrality opens up several future application
areas in the area of multi-organ systems-level modeling.

Methods

Our MultiCens framework: context and rationale

Recently, multilayer network modeling has been used to predict functional categories of proteins in multi-tissue systems
[44], corroborate experiment findings with open access databases [45], determine potential avenues in the advancement
in biomedicine [46], etc. The existing methods of finding multilayer centrality either utilize only the inter-layer degree
of the nodes [13] or do not distinguish between within-layer and across-layer connections [12]. While predicting genes
involved in inter-tissue communication, we need to emphasize the inter-tissue connections, specifically, connections to
hormone-producing or responding tissues/gene-sets. Also, we rely on the hypothesis that hormonal signaling is not
simply caused by merely direct connections between hormone-producing and responding genes; other intermediatory
genes within the same tissue or in other tissues play the part of mediators in carrying these signals. To accommodate
our requirements, we propose a set of centrality measures that can capture the effect of genes at different levels, such
as within the same tissue, across tissues, to a specific tissue, or a query set of genes in a particular tissue. This section
introduces our proposed methods, starting with degree-based centrality scores and a version of well-known PageRank
centrality for multilayer networks, called versatility.

Background and Preliminaries

Multilayer network representation

A multilayer network is represented by G = (V,L, E), where V represent the set of n nodes which is the same across
all layers, L is the set of L number of layers and E represents the set of inter and intra layer edges. The set of nodes
in layer α is represented by V = {vα1 , vα2 , . . . , vαn}. The total number of nodes in the multilayer network is N = n×L.
Following the convention used in ([47,48]), we represent the multilayer network by a supra-adjacency matrix M of
dimension N ×N as,
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M(iα, jβ) =

{
w(iα, jβ) if (vαi , v

β
j ) ∈ E

0 otherwise
(1)

The supra-adjacency matrix can further be decomposed to represent the network with only intra-tissue edges by
A and the network with only inter-tissue edges by C such that,

Ã = A+ C
A[1] C [1,2] C [1,3] . . .

C [2,1] A[2] C [2,3] . . .

C [3,1] C [3,2] A[3] . . .
...

. . . . . . . . .

 =


A[1] 0 0 . . .

0 A[2] 0
. . .

0 0 A[3] . . .
...

. . . . . . . . .

+


0 C [1,2] C [1,3] . . .

C [2,1] 0 C [2,3] . . .

C [3,1] C [3,2] 0
. . .

...
. . . . . . . . .


Degree-based methods

Definition 1 Intra-layer centrality vector of a multilayer network can be computed by the following equation.

degintra = A~1 (2)

Inter-layer degree is a count of the edges that cross the layers. These edges make the backbone of layer-layer commu-
nication. The inter-layer degree can be computed using the C matrix as follows.
Definition 2 Inter-layer centrality vector of a multilayer network can be computed by the following equation.

deginter = C~1 (3)

A more robust way of computing degree-based centrality uses p-values associated with edges instead of weights.
A recent method known as Ssec makes use of this method to find the prominent set of hormones between a pair of
tissues ([13]). Ssec is based only on the inter-layer degree of nodes and is used to find hormonal genes that are strongly
connected in a pair of tissues.
Definition 3 For a given p-value matrix P , the Ssec score can be computed as follows

Ssec = −ln(P )~1 (4)

Recently, degree and connectivity patterns such as shortest paths in multilayer networks are being deployed to complete
private data with the help of open datasets [45]. Apart from degree-based centrality, there are methods such as
PageRank centrality that can capture multihop effects in a network. We will now discuss an existing framework that
extends PageRank centrality to a multilayer network.

Versatility

Domenico et al., in their seminal paper ([12]), described a mathematical framework for centrality computation in
multiplex networks. The proposed approach assigns a ranking to the nodes based on their interconnectedness. By
setting proper weights of the layers (based on the number of nodes/edges), such a ranking method can reveal versatile
nodes in the network. For a user-defined constant p ∈ [0, 1), and N dimensional vector ~1, the versatility vector can be
defined as follows:

Definition 4 Multilayer network PageRank centrality (also known as versatility ([12])) x of a supra-adjacency network
can be defined by the following equation.

x = pMx+
(1− p)
N

~1 (5)

x =
(
I − pM

)−1( (1− p)
N

~1
)

The method itself does not distinguish between the within-layer and cross-layer edges, thus making it unavailing
to distinguish the local vs. global effect of nodes. However, the mathematical formulation of a multilayer network
described in this work can be extended to define the desired centrality measures, as we will discuss in the upcoming
parts. There exist another line of work that focuses on centrality methods for multilayer networks with either no inter
layer connections or restricted between identical nodes [49,50,51,52]. We model our multi-tissue datasets by multilayer
networks with inter layer connections between any pair of nodes.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.15.492007doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.492007
http://creativecommons.org/licenses/by/4.0/


MultiCens: Multilayer network centrality measures to uncover molecular mediators of tissue-tissue communication 13

Our proposed methods - MultiCens measures

In the previous section, we discussed methods based on inter-layer degrees and PageRank. Both these methods have
shown their usefulness in revealing information about the underlying system. However, the multilayer structure of the
network allows us to capture the effect of nodes at multiple levels such as within layer, across the layer, to a target
layer, or a query set of genes in a target layer. The existing methods do not capture these effects and thus are limited
in their usability. Capturing such effects can have immediate applications in several areas, such as systems biology,
where we can identify genes that regulate hormonal communication between two tissues via multiple hops. In order
to capture such effects, we propose the following set of centrality measures, as shown in the Fig. 1.

Local centrality

A node in a layer can affect other nodes in the same layer as well as different layers. In order to capture the within
layer effect of a node, we define the local centrality as follows
Definition 5 Local centrality vector is defined as the following iterative equation

l = pAl +
(1− p)
n

~1 (6)

It can be noticed that the local centrality of a node is defined by using only within-layer connections; thus, it does
not capture any effects beyond the layer where the node is located. Since local centrality considers the effect of only
within-layer connections, the remaining effect is captured by global centrality.

Global centrality

The global centrality of a node is a measure of its influence on all nodes irrespective of their layers. While computing
this centrality score, we use both - within and across tissue connections in the following manner.
Definition 6 For a given local centrality l, global centrality vector in a multi-layer network can be defined by the
following iterative equation

g = p
[(
A+ C

)
g + Cl

]
+

(1− p)
N

~1 (7)

The global centrality of a node can be thought of as seeing an infinite length random walker on that node where at
each step, the random walker can do one of the following.
1. With probability p,

(a) Jump to a neighboring node vn′ in the same layer with probability proportional to the weight of the connection.
(b) Jump to a neighboring node vn′ in a different layer with probability proportional to the weight of the connection

and the local centrality of vn′ .
2. Restart the walk from any node in the network with probability (1− p).
Convergence and Decomposability We now prove the convergence of the proposed centrality measures. The local
centrality measure is similar to the Pagerank centrality and its convergence follows from the Pagerank centrality
convergence itself. Whereas, global centrality has additional terms in the equation and we provide a proof for its
convergence.
Theorem 1 For 0 ≤ p < 1, global centrality, as defined by Equation 7 always converges.

Proof From equation 7,

g = p
[(
A+ C

)
g + Cl

]
+

(1− p)
N

~1

= p

[(
A+ C

)(
p
[(
A+ C

)
g + Cl

]
+

(1− p)
N

~1
)
+ Cl

]
+

(1− p)
N

~1

= p

[
p(A+ C)2g + p(A+ C)Cl + (A+ C)

(1− p)
N

~1 + Cl

]
+

(1− p)
N

...

= pk(A+ C)kg + p
∑
k

pk(A+ C)kCl +
∑
k

pk(A+ C)k
(1− p)
N

~1 +
(1− p)
N

~1
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The first term on the right side converges as k grows larger. The second and third terms give rise to two geometric
series generated by p(A+C). We know that (A+C) is a row stochastic matrix and the product (p(A+C)) can have
maximum eigenvalue, |λ′| < 1. A geometric series generated by a matrix with eigenvalues less than 1 always converges.
This completes the proof.

Kindly refer to the supplementary text for the convergence proofs of the remaining centrality measures defined in this
section.

We define global centrality and local centrality in a way that they add up to the versatility in the multilayer network,
which the following proof can verify.

Theorem 2 Versatility of a multilayer network can be decomposed into local centrality and global centrality with a
scaling factor.

l + g = x

Proof

From equation 6

l = pAl +
(1− p)
n

~1

from equation 7

g = p
[(
A+ C

)
g + Cl

]
+

(1− p)
N

~1

(l + g) = p
[(
A+ C

)
g +

(
A+ C

)
l
]
+ (1− p)( 1

n
+

1

N
)~1

(l + g) = p
[(
A+ C

)(
l + g

)]
+

(L+ 1)(1− p)
N

(
~1
)

(l + g) =
(
I − p

(
A+ C

))−1( (L+ 1)(1− p)
N

~1
)

(l + g) = (L+ 1)
(
I − p

(
Ã
))−1( (1− p)

N
~1
)

(l + g) = (L+ 1)x

Where L is the total number of layers. Since l, g, and x are centrality vectors, they are scale agnostic, so the constant
factor (L+ 1) on the right side of the equation can be ignored. This completes the proof.

In the remaining section, we decompose global centrality into layer-specific centrality and further into query set cen-
trality. The theoretical proofs for the same are given in the supplement section.

Layer-specific centrality

We are interested in finding the effect of node(s) on a specific layer (target layer) in the multilayer network. In doing
so, we define the layer-specific centrality as follows.

Definition 7 For a given l, layer-specific centrality vector in a multi-layer network can be defined by the following
iterative equation

glayer(i) = p
[(
A+ C

)
glayer(i) + C [i]l

]
+

(1− p)
N

~1 (8)

where C [i] represents the matrix C with all but ith column-block entries set to 0.

Theorem 3 For 0 ≤ p < 1, glayer(i) defined by Equation 8 always converges.

Proof Kindly refer to Theorem 3 in the supplementary section.

Theorem 4 Global centrality, as defined in the main text, can be decomposed for each layer being a specific target
layer.

L∑
i=1

glayer(i) = g (9)
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Proof Kindly refer to Theorem 4 in the supplementary section.

Our proposed centrality framework is highly generic, and the definition of centrality can further be customized to
capture the effect of a node on a set of nodes on a specific target layer. We propose another refinement in the
layer-specific centrality by decomposing it into multiple query-node sets in the specific target layer.

Query set centrality

We introduce query-set centrality that can capture the effect of a node on a query set of nodes present in any specific
layer in the multilayer network. We begin by defining local − set centrality, a variation of local centrality which
assigns scores to the nodes in a specific target layer.

Definition 8 For a given set of query nodes set(k), the local-set centrality in a multilayer network can be defined by
the following equation.

lset(k) = pAlset(k) +
(1− p)
n

~1k (10)

Where ~1k represents the vector of 1′s at indices corresponding to the node-set k and 0 otherwise.

Theorem 5 For 0 ≤ p < 1, lset(k) defined by Equation 10 always converges.

Proof Kindly refer to Theorem 5 in the supplementary section.

Theorem 6 Local-set centrality defined by equation 10 can be added for each set k to obtain the local centrality l.

K∑
k=1

lset(k) = l (11)

Proof Kindly refer to Theorem 6 in the supplementary section.

We use this local-set centrality to define query-set centrality as follows.

Definition 9 For a given set of query genes set(k) in a layer i, the query-set centrality in a multilayer network can
be defined by the following equation.

g
set(k)
layer(i) = p

[(
A+ C

)
g
set(k)
layer(i) + C [i]lset(k)

]
+

(1− p)
N

~1k (12)

The query-set centrality is defined in order to capture the effect of nodes on a query set of genes in a specific target
layer. As shown in Fig. 1, our centrality equations are based on the principle of decomposability.

Theorem 7 For 0 ≤ p < 1, gset(k)layer(i) defined by Equation 12 always converges.

Proof Kindly refer to Theorem 7 in the supplementary section.

Theorem 8 Layer-specific centrality defined by equation 8 can be decomposed into query-set centrality defined over
collectively exhaustive subsets of nodes. ∑

k

g
set(k)
layer(i) = glayer(i) (13)

Proof Kindly refer to Theorem 8 in the supplementary section.

We restrict our experiments to multilayer networks of only two tissues at once. Having more tissues leaves us with
a tiny number of common samples, resulting in a dubious network structure. Our centrality method is designed to
handle multiple tissues at once, as we will discuss these experiments in the later section.
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Synthetic multilayer networks

To understand the working of our MultiCens measures, we generate an extensive set of synthetic multilayer networks.
As shown in Fig. 2, we begin with a two-layered multilayer network where each layer has 500 nodes. Following the
popular ER-random graph generation model [53], we consider all possible pairs of nodes (within and across layer) and
put an edge with probability p = 0.05. This multilayer network is called the base network, and we mark 50 nodes in
layer two as the query set. On top of the base network, we add additional edges among the nodes in the query set
by another ER-based process of adding random edges. To add these additional edges, we vary this additional edge
probability p (called connection strength) from p = 0.05 to p = 1 at steps of 0.05, and obtain a network structure at
each step. If a node pair, say (i, j), gets connected in the base network and gets another edge while adding additional
edges, we assign weight of two units to the original edge. Similarly, in the first layer, we mark a community of 50
nodes directly connected to the query-set, and call it source set 1. Another community of 50 nodes, source set 2,
is connected to source set 1. The connection strength within these two communities and between source set 1 and
source set 2, and between source set 1 and query set is varied from 0.05 to 1. In our hormonal signaling example,
query-set can be thought of as a set of genes that respond to a hormone, say insulin in skeletal muscle tissue. Source
set 1 and source set 2 can be considered as genes in the pancreas tissue that interact with the query set either by
direct or two-hop long dense connections. Since the tissues will have multiple other clusters of genes that are not in
the proximity of insulin-related genes, we mark three such communities of 50 nodes each. Connection strength within
these three communities and across them is also varied.

In this synthetic multilayer network structure, our goal is to understand whether genes from source set 1 (direct
connections) and source set 2 (two-hop connections) get top centrality-based ranks for a given query set, across different
values of connection strength.

Real-world Application I: Hormone-related multilayer data, networks, and gene ranking evaluations

Hormone-related multi-tissue data

We work with human multi-tissue datasets and use the following resources.

1. GTEx.v8 Single-Tissue cis-QTL Data [5]1: This data is a result of the Genotype-Tissue Expression (GTEx) project.
The dataset contains gene expression profiles of hundreds of individuals from over 30 tissues. The dataset is pre-
processed to account for some known as well as derived covariates2.

2. Stanford Biomedical Network Dataset Collection [15]3: This dataset provides a tissue-specific protein-protein edge
list for humans. The data is derived from a global protein-protein network. In the global interactions, if a pair
of proteins is tissue-specific or if one protein is tissue-specific and the other protein is ubiquitous, then the tissue
information is associated with the interaction, and hence the tissue-specific networks are obtained. Physical protein-
protein interactions experimentally support the edges in the networks.

We retrieve the hormone-producing and responding gene sets from HGv1 database [16]4. In HGv1, the source and
target genes of hormones are first retrieved in a tissue-agnostic manner, and then through biomedical literature mining
source and target tissues of a given hormone is designated. We treat these hormone producing and responding gene
sets as the ground truth genes for hormonal signaling.

Hormone-related network construction

Gene coexpression networks are known to capture the patterns of underlying gene expression data that can reveal
important biological biomarkers, functional associations between different genes, etc. In human experiments, we make
use of the GTEx.v8 Single-Tissue cis-QTL data and compute Spearman correlation to find the correlation coefficients
between all gene pairs (within and across tissue) and use it as an edge weight (absolute value) to signify the strength
of interactions. In order to avoid the blowup in the size of the multilayer network, we only use the top 10k varying
genes in each tissue and take the union of these genes while constructing the multilayer network.

1 File “GTEx_Analysis_v8_eQTL_expression_matrices.tar" accessed from “https://gtexportal.org/home/datasets" on Sep
25, 2020.

2 List of covariates in file “GTEx_Analysis_v8_eQTL_covariates.tar.gz" accessed from
“https://gtexportal.org/home/datasets" on Sep 25, 2020.

3 File “PPT-Ohmnet_tissues-combined.edgelist" accessed from “https://snap.stanford.edu/biodata/datasets/10013/10013-
PPT-Ohmnet.html" on Sep 25, 2020.

4 Files accessed from “https://cross-tissue-signaling.herokuapp.com/" on Jan 10, 2021.
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We also use the protein-protein interaction data as described earlier, in addition to using a gene coexpression
network. For every gene-gene pair, if it is present in the protein interaction data, we increase its weight by 1 unit
(adding edge weights) and work with the resultant network. In this paper and its supplementary text, we report results
on this resultant network unless mentioned otherwise.

In GTEx dataset, combining multiple tissues in a network leads to fewer common samples and, hence, a less robust
network; we restrict these experiments to multilayer networks only with two tissues (the predominant source and
target tissue for a hormone; so these multilayer networks we construct and analyze are hormone-specific). However,
our network generation mechanism as well as the MultiCens framework to compute centrality can be readily used for
any number of tissues, as we illustrate in the Alzheimer’s brain network application with four brain regions/tissues.

Evaluation of hormone-gene predictions

In one of MultiCens’ applications, we use hormone-producing set as the query-set of genes and rank all genes in the
target tissue to predict the hormone-responsive set; this process is repeated vice versa to predict hormone-producing
genes from an input query set of hormone-responsive genes. We use the HGv1 database [16] as ground truth and validate
our gene rankings against it. We also perform disease enrichment analysis to find that whether our centrality-based
gene rankings are enriched for hormone-related diseases using WebGestalt5. To obtain the enriched set of diseases for
human gene rankings, we use the WebGestalt portal and select "Homo sapiens" as the Organism of Interest. Method
of interest and Functional Database are set to Gene Set Enrichment Analysis (GSEA) and disease, respectively. We
select OMIM functional database and set the significance level to 0.05 FDR. We give the gene symbols, and their
corresponding centrality scores as input, and the portal returns the set of diseases enriched at the given FDR cut-off.
The gene symbols and their corresponding centrality scores are shared in the supplementary file SD1.

From the gene rankings obtained using our centrality measure, we find the support for top protein-coding genes
based on co-occurrence with hormone-related terms in the PubMed corpus6. More information about these evaluation
approaches are given below.

1. Recall-at-k plot: This plot can be used to validate the results visually. Both in synthetic as well as real-world
datasets, we have a set of ground truth genes that we expect to come at the top as per their centrality scores. This
can be verified by visualizing recall-at-k plots where the x-axis reports the top k predictions and the y-axis marks
the number of hits from the ground truth at any given k.

2. Area under recall-at-k curve: Higher recall-at-k curve implies the better performance of a method. One way to
quantify it is by calculating the area under it. We normalize the maximum possible area under recall-at-k curve to
be 1 and report the area obtained by curves corresponding to the proposed method.

3. Support from literature: The evaluation metrics discussed above require the ground truth for evaluation. Many
times, especially in biology, it is tough to have access to the complete ground set of hormone-producing/responding
genes. Continuous research like this study pushes our knowledge boundaries, and we get access to more reliable and
more complete ground truth datasets. In order to validate the novel findings, we rely on support from literature
and use the following two metrics.
(a) Co-occurrence in the PubMed database: We use articles present in the PubMed data and find the support

for predicted genes. The support is calculated as an overlap between the gene name and the hormone/disease
name. The support is calculated using the following formula.

Support =
H ∩G
H

number of articles on PubMed ×G

Where H and G denote the number of articles that mention the hormone name and gene name, respectively,
and H ∩G denote the number of articles that contain both the hormone name and gene name. While finding
support for the gene-disease association, we use articles that contain the disease name instead of hormone name.
We use 27 million as the number of articles present in the PubMed database.

(b) Cosine similarity in the embedding space: We find cosine similarity between the embedding vector of a gene
symbol and that of a hormone or disease name. Since cosine similarity can range between -1 and 1, a positive
number indicates that the gene-hormone or gene-disease association is supported in the embedded space. Our
embeddings (also called as word embeddings or embedding vectors) are from BioWordVec7, a deep learning
model pretrained on the PubMed corpus [25].

5 Tool http://webgestalt.org/ accessed on Aug 5, 2021.
6 Data accessed from “https://pubmed.ncbi.nlm.nih.gov/" on Aug 1, 2021.
7 BioWordVec model/embeddings are downloaded from https://github.com/ncbi-nlp/BioSentVec.
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Both these metrics use articles present in the PubMed database, but they differ because the co-occurrence is
based solely on the presence of two terms in an article, whereas the second metric also captures the contextual
dependencies in the embedding space.
Our PubMed literature analysis focuses only on the peptide hormones insulin and somatotropin (out of all the four
primary hormones considered), since we wanted to apply an informative filter to inspect predictions that are only
among genes involved in peptide secretion8. This filter was inspired by a similar filter applied in an earlier study
on endocrine interactions [13].

Real-world Application II: Alzheimer’s vs. Control multilayer data, networks, and rankings

Multi-brain-region data - preprocessing and correction

The covariate-adjusted transcriptomic (RNA-sequencing) data with the following synapse ids - syn16795931 – Brod-
mann Area (BM10) – frontal pole (FP), syn16795934 - BM22 - superior temporal gyrus (STG), syn16795937 -
BM36 - parahippocampal gyrus (PHG), syn16795940 – BM44 - inferior frontal gyrus (IFG), were downloaded from
AD Knowledge Portal – The Mount Sinai/JJ Peters VA Medical Center Brain Bank cohort (MSBB) study [35]
(10.7303/syn3159438). The preprocessed data is corrected for library size differences using the trimmed mean of M-
values normalization (TMM method – edge R package) and linearly corrected for sex, race, age, RIN (RNA Integration
Number), PMI (Post-Mortem Interval), sequencing batch, exonic rate and rRNA (ribosomal RNA) rate. The normal-
ization procedure was performed on the concatenated data from all four brain regions to avoid any artificial regional
difference as before [35].

The clinical (MSBB_clinical.csv) and experimental metadata (MSBB_RNAseq_covariates_November2018Update.csv)
files available on the portal are used to classify the samples into control (CTL) and Alzheimer’s disease (AD) based
on CERAD score (Consortium to Establish a Registry for AD). CERAD score 1 was used to define CTL samples, and
2 (’Definite AD’) was used for defining AD samples [35]. Probable AD (CERAD = 3) and Possible AD (CERAD =
4) samples were not considered for this study.

To mitigate the confounding effect of cellular composition on gene-gene coexpression relations, we corrected (lin-
early adjusted) the RNAseq gene expression data for cell type frequencies of four major brain cell types: astrocytes,
microglia, neuron, and oligodendrocytes. We estimated these cell type frequencies in each brain region/tissue sepa-
rately from the bulk tissue expression of the marker genes of these cell types using a cellular deconvolution method
called CellCODE (Cell-type Computational Differential Estimation) [54]. Specifically, we used the getAllSPVs function
from the CellCODE, and provided its input arguments to select robust marker genes that do not change between AD
vs. CTL groups (specified via the mix.par argument set at 0.3) from a starting set of 80 marker genes (top 20 per cell
type, obtained from the BRETIGEA (BRain cEll Type specIfic Gene Expression Analysis) meta-analysis study [55].

Network construction and enrichment analysis of gene rankings

AD and CTL networks are separately constructed as before by computing the Spearman correlation between all pairs
of genes in the four brain regions and taking absolute value of these correlations as the edge weights. To make the
analysis computationally tractable, we restrict our focus to a subset of genes as follows - identify the 9000 most varying
genes in each region for both AD and CTL populations, and then consider the union of all these gene sets as the final
set of nodes in each layer of the multilayer network.

MultiCens scores are then calculated for all the nodes in the AD or CTL multilayer networks to obtain gene
rankings, which were then subjected to enrichment analysis with WebGestalt as described before. Additionally, we
applied redundancy reduction methods (affinity propagation and weighted set cover) and selected the significantly
enriched terms, which passed both the methods. We use the centrality score of each of the three brain regions other
than the query brain region to find the significantly enriched terms considering both Reactome pathways and Gene
Ontology based Biological Process (GO-BP).

Code and Data Availability

The code that implements both network construction and MultiCens measures is available here: https://github.
com/BIRDSgroup/MultiCens.

8 List of genes involved in peptide secretion accessed from this URL- www.ebi.ac.uk/QuickGO/GTerm?id=GO:0002790 on
Dec 1, 2020
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