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Abstract  16 
Adaptive introgression (AI) facilitates local adaptation in a wide range of species. Many state-of-17 
the-art methods detect AI with ad-hoc approaches that identify summary statistic outliers or 18 
intersect scans for positive selection with scans for introgressed genomic regions. Although widely 19 
used, these outlier-based approaches are vulnerable to a high false-negative rate as the power 20 
of different methods vary, especially for complex introgression events. Moreover, population 21 
genetic processes unrelated to AI, such as background selection or heterosis, may create similar 22 
genomic signals as AI, compromising the reliability of methods that rely on neutral null 23 
distributions. In recent years, machine learning (ML) methods have been increasingly applied to 24 
population genetic questions. Here, we present an ML-based method called MaLAdapt for 25 
identifying AI loci from genome-wide sequencing data. Using an Extra-Trees Classifier algorithm, 26 
our method combines information from a large number of biologically meaningful summary 27 
statistics to capture a powerful composite signature of AI across the genome. In contrast to 28 
existing methods, MaLAdapt is especially well-powered to detect AI with mild beneficial effects, 29 
including selection on standing archaic variation, and is robust to non-AI selection sweeps, 30 
heterosis, and demographic misspecifications. Further, MaLAdapt outperforms existing methods 31 
for detecting AI based on the analysis of simulated data and on a validation of empirical signals 32 
through visual impaction of haplotype patterns. We apply MaLAdapt to the 1000 Genomes Project 33 
human genomic data, and discover novel AI candidate regions in non-African populations, 34 
including genes that are enriched in functionally important biological pathways regulating 35 
metabolism and immune responses.  36 
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Introduction 37 
The discovery of archaic hominins, such as the Neanderthals in Western Eurasia and the 38 
mysterious Denisovans in Asia and Oceania1,2,11–14,3–10, is one of the most important scientific 39 
findings in human evolution over the last century. The high-quality ancient genomes from both 40 
Neanderthals and Denisovans2,3,5 further revealed that our ancestors not only overlapped with the 41 
archaic hominins in space and time during Out-of-Africa migrations, but also interbred with them, 42 
through a process known as archaic introgression. Subsequent work has shown the genomic 43 
variants from the archaic hominins played a key role in shaping the phenotypic and genotypic 44 
landscapes observed in modern humans10,15–18, including through adaptive introgression. 45 
Adaptive introgression refers to a process by which adaptation occurs via genetic variants that 46 
were introgressed into the modern population from the archaic population19–21. Currently, there is 47 
evidence of adaptive introgression in modern humans from both Neanderthals and Denisovans 48 
in worldwide populations7,17,19,22–27, including but not limited to the adaptation to UV 49 
radiation16,22,23,28,29, cold climate29,30, infectious diseases11,31,32, and high altitude environments33–50 
38. Outside of modern humans, adaptive introgression also has been observed in a large range of 51 
organisms, including plants (maize, Arabidopsis), invertebrates (Drosophila, butterfly), and 52 
vertebrates(mice, fish) 21,39–41.  53 
 54 
The traditional methodology to detect adaptive introgression typically relies on the “outlier 55 
approach”. Current implementations typically take on one of two flavors. The most commonly 56 
used method is to infer genome-wide signals of positive selection and introgressed ancestry 57 
separately, and then classify regions that are outliers for both attributes as targets of adaptive 58 
introgression7,15–17,19,22–24. Alternatively, one can use standalone summary statistics that capture 59 
signature of adaptive introgression 1,19,42,43. If a genomic region is an outlier to one or two of such 60 
signature statistics, it would be identified as an adaptive introgression candidate region.  61 
 62 
Despite their wide use, both implementations of outlier approaches suffer from a series of issues 63 
that compromise power and precision. For the methods that intersect outliers from different 64 
methods, because methods to detect positive selection and archaic ancestry vary in power and 65 
have different error rates, intersecting outlier signals from these two signals can lead to a high 66 
false negative rate. This may particularly be an issue for the inference of archaic AI in modern 67 
humans, as the methods for detecting positive selection are generally more powerful at detecting 68 
recent sweep events, whereas archaic introgression occurred over more ancient time scales. The 69 
standalone statistics, on the other hand, are particularly prone to high false positive rates due to 70 
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non-adaptive mechanisms compromising the null distributions for adaptive introgression 44–46. For 71 
example, recessive deleterious variants may accumulate privately in isolated populations. Once 72 
admixture occurs, their fitness effects become masked in hybrid individuals, leading to a heterosis 73 
effect, where introgressed ancestry increases in frequency in the absence of positive selection. 74 
Previous works45,46 suggest that the false positives may particularly be magnified in genomic 75 
regions with high exon density and low recombination rate, due to the elevated levels of recessive 76 
deleterious mutations leading to heterosis effects in such regions upon introgression. 77 
 78 
In addition to challenges related to the population genetic signals of AI, genome-wide scans for 79 
selection face several statistical challenges as well. One major challenge with developing 80 
genome-wide inference tools is that the genomic regions containing the signature of interest 81 
typically represent a small proportion of the genome, compared to the proportion of genomic 82 
regions not containing the signatures. Therefore, the highly imbalanced ratio of a few true 83 
positives in a background of true negatives can easily lead to a high false discovery rate due to 84 
multiple testing47,48, even if a method has high power and a nominally low false-positive rate. In 85 
addition, genome-wide inference methods to detect selection often have low power due to the 86 
presence of various confounding factors, combined with the fact that most of the signatures are 87 
mild and hard to be distinguished from the genomic background.  88 
 89 
With the rapid emergence of genomic data, machine learning (ML) and deep learning-based 90 
methods have recently been increasingly applied to the study of population genomics49. 91 
Compared to traditional model-based methods, ML algorithms show great promise at overcoming 92 
the restrictions of traditional statistical methods. Specifically, ML methods can have high power 93 
to detect mild signals, high precision at distinguishing confounding mechanisms, and easier 94 
implementation of realistic, complex models. In population genetics studies, recent applications 95 
of ML include the inference of selective sweeps49–52, archaic ancestry22,53,54, population 96 
demographic models55,56 and recombination rates57,58. For the detection of adaptive introgression, 97 
however, the application of ML is still in its infancy. So far, only one study59 has presented a deep 98 
learning method called genomatnn. This method is trained using genomic haplotype images, 99 
which shows high accuracy, but is computationally expensive. Furthermore, a key challenge for 100 
ML and deep learning methods is that the underlying model is unknown, therefore the 101 
deterministic mechanism for the trained model remains a black box. Here we address this issue 102 
by using biologically meaningful features in the model, and use decision tree-based algorithm so 103 
that the importance of all features in making predictions can be retrieved. 104 
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 105 
Here, we present MaLAdapt, a novel ML-based method for detecting genome-wide adaptive 106 
introgression in modern humans. MaLAdapt is trained using the pattern of functional elements in 107 
the human genome60,61, and modern Eurasian demographic history including single pulse of 108 
archaic introgression2,62. MaLAdapt utilizes a decision tree-based model called 109 
ExtraTreeClassifiers (ETC)63 as its main algorithm, and shows high power and high precision at 110 
detecting adaptive introgression signals at 50kb-resolution across the whole genome. MaLAdapt 111 
infers AI signature through a large composite of biologically meaningful population genetic 112 
statistics, which addresses a key challenge that it is hard to get mechanistic insights from ML/deep 113 
learning predictions. MaLAdapt outperforms existing methods for detecting adaptive introgression, 114 
especially given highly imbalanced class ratios, and its performance is robust to demographic 115 
misspecifications and other confounding mechanisms such as recessive deleterious mutations 116 
and positive selection unrelated to introgression. By applying MaLAdapt to empirical human 117 
genetic variation data from the 1000 Genomes Project64, we discover targets of adaptive 118 
introgression candidate regions in all non-African human populations by both Neanderthals and 119 
Denisovans that were previously undetected. We additionally present a pre-trained version of 120 
MaLAdapt optimized for modern human applications, as well as the simulation and machine 121 
learning pipeline scripts that enable the application of MaLAdapt in non-human organisms with 122 
different genomic structures and demographic histories. 123 
 124 
Results 125 
Overview of MaLAdapt 126 
MaLAdapt is a supervised Machine Learning method for detecting genome-wide Adaptive 127 
Introgression, currently optimized at detecting adaptive introgression from archaic hominins in 128 
non-African modern human populations (Figure 1). The goal of MaLAdapt is to predict whether 129 
an adaptive introgression has occurred in a given 50kb genomic window. Essentially, this is a 130 
binary classification problem, where each window can be classified as “AI” vs. “non-AI”. The 131 
window-length was chosen to capture the mean length of archaic introgressed haplotypes in 132 
humans (>44kb)3 (see Methods). The underlying machine learning model for MaLAdapt is a 133 
decision tree-based algorithm called the Extra-Tree Classifier (ETC)63, which creates a 134 
hierarchical structure of numerous randomized decision trees that each takes a subset of features 135 
computed per 50kb window. The model further implements a meta estimator that fits the joint 136 
prediction of all decision trees. MaLAdapt relies on the genomic sequence and knowledge of the 137 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.491756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491756
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

demographic history of a donor population, a putatively non-introgressed outgroup population, 138 
and a recipient population that experienced introgression from the donor population.  139 
 140 
The ETC model is trained using labeled simulation data obtained from forward-in-time simulations 141 
in SLiM65 of 5MB genomic segments with genic structure and recombination rates sampled from 142 
the empirical human genome, under a modern Eurasian demographic model that experienced a 143 
single pulse of archaic introgression. In each simulation, an adaptive mutation with a selection 144 
coefficient drawn from a prior distribution arises and becomes fixed in the archaic population prior 145 
to introgression, and become adaptive in the recipient Eurasian population. We vary the number 146 
of generations after the introgression (See Methods, Figure 2, and Supplementary Table 1).  147 
 148 
Features or summary statistics are computed in 50kb sliding windows across the 5MB region. 149 
Therefore, each genomic variant is predicted five times in sliding windows. Further, given that 150 
only 5 of such 50kb-sliding windows would encompass the beneficial mutation, the ratio between 151 
“AI” window and “non-AI” window across a 5MB segment is approximately 1:100. The simulation 152 
data is further divided into training and testing datasets. Some simulations with positive selection 153 
not related to adaptive introgression were simulated under the same demography with its data 154 
included as “non-AI” labels in the training data. The trained model is evaluated for its performance 155 
by comparing against other ML algorithms and existing adaptive introgression signature statistics 156 
and methods. The finalized model is then used to predict adaptive introgression on all autosomes 157 
in 19 non-African populations from the 1000 Genomes project dataset64. 158 

 159 
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Figure 1: Schematic overview of MaLAdapt workflow 160 
To train MaLAdapt, we simulate 1000 randomly sampled genomic segments of 5MB length with 161 
realistic genic structure, recombination rates and distribution of deleterious mutations under a 162 
modern human demography with archaic adaptive introgression (AI). We extract summary 163 
statistics in sliding 50kb-windows as features, and train a hierarchical decision tree algorithm 164 
(ERC) with data labeled with binary AI and non-AI classes. After a comprehensive model 165 
optimization, testing, and feature selection, we apply the trained model to empirical modern 166 
human genomics data to predict AI candidates. 167 
 168 
MaLAdapt accurately detects adaptive introgression 169 
We first test the accuracy of MaLAdapt on simulated full-5MB genomic segments under the same 170 
demography as the training data (Figure 2). Here the class ratio between non-AI and AI used for 171 
prediction, reflects the true class ratio used to simulate the test data (~1:100). The class ratio 172 
refers to the proportion of sliding 50kb windows with and without the introgressed beneficial allele. 173 
MaLAdapt predicts adaptive introgression (AI vs. non-AI) in each 50kb window and returns a 174 
prediction probability. We define true or false positive as whether MaLAdapt predicts AI in a given 175 
50kb window that contains the beneficial mutation. The prediction probabilities are further 176 
summarized by probability thresholds and we compute Receiver Operator Characteristic (ROC) 177 
and Precision-Recall curves (Figure 3), in which we visualize the True Positive Rate (TPR), False 178 
Positive Rate (FPR), Precision (equivalent to 1-False Discovery Rate [FDR]), and recall 179 
(equivalent to TPR) at varying thresholds. Figure 3, shows two curves for MaLAdapt in red and 180 
blue colors, which represent the accuracy of MaLAdapt at detecting adaptive introgression (AI) 181 
and non-adaptive introgression (non-AI), respectively.  182 
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 183 
Figure 2: Simulation demography in MaLAdapt 184 

We simulated an ancestral human population that diverged into an archaic human population and 185 
ancestral African population. The latter population subsequently split into an Eurasian population 186 
experienced two bottleneck events, representing Out-of-Africa migrations and European-Asian 187 
split, followed by an exponential growth. Sometime between the two bottleneck events, the 188 
Eurasian population experienced a single pulse of archaic introgression at a varying time and 189 
amount, which introduced a mutation that later became beneficial in the Eurasian population. See 190 
Supplementary Table 1 for the full range of simulation parameters. 191 

 192 
Figure 3: Accuracy of MaLAdapt and comparison to related methods 193 
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To assess the MaLAdapt performance and accuracy, we plot Receiver Operator Characteristic 194 
(ROC, left panel) and Precision-Recall (PR, right panel) curves for the prediction probabilities of 195 
MaLAdapt AI class (red solid), non-AI class (blue solid), and other AI signature statistics including 196 
RD (green dotted), Q95 (turquoise dotted), U20 (pink dotted), U50 (yellow dotted), genomatnn 197 
(black dotted), and VolcanoFinder (gray dotted) on the same testing data obtained from Figure 2 198 
demography. The red circle corresponds to MaLAdapt AI prediction threshold of 0.9. 199 
 200 
We compare the accuracy of MaLAdapt to other state-of-the-art methods for detecting adaptive 201 
introgression by applying all methods to the same testing dataset we obtained from the three-202 
population archaic adaptive introgression model (different from the training data). MaLAdapt 203 
outperforms all other methods. Across all prediction probability thresholds, MaLAdapt has the 204 
highest power while maintaining the highest precision and the lowest false positive rate compared 205 
to all other methods under comparison, including the RD, Q95, U20, and U50 summary statistics19, 206 
genomatnn59 - a deep learning-based method for detecting AI leveraging haplotype structure 207 
information, and VolcanoFinder66 a reference-free method for predicting AI using genomic 208 
polymorphic data (Figure 3, Supplementary Table 5). We reject the null hypothesis that the 209 
difference in AUROC between MaLAdapt (when predicting AI) and Q95 - the second best-210 
performing method – is zero with a p-value < 2.2e-16 via jackknife, and reject the null hypothesis 211 
that the difference in AUPR between MaLAdapt and Q95 is zero with a p-value=1.438e-7 via 212 
jackknife67. Thus, we can conclude that MaLAdapt’s improvement of power and precision over 213 
other methods is statistically significant. We note a substantial reduction of accuracy in both 214 
VolcanoFinder and genomatnn, compared to their respective originally reports. However, there 215 
are several key differences between genomatnn, VolcanoFinder and MaLAdapt that may explain 216 
the reduced performance of this method on our simulation data, including the complexity of 217 
underlying models considered by different methods (See Discussion).  218 
 219 
We weigh both the ROC and Precision-Recall curve to determine a prediction probability 220 
threshold for calling AI segments that maximizes the power and precision of MaLAdapt. We show 221 
in Figure 3 that at Pr(AI) = 0.9 (i.e. Pr (non-AI) = 0.1), the precision of MaLAdapt is 0.683 (FDR = 222 
0.317), with a recall (TPR) of 0.410, and FPR at 0.001. At this threshold, MaLAdapt outperforms 223 
all other related methods, especially in the precision-recall curve, showing MaLAdapt’s 224 
outstanding ability to account for the highly imbalanced ratio between AI and non-AI classes. This 225 
is important because the class ratio is likely to be even more skewed in the human genome. Pr 226 
(non-AI) = 0.1 can also be justified as a multiple testing problem: in sliding 50kb windows, each 227 
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locus is scanned 5 times, and a significant value for a window being AI (i.e. not being non-AI) 228 
should be the default probability threshold, which is 0.5, divided by 5.  229 
 230 
MaLAdapt is robust to misspecification of the demographic model 231 
Next, we assessed the sensitivity of MaLAdapt to uncertainty and mis-specification of the 232 
demographic parameters. In the training process, most parameters related to adaptive 233 
introgression, including the time of introgression (Tadm), the time of selection (Tsel), selection 234 
coefficient (s), introgression amount (m), are simulated as variables drawn from uniform 235 
distributions (see Method section). Additionally, we simulated 1000 randomly sampled genomic 236 
segments of 5MB to represent the genic structure and recombination rate distribution on the 237 
empirical human genome. The rest of the demography uses a model based on the evolution of 238 
modern Eurasians62 with a pulse of archaic introgression2.  239 
 240 
To determine the robustness of MaLAdapt to model misspecifications, we perturb the key 241 
adaptive introgression-related parameters one at a time, and with each alternative parameter, we 242 
simulate adaptive introgression of 5MB genomic segments (100 replicates per parameter) as new 243 
testing dataset, and apply MaLAdapt trained on the original model to the new testing data and 244 
evaluate its accuracy. Specifically, we ask how MaLAdapt performs when: 1) Tsel is 200 245 
generations lower than the original lower bound of Tsel distribution (410 generations ago; denoted 246 
as “Tsel_low”); 2) The introgression fraction (m) is 2-fold lower than the original lower bound (at 247 
0.5%; denoted as “m_low”); 3) The introgression fraction (m) is 2-fold higher than the original 248 
upper bound (at 20%; denoted as “m_high”); 4) the selection coefficient (s) is 10-fold higher than 249 
the original upper bound (0.1; denoted as s_high); 4) the genomic segments sampled for 250 
generating testing data are different from the ones used in the training process (denoted as 251 
“segment”); and 5) the Eurasian population growth rate and Out-of-Africa bottleneck size are 252 
different than the training simulations (denoted as “demo”). We did not explore the selection 253 
coefficient (s) being smaller than the original lower bound (1e-4) because with such weak 254 
selection, it would be difficult to generate AI simulations without the beneficial mutation being lost 255 
in the recipient population. We also did not perturb the time of introgression (Tadm) because the 256 
range of Tadm is bounded by the split time between Eurasians and ancestral Africans, as well as 257 
the split time between Europeans and Asians.  258 
 259 
In addition to Precision, Recall (TPR), and FPR, we also computed the F1 score as an accuracy 260 
metric. F1 is defined as the weighted average between Precision and Recall (Methods). We 261 
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evaluate the performance of MaLAdapt at the 5 alternative parameter combinations listed above 262 
by computing the Log10 fold change of each accuracy metric when comparing against values 263 
obtained from using the original testing data (Figure 4a-b). We find that MaLAdapt remains robust, 264 
even when most AI-related parameters are mis-specified. Especially noteworthy, the precision of 265 
AI detection was not compromised, and even increased slightly, when the selection time is low, 266 
representing selection on standing archaic variation in very recent times (<610 267 
generations/15,000 years ago).68–70 Further, performance remained high when the introgression 268 
amount is low, representing a low initial frequency of archaic variants. These observations, 269 
together with the training of MaLAdapt accounting for extremely low strength of positive selection, 270 
show that MaLAdapt is particularly powerful and reliable at detecting mild, incomplete adaptive 271 
introgression sweeps. MaLAdapt also shows little to moderate precision loss when the 272 
demography of the recipient population changes, as well as when the testing genomic segments 273 
are different from the training segments.  274 
 275 
There are two parameters that, when mis-specified, reduce the precision of MaLAdapt by more 276 
than 30%. These include large selection coefficients (s = 0.1, 10-fold larger than in simulations) 277 
and high introgression fraction (m = 20%, two-fold higher than in simulations). Strong positive 278 
selection (s_high) led to a loss in precision since although both FPR and TPR increased under 279 
this scenario, it inflated FPR more than it did to TPR, where a high FPR is potentially caused by 280 
falsely classifying windows nearby strong positive selection focal windows as AI. A high amount 281 
of introgression, which can be interpreted as either a significant amount of single pulse or a 282 
combination of multiple pulses, reduces precision because it increases the FPR more than it does 283 
the TPR. Promisingly, the weighted average of precision and recall, which is measured by F1, 284 
changes little with regards to any of the alternative parameters, indicating MaLAdapt’s robust 285 
performance at model misspecification especially with highly imbalanced class ratios. 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
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(a) 296 

 297 
(b)  298 

 299 
Figure 4: MaLAdapt is robust to demographic misspecification 300 
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We evaluated MaLAdapt’s robustness by applying the model to different sets of testing data with 301 
out-of-bound values of key demographic parameters compared to the training data. We compute 302 
the performance metrics (including Precision, Recall, False Positive Rate and F1 score) and 303 
compare them against the original data (gray dotted line) under each testing scenario. Panel (a) 304 
shows the log of the value difference (testing scenario minus the original), in which a longer bar 305 
indicates a higher fold change for the given metric, and the sign of the bar indicates whether the 306 
testing metric value increases (positive) or decreases (negative). Panel (b) shows the absolute 307 
value of the performance metric under each testing scenario.  308 
 309 
Additionally, we assess the ability of MaLAdapt to distinguish adaptive introgression from positive 310 
selection unrelated to adaptive introgression. We simulated non-introgressed positive selection 311 
scenarios using 1000 genomic segments that were different from those used in the training data, 312 
with the rest of the demography and parameter distributions the same as the training data. We 313 
show in a confusion matrix (Supplementary Table 4) that MaLAdapt correctly assigned non-314 
introgressed sweeps (to “non-AI” class) at 99.87% of the time, in contrast to “AI” class at 0.13%  315 
 316 
MaLAdapt reveals novel adaptive introgression targets in worldwide population from 317 
Neanderthals and Denisovans 318 
We computed features in 50kb sliding windows across the genome using Neanderthals (Altai 319 
individual) and Denisovan (Altai Denisovan) as reference genomes respectively, and predicted AI 320 
from Neanderthals and Denisovans in 19 non-African populations from the 1000 Genomes 321 
Project64. In all comparisons, we use the Yorubans (YRI) as the non-introgressed outgroup. We 322 
intersected the 50kb windows predicted as AI with GENCODE database to get lists of genes 323 
overlapping with the regions, and we merged overlapping AI windows. Here we show Neanderthal 324 
AI in Europeans (CEU) as an example in the main text, and the information on Neanderthal AI in 325 
other populations as well as Denisovan AIs can be found in the Supplementary Figure 16-17 and 326 
Supplementary Table 5-6. By summarizing previously reported Neanderthal AI candidates from 327 
relevant studies, and intersecting the findings from MaLAdapt, we report novel Neanderthal AI 328 
candidates in all non-African populations, highlighted in the Manhattan plots (Figure 5). 329 
 330 
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 331 
Figure 5. Adaptive Introgression from Neanderthals in European population (CEU) 332 

We applied MaLAdapt to predict AI in overlapping 50kb windows (step size 10kb) along the 333 
genome of non-African populations of the 1000 Genomes data. Here we show the AI prediction 334 
results of the European population (CEU), using African (YRI) as non-introgressed outgroup and 335 
Altai Neanderthal as the introgression donor. The Y-axis shows the AI prediction score, which 336 
equals the -Log10 transformed value of [1-Pr(AI)]. Each dot in the plot represents a 50kb window. 337 
The windows that did not reach the MaLAdapt AI threshold are colored in blue or gray depending 338 
on the chromosomes. The windows detected as AI are colored in black if they have been reported 339 
by previous studies before, or in red if they are novel findings from this study. The labels highlight 340 
the gene names that overlap with the AI windows.  341 
 342 
We use a two-step process to evaluate the legitimacy of the novel AI discoveries by MaLAdapt. 343 
First, we summarize the canonical hits found by previous studies10,16,17,19,23,59,66,71,72. These are 344 
defined as genes that have been reported as a target of Neanderthal AI by more than 1 study. 345 
We ask what proportion of such canonical AI hits did MaLAdapt manage to discover. We show 346 
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that the we found 100% of the most reported hits (those seen by at least 5 studies). On average, 347 
MaLAdapt detected more than 50% of other repeatedly reported Neanderthal AI hits (Table 1). 348 
For the repeatedly identified hits that MaLAdapt did not detect as AI, we further examined the 349 
prediction probabilities in such regions. We found that that MaLAdapt predicted Pr(AI) being no 350 
less than 0.7, suggesting that MaLAdapt did find evidence of AI, despite these genes did not 351 
making it over the 0.9 cutoff (Supplementary Figure 6). Next, we examined the haplotype structure 352 
of our AI candidates to visually validate the legitimacy of our hits. We show in Figure 6 and 353 
Supplementary Figure 5 that all 9 newly-discovered gene regions in CEU appear to be legitimate 354 
adaptive introgression candidates. Specifically, under AI, we expect to see a clear block of 355 
haplotypes in the introgressed population (e.g. The Europeans) that have close affinity to the 356 
archaic genome (e.g. The Neanderthals), and we do not expect such blocks of haplotypes to be 357 
present in the non-introgressed population (e.g. Yoruba)38,73. Note that this pattern is present in 358 
all of these candidate regions. 359 
 360 

Number of times reported as 
Neanderthal AI 

Number of genes 
Percentage of genes 

detected by MaLAdapt 
5 4 100% 

4 13 76.93% 

3 25 24.00% 

2 110 54.54% 

Table 1: Percentage of previously reported Neanderthal AI regions detect by MaLAdapt  361 
We summarize gene regions on the human genome by the number of times they have been 362 
reported by previous studies as Neanderthal AI candidates (column 1). We count the number of 363 
genes in each category (column 2), and examine the percentage of repeatedly reported AI 364 
genes that is recovered by MaLAdapt (column 3). 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
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 385 
Figure 6: Haplotype structure of the novel Neanderthal AI candidate regions in the CEU  386 

We plotted the haplotype structure of 9 candidate regions predicted by MaLAdapt as AI from 387 
Neanderthals in CEU. For each region, we plotted the haplotypes of Altai Neanderthal (black), 388 
CEU individuals (blue) and YRI individuals (red), and clustered and sorted the haplotypes by 389 
decreasing distance to the Neanderthal genome. In other words, rows closer to the top of the plot 390 
represent haplotypes that are more similar to that of the Neanderthal. In the haplotype structure, 391 
each row represents a haplotype, and the column denotes a SNP (black lines indicate the 392 
presence of alternative allele).  393 
 394 
To examine the biological implications of adaptive introgression in non-African populations, first 395 
we performed a Gene Oncology (GO) biological processes74 enrichment analysis of Neanderthal 396 
AI candidates using the Enrichr tool75,76. We combined the Neanderthal AI candidates identified 397 
by MaLAdapt in all 19 non-African populations into 4 superpopulations as defined by the 1000 398 
Genomes study. Namely, we grouped the populations as Europeans (EUR), East Asians (EAS), 399 
South Asians (SAS) and Americans (AMR). We found that on a global level, introgressed variants 400 
from the Neanderthals played a key role in facilitating biological processes involved in metabolism 401 
regulation, adaptation to environments, and immune responses (Figure 7).  402 
 403 
Next, we compared the distribution of Neanderthal AI probabilities as predicted by MaLAdapt in 404 
genes that code for proteins that interact with RNA viruses (the VIP genes) to other genes and 405 
genomic regions. Previous work suggests that the RNA viruses drove the adaptive introgression 406 
between Neanderthals and modern humans77. Although we find a slight enrichment of AI in VIP 407 
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genes compared to non-VIP genes (Supplementary Figure 14-15), this difference is not significant 408 
(Supplementary Table 8, Fisher’s exact p-value=0.846, odds ratio=1.060). However, VIP genes 409 
that were reported as AI candidates77 show a substantial increase in AI probability in Europeans 410 
when compared to the genomic background (p-value < 2.2e-16) and other VIP genes (p-value < 411 
2.2e-16), further validating our method’s power. 412 
 413 
a) Neanderthal AI candidates in Europeans (EUR) 414 

 415 

GO Biological Pathways Enrichment − EUR

−Log10(Pval)

Pa
th

wa
ys

regulation of synaptic transmission, GABAergic (GO:0032228) pval=0.003

negative regulation of anoikis (GO:2000811) pval=0.003

regulation of catabolic process (GO:0009894) pval=0.004

regulation of anoikis (GO:2000209) pval=0.005

regulation of voltage−gated calcium channel activity (GO:1901385) pval=0.006

negative regulation of sequestering of calcium ion (GO:0051283) pval=0.008

release of sequestered calcium ion into cytosol (GO:0051209) pval=0.009

regulation of neuronal synaptic plasticity (GO:0048168) pval=0.01

B cell activation (GO:0042113) pval=0.01

regulation of immune response (GO:0050776) pval=0.015
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b) Neanderthal AI candidates in East Asians (EAS)416 

 417 
c) Neanderthal AI candidates in South Asians (SAS)418 

 419 

GO Biological Pathways Enrichment − EAS

−Log10(Pval)

Pa
th

wa
ys

hyaluronan catabolic process (GO:0030214) pval<2.2e−16

xenobiotic catabolic process (GO:0042178) pval<2.2e−16

cellular response to UV−B (GO:0071493) pval<2.2e−16

glutathione derivative biosynthetic process (GO:1901687) pval<2.2e−16

glutathione derivative metabolic process (GO:1901685) pval<2.2e−16

hyaluronan metabolic process (GO:0030212) pval<2.2e−16

response to UV−B (GO:0010224) pval<2.2e−16

glycosaminoglycan catabolic process (GO:0006027) pval<2.2e−16

regulation of homophilic cell adhesion (GO:1903385) pval=0.001

glutathione metabolic process (GO:0006749) pval=0.001

GO Biological Pathways Enrichment − SAS

−Log10(Pval)

Pa
th

wa
ys

negative regulation of vascular permeability (GO:0043116) pval=0.001

bicellular tight junction assembly (GO:0070830) pval=0.002

tight junction assembly (GO:0120192) pval=0.002

cell surface receptor signaling pathway involved in heart development (GO:0061311) pval=0.003

apical junction assembly (GO:0043297) pval=0.003

calcium−independent cell−cell adhesion (GO:0016338) pval=0.004

hepaticobiliary system development (GO:0061008) pval=0.004

gland development (GO:0048732) pval=0.005

regulation of lipid storage (GO:0010883) pval=0.005

actin filament polymerization (GO:0030041) pval=0.008
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d) Neanderthal AI candidates in Americans (AMR)420 

 421 
Figure 7: Gene Ontology (GO) Enrichment by Neanderthal adaptive introgression 422 

candidates in worldwide non-African superpopulations 423 
We performed Gene Ontology enrichment test of Gene Ontology biological pathways using all AI 424 
candidates predicted in Europeans (EUR, Panel a), East Asians (EAS, Panel b), South Asians 425 
(SAS, Panel c), and Americans (AMR, Panel d) when using Neanderthal as the donor and African 426 
(YRI) as the outgroup population. We show the top 10 pathways in the enrichment test of each 427 
population (all pathways that reached significant p-values can be found in Supplementary Table 428 
7). The length and the color intensity of bars indicate the significance of p-values, with the bar 429 
length being -log10(p value).  430 
 431 
Discussion 432 
In this study, we present MaLAdapt – a machine learning algorithm for detecting signals of 433 
adaptive introgression from genome-wide data. Compared to existing methods, such as 434 
approaches based on summary statistics, MaLAdapt has more power to detect AI, despite the 435 
challenges presented by a highly imbalanced class ratio. It is also particularly good at detecting 436 
mild, incomplete AI regions, and is robust to most model misspecifications and non-AI sweeps. 437 
We have applied MaLAdapt to genetic variation data from modern human populations outside of 438 

GO Biological Pathways Enrichment − AMR

−Log10(Pval)

Pa
th

wa
ys

linoleic acid metabolic process (GO:0043651) pval<2.2e−16

cellular response to UV−B (GO:0071493) pval<2.2e−16

hepoxilin biosynthetic process (GO:0051122) pval<2.2e−16

hepoxilin metabolic process (GO:0051121) pval<2.2e−16

unsaturated fatty acid metabolic process (GO:0033559) pval<2.2e−16

long−chain fatty acid biosynthetic process (GO:0042759) pval<2.2e−16

response to UV−B (GO:0010224) pval<2.2e−16

hyaluronan catabolic process (GO:0030214) pval=0.001

glutathione derivative biosynthetic process (GO:1901687) pval=0.001

glutathione derivative metabolic process (GO:1901685) pval=0.001
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Africa, most of whose ancestral populations experienced at least one archaic introgression event. 439 
In doing so, we have discovered AI candidate regions in all non-African populations from both 440 
Neanderthals and Denisovans, including novel AI candidates that have not been reported by 441 
previous studies.  442 
 443 
A key challenge for ML methods is that the deterministic mechanism for the trained model typically 444 
remains unknown. Here we address this issue by using biologically meaningful features in the 445 
model, and use a decision tree-based algorithm so that the importance of all features in making 446 
predictions can be retrieved. By ranking the features by their importance scores (Figure 8, 447 
Supplementary Figure 2), we optimize the model by performing feature selection, and in doing so, 448 
obtain biological knowledge of adaptive introgression by examining key features being used in 449 
the predictions. We show that, the exon density and recombination rates played a critical role in 450 
MaLAdapt’s underlying prediction mechanism, as both factors jointly determine the extent of 451 
heterosis effect44,46,78. Additionally, summaries of genetic diversity, such as the number of 452 
segregating sites and heterozygosity, are also important factors to distinguish adaptive 453 
introgression from other population genetic processes. 454 
 455 
One major challenge in genome-wide studies of AI is that the proportion of genome undergoing 456 
AI is likely to be substantially smaller than the part of the genome not experiencing AI, resulting 457 
in the so-called imbalanced class ratios. If the class ratio is extremely imbalanced, it can lead to 458 
an inflated False Discovery Rate (FDR) when performing multiple comparisons. This of course is 459 
a general statistical challenge in genome-wide studies. Depending on the signature of interest, 460 
different types of studies have used different strategies to account for the multiple testing issue. 461 
For example, GWAS studies typically use Bonferroni correction79–81 to obtain a genome-wide 462 
significant p-value threshold of 5e-882–84, which efficiently controls the proportion of false positives 463 
in the outstanding signals. However, it can sometime be overly stringent and can lead to a high 464 
False Negative Rates85. Other ML or deep learning applications rely on the use of imbalanced 465 
datasets in the training process, followed by statistical corrections (e.g. genomatnn uses a beta 466 
correction to adjust class ratio in training and testing data sequentially). However, the main 467 
problem in this strategy is that none of the arbitrary ratios used in the training or testing data may 468 
be close enough to the empirical ratio. In the development of MaLAdapt, by utilizing a hierarchical 469 
structured algorithm with numerous randomly generated decision trees, we show that in our model, 470 
varying class ratios in the training data led to little change in the TPR and FPR (Supplementary 471 
Figure 4), so long as the trained model has learned from sufficient observations of both classes, 472 
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as well as the confounders. To best evaluate the performance of methods on highly imbalanced 473 
empirical data, we apply MaLAdapt along with other related methods to full 5MB-long genomic 474 
segments, which class ratio is approximately 1:100 (i.e. 1 window of true positives to 100 windows 475 
of true negatives). We also show that at this ratio, MaLAdapt greatly outperforms all existing 476 
methods across all thresholds in terms of Precision, Recall, FPR (Figure 3). Even if the empirical 477 
ratio is more extreme than our testing data, all methods including MaLAdapt would suffer from a 478 
higher FDR, but MaLAdapt should still retain the highest precision among all.  479 
 480 
Another major motivation for developing MaLAdapt is to control for potential false-positive signals 481 
due to recessive deleterious mutations in studies of AI. It is known from multiple previous 482 
studies44,46,78 that the presence of recessive deleterious mutations can lead to an increase in 483 
introgressed ancestry, similar to the manner of adaptive introgression, and thus is a confounder 484 
of AI detection. This effect is caused by heterosis or heterozygote advantage upon admixture, 485 
and is particularly pronounced in genomic regions that have high exon density and low 486 
recombination rates. Zhang et al. showed that existing methods for detecting adaptive 487 
introgression, such as the signature summary statistics1,19,42,43, can have exaggerated FPRs in 488 
such compact genomic regions when most deleterious mutations are recessive, and likely can 489 
explain the AI signature in HLA and HYAL2 genes, which have been repeatedly discovered as AI 490 
candidates in European and Asian populations26,86.  491 
 492 
MalAdapt attempts to control for this potential confounder of recessive deleterious mutations by 493 
including them in the simulations used to train the classifier. However, this training process is not 494 
without challenges. Similar to the class ratio discussed above, the main challenge for the potential 495 
heterosis confounding effect is that the degree of dominance of deleterious mutations in the 496 
human genome is poorly known. Most of the studies use models that assume all mutations are 497 
either strictly additive or fully recessive, while neither of these extreme assumptions reflect the 498 
empirical distribution of dominance. In MaLAdapt, we address the uncertainty in the dominance 499 
parameters by including three dominance models in the training data, which include an equal ratio 500 
of simulations where all deleterious mutations are additive, recessive, or partially recessive.  501 
 502 
When applying MaLAdapt to empirical human population data, we do not detect HLA as an AI 503 
candidate in any of the populations. This suggests that HLA likely was a false identified AI 504 
candidate in previous studies86–88. However, although we did not detect AI at HYAL2 in most Asian 505 
populations except one (CHB), we detected AI signatures in the upstream regions of HYAL2 that 506 
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overlap with multiple genes. A possible explanation for this observation is that the earlier reports 507 
of HYAL2 being an AI candidate could have been due to linkage to another legitimate AI region 508 
upstream of it. However, future studies of the functional changes by the archaic variants in this 509 
region are needed to test this hypothesis. Furthermore, it is worth noting that the novel discoveries 510 
by MaLAdapt show similar distribution of exon density and recombination rates as previously 511 
identified AI candidates (Supplementary Figure 9-10), further supporting the conclusion that AI 512 
predictions made by MaLAdapt are not likely to be false positives due to heterosis from recessive 513 
deleterious mutations. 514 
 515 
We compared the accuracy of MaLAdapt against other state-of-the-art AI detection methods, and 516 
noticed that two of the recently developed AI methods - the deep learning-based genomatnn and 517 
the polymorphism pattern-based VolcanoFinder – both suffered from substantial loss of power 518 
and robustness compared to what was originally reported when applied to our simulation data 519 
(Figure 3). When applied to empirical human genomic data, we noticed that more than half of the 520 
candidates predicted by genomatnn as well as VolcanoFinder received low prediction probabilities 521 
by MaLAdapt (Supplementary Figure 12). There are some essential differences between 522 
MaLAdapt, genomatnn, and VolcanoFinder that may explain the differences in their accuracy. For 523 
genomatnn, it is trained on simulations of short segments (100kb) that do not contain genic 524 
structure (coding/non-coding regions) similar to what is observed on the empirical human genome. 525 
VolcanoFinder, on the other hand, models the volcano shape of heterozygosity around the 526 
beneficial allele that is introgressed from a diverged population. This pattern is sensitive to 527 
adaptive introgression but could also be changed by other non-AI processes and the inherent 528 
characteristics of the genome, including the alignability and mappability of sequences. The 529 
simulations in our study used a considerable proportion of genomic regions with a high density of 530 
exons and low recombination rates due to concerns of heterosis effect and background 531 
selection46,78. In addition, the demographic parameters differ between the methods. For example, 532 
both VolcanoFinder and genomatnn assumed a fixed introgression amount and a fixed 533 
introgression time in their models, in contrast to MaLAdapt, VolcanoFinder is also optimized to 534 
detect AI with strong selection strength, whereas MaLAdapt considers weaker and recent sweeps 535 
on introgressed variants. Altogether, the reduction in power/accuracy could reflect the sensitivity 536 
of genomatnn and VolcanoFinder to mis-specification of the demographic model and genomic 537 
structures used by MaLAdapt. 538 
 539 
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To further disentangle the potential causes for the discrepancy in accuracy in different methods, 540 
we examined the exon density and recombination rates in the AI candidate regions in CEU 541 
predicted by MaLAdapt, genomatnn and VolcanoFinder (Supplementary Figure 11). The AI 542 
regions predicted by genomatnn tend to have both lower exon density and lower recombination 543 
rates than MaLAdapt and VolcanoFinder predictions, which are also lower than the whole-544 
genome distributions. Next, we examined the haplotype structure of the genomatnn candidates 545 
using Haplostrips program (Supplementary Figure 18) that ranks European (CEU) and African 546 
(YRI) haplotypes by their affinity to the Neanderthal genome. To our surprise, the genomatnn 547 
candidates that received low MaLAdapt prediction scores also did not produce a clear AI pattern 548 
through this ranking of the haplotypes. This could be due to the fact that Haplostrips sorts and 549 
ranks the modern human haplotypes by distance to the archaic reference genome, which is 550 
different from the method of haplotype sorting in genomatnn that group haplotypes by populations. 551 
We visually inspected the haplotype structure patterns and annotated them as true positive, false 552 
positive, or uncertain labels (Supplementary Figure 13). We found that the genomatnn candidates 553 
that were not identified by MaLAdapt have strikingly low exon density and low recombination rates 554 
than the other two groups. In contrast, the visually false positive predictions by MaLAdapt are 555 
mainly driven by an excess of African (outgroup) haplotypes that also show close affinity to the 556 
archaic genome, in which case it is unclear whether it is a result of false detection or legitimate 557 
adaptive introgression due to back-to-Africa gene flow from Europeans24. Altogether, we believe 558 
MaLAdapt is more accurate in predicting AI in regions that contain a low number of mutations and 559 
few recombination events. 560 
 561 
MaLAdapt can be used for the study of AI in other populations and organisms with different 562 
demographic histories and genomic structures. The simulation and training of MaLAdapt is easy 563 
to implement and computationally efficient, and is modifiable for other organisms. We provide all 564 
necessary scripts not only to replicate our results, but also for modifying the trained model for 565 
other population genetics studies. However, application of MaLAdapt to other systems requires 566 
several additional pieces of information that may not always be available. First, an accurate 567 
demographic model of the donor and recipient populations is necessary. For example, MaLAdapt 568 
currently relies on a well-understood Eurasian population history as its demographic model 569 
backbone. This model may not accurately describe the evolutionary history of human populations 570 
distantly related to Eurasians, such as the Americans. Further, the current model does not 571 
account for the complex demography in some of the regional populations, especially in Asia and 572 
Oceania where populations are known to have experienced complex archaic introgression and 573 
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admixture patterns6,8,9,11. However, since MaLAdapt can be easily retrained, we expect to 574 
continually revisit and revise our model, when better-characterized demographic models for 575 
regional human populations become available. And despite the possible deficiencies of the 576 
demographic model in simulations, MaLAdapt demonstrates its power and accuracy by 577 
recovering most of the canonical AI candidates that have been reported by previous studies.  578 
 579 
Another requirement for the use of MaLAdapt is an archaic reference genome. The empirical 580 
findings reported in this study are based on using the Altai Neanderthal individual3 as the 581 
Neanderthal reference genome, and the Altai Denisovan5 as the Denisovan reference genome. 582 
Without further discovery of more high-quality archaic hominin genomes, we do not have power 583 
to detect AI from unknown, “ghost” introgressions24,54 from archaic hominin that are distantly 584 
related to either Neanderthal or Denisovan. Nevertheless, we discovered numerous novel AI 585 
candidates in all non-African populations by Neanderthals and/or Denisovans that went 586 
undetected in previous studies, and have been verified by visual inspection of the haplotype 587 
structure73 (Figure 6). These genes are enriched in a wide range of biological pathways, which 588 
shed light on the functional influence of archaic introgression in general and their contributions to 589 
the phenotype spectrum, local adaptation, and health in our species. We provide a 590 
comprehensive summary of AI candidates in all non-African populations, with informative 591 
annotations of studies that reported them. We hope this can serve as a useful resource for future 592 
studies that are interested in the function and evolutionary history of specific genes of interest, 593 
especially for the novel AI discoveries in understudied populations with unique archaic ancestry 594 
distribution, such as the East Asians and South Americans.  595 
 596 
In conclusion, MaLAdapt provides an example of how machine learning, especially feature-based 597 
algorithms, can help solve complex population genetics and human genomics problems. Such 598 
ML models can particularly be powerful at tackling questions with highly imbalanced classes, mild 599 
signals, and various confounding factors. We look forward to integrating new knowledge of 600 
archaic genomes and human evolutionary history into the MaLAdapt model, and to seeing novel 601 
methods at detecting AI in other biological systems inspired by MaLAdapt.  602 
 603 
Materials and Methods 604 
Simulation settings 605 
We used the software SLiM (version 3.2.0)65 throughout this work for the simulations. We 606 
simulated adaptive introgression between archaic humans and modern humans under a three-607 
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population demographic model, shown in Figure 2 and Supplementary Table 1. This demographic 608 
model is adapted from Gravel et al. 201162 and Prüfer et al. 20172. In this demography, an archaic 609 
hominin population (Narc = 1,000) splits from the ancestral African population (Nanc = 7,300) at 610 
16,000 generations ago. The ancestral African population further splits into a modern African 611 
population at 5,600 generations ago (Nafr = 14,470) and a modern Eurasian population at 2,040 612 
generations ago (Neur_OoA = 1,861). The Eurasian population further experiences a population 613 
bottleneck at 920 generations ago (Neur_split = 550), representing the split of European and East 614 
Asian populations, followed by a population expansion at exponential rate of 0.55% per 615 
generation until the end of the simulation. In the archaic population, a beneficial mutation with a 616 
selection coefficient (s ∊[1e-4, 1e-2]) arises in an exon of the simulated genomic region at 15,000 617 
generations ago and is simulated as fixed in the archaic population by introducing the mutation to 618 
all haplotypes. A single pulse of introgression occurs at a random time (Tadm ∊ in [1530, 2030]) at 619 
a random proportion (m ∊ {1%, 2%, 5%, 10%}). The introgressed beneficial mutation does not 620 
necessarily become immediately beneficial in the Eurasian population, depending on the selection 621 
time (Tsel ∊ [610, Tadm-1]). All simulations are conditioned on the introgressed beneficial mutation 622 
not being lost in the recipient Eurasian population by the end of simulations.  623 
 624 
We simulated 1,000 randomly sampled genomic regions from the modern human genome build 625 
GRCh37/hg19 with length of 5MB. As such, the simulated segments represent the empirical 626 
distribution of exon density and recombination rates on the human genome so that the inference 627 
of MaLAdapt accounts for the confounding effect by heterosis due to recessive deleterious 628 
mutations46. Specifically, we use the exon ranges defined by the GENCODE v.14 annotations60 629 
and the sex-averaged recombination map by Kong et al.61 averaged over a 10kb scale. The per 630 
base pair mutation rate was fixed at 1.08e-8. Deleterious mutations can only occur in exonic 631 
regions of the segment with fitness effect drawn from a distribution estimated from modern 632 
humans89, with a shape parameter of 0.186 and average selection coefficient of -0.01315, as well 633 
as a 2.31:1 ratio of nonsynonymous to synonymous mutations90. Additionally, to account for the 634 
heterosis effect in the inference of adaptive introgression while accounting for the fact that the 635 
dominance distribution on the human genome is poorly understood, we simulated three models 636 
of dominance effects. In the first model, all deleterious mutations were fully additive (h=0.5). In 637 
the second, all were fully recessive (h=0). In the third model, all were partially recessive (hs 638 
relationship)91, where more strongly deleterious mutations were more likely to be recessive. For 639 
each of the sampled genomic segments, we repeated simulations 1,000 times under the Figure 640 
2 demography using a given dominance model (deleterious mutations being additive, recessive, 641 
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or partially recessive). Because there are three dominance models and 1,000 sampled segments 642 
in total, this exercise resulted in 3x1,000x1,000 = 3 million simulation replicates. 643 
 644 
For computational efficiency of the simulations, we scale the simulation parameters by a scaling 645 
factor of c (c=10). In all simulations, the population size is rescaled to N/c, generation times to t/c, 646 
selection coefficient to s*c, mutation rate to µ*c, and the recombination rate to 0.5(1-(1-2r)c). 647 
Other evolutionary parameters remained the same.  648 
 649 
Features used by MaLAdapt 650 
We consider biologically meaningful summary statistics that are likely informative of archaic 651 
adaptive introgression. The untrained MaLAdapt model learns which features are most important. 652 
All statistics are calculated in Python3. For each simulation replicate, we compute features in 653 
sliding 50kb windows (step size 10kb) throughout the simulated segments. We used 50kb as the 654 
prediction window size because it encompasses the average archaic introgressed haplotype 655 
length in modern humans, which is approximately 44kb3. We define adaptive introgression (label 656 
“AI”) as genomic windows in the admixed Eurasian population that contain beneficial mutations 657 
originating from archaic introgression. In contrast, windows with label “non-AI” do not contain the 658 
beneficial mutation, even if such windows are on the same genomic segment as the “AI” windows. 659 
Therefore, at most only 5 out of 496 windows per segment contain the beneficial mutations.  660 
 661 
A full list of features used by the MaLAdapt can be found in Table 2, which include summary 662 
statistics that are informative about archaic introgression1,42,43, positive selection19,92, linkage 663 
disequilibrium93–96, genetic diversity97–100, and the genic structure and recombination rates60,61. 664 

Information Statistics Description 

Archaic 

Introgression 

D 
ABBA-BABA statistics 

fD 

Adaptive 

Introgression 

RD Sequence divergence ratio 

U20/50/80 Number of uniquely shared alleles 

Q90/95 Quantile of derived allele frequency distribution 

Selection H12, H2/H1 Haplotype homozygosity 

Spatial structure r2 Linkage disequilibrium 
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ZnS 

Genetic Diversity 

2pq Expected heterozygosity 

S Number of segregating sites 

𝜃H , 𝜃S , 𝜋 Estimates of 𝜃 

Genic Structure 
e	 Exon density 

r	 Recombination rate 

Table 2: Features used by MaLAdapt 665 
From left to the right, this table summarizes the features used by MaLAdapt, including the 666 
biological signature they capture, notation in model, and a brief description. 667 
 668 
Training MaLAdapt and the choice of the ETC algorithm 669 
Using features computed from all windows in all simulated replicates, we further divided the 670 
dataset into training and testing datasets at 9:1 ratio. For the training dataset, we added additional 671 
segments containing selective sweeps due to de novo beneficial mutations. As these windows 672 
were not due to AI, these simulations were added to the “non-AI” labels. Up to 10% of the training 673 
dataset was comprised of these particular windows. In these selective sweep simulations, the 674 
beneficial mutations are de novo mutations in the Eurasian populations (rising at Tsel), rather than 675 
introduced by archaic introgression. In the testing data, the original simulation class ratio (AI:non-676 
AI ~ 1:100) and genomic segment structures are preserved. In the training data, on the other 677 
hand, we shuffle the dataset to break down the genomic structure of the segments, and we further 678 
evaluate the influence of class ratios on the performance of MaLAdapt (Supplementary Figure 4). 679 
We show that in the training data, a relatively balanced class ratio optimizes the performance of 680 
MaLAdapt as the model is trained by observing sufficient examples of both classes. Therefore, 681 
we downsize the “non-AI” labeled windows to be twice the amount of the “AI” labeled windows. 682 
The final training data contains “AI” and “non-AI” windows at approximately 1:2 ratio. 683 
 684 
We compared the performance of five machine learning algorithms to be used in MaLAdapt 685 
including Logistic Regression, LASSO, Ridge, traditional Random Forest, and ETC. The 686 
algorithms are trained and tested using the same datasets, and are evaluated in terms of different 687 
performance metrics including the True positive rates (TPR), False positive rates (FPR), Precision 688 
(1-False Discovery Rates), Recall (TPR), and F1 Score at different prediction probability 689 
thresholds (Supplementary Figure 1). We show that ETC is the best-performing algorithm at 690 
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detecting genome-wide adaptive introgression, as its hierarchical structure is optimized at 691 
detecting mild adaptive introgression signature, especially when the class ratio is highly 692 
imbalanced. Therefore, we chose to use the ETC algorithm. 693 
 694 
Feature selection for model optimization 695 
We additionally performed a feature selection process based on the feature importance score 696 
ranking from the original ETC-based MaLAdapt. We first determined 6 sets of features that 697 
contain different subsets of all 39 summary statistics given the feature importance scores from 698 
the pre-feature selection version of MaLAdapt (Supplementary Figure 2): 1) top high-ranking 699 
features (18 in total); 2) top high-ranking features minus Qmax (17 in total); 3) mid-ranking 700 
features (top features minus the Q stats; 18 in total); 4) all features minus the Q stats (37 in total); 701 
5) all features minus the Qmax stat (38 in total); 6) all features (39 in total). For each model trained 702 
by a unique set of features, we apply them to the same testing data and evaluate the accuracy of 703 
predictions (Supplementary Figure 3). We show that despite all models have consistently low 704 
false positive rates (FPRs) across most prediction thresholds, the performance on other accuracy 705 
metrics, such as true positive rates (TPRs), false discovery rates (FDR) and F1 score (harmonic 706 
mean between precision and true positive rates), varies substantially between sets of features. 707 
We chose a subset that contains most of the summary statistics except the Q statistics (“set4”) to 708 
be the features included in the final version of MaLAdapt because of its low false discovery rate 709 
and the best F1 score across all thresholds. We use this version as the trained model reported in 710 
this study and for further application to empirical data. 711 
 712 
MaLAdapt robustness and model misspecification analysis 713 
To evaluate the robustness of MaLAdapt to model misspecifications, we obtained a different set 714 
of testing data that includes 6 independent scenarios where one of the key parameter variables 715 
in the simulation model is perturbed (Supplementary Table 1). Specifically, we define 1) “Tsel_low” 716 
as the selection time being 200 generations lower than the original lower bound, 2) “m_low” as 717 
the introgression fraction (m) being 2-fold lower than the original lower bound, 3) “m_high” as the 718 
introgression fraction (m) being 2-fold higher than the original upper bound, 4) “s_high” as the 719 
selection coefficient (s) being 10-fold higher than the original upper bound, 5) “segment” as the 720 
genomic segments in simulations being different from the training data, and 6) “demo” as the 721 
Eurasian population growth rate and Out-of-Africa bottleneck size being different than the training 722 
simulations. We did not explore the selection coefficient (s) being smaller than the original lower 723 
bound due to extremely low chance of generating sensible amount of successful AI simulations 724 
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conditioned on the beneficial mutation not being lost by the end of the simulation. We also did not 725 
perturb the time of introgression as its range is bounded by the split time between Eurasians and 726 
ancestral Africans, as well as the split time between Europeans and Asians.  727 
 728 
We applied MaLAdapt to each of the above 6 perturbation testing datasets, and computed 729 
accuracy metrics including False Positive Rate (FPR), Precision, True Positive Rate (TPR, Recall), 730 
and F1 score with prediction probability threshold being at 0.9. We compared the metrics with the 731 
values obtained from MaLAdapt applying to the original testing dataset (without parameter 732 
perturbation), and compute the log10-fold change of the metrics to the original values.  733 
 734 
Analysis of AI in the 1000 Genomes Data 735 
For the application of trained MaLAdapt on empirical modern human population data, we scanned 736 
the autosomes of human genomes data from Phase 3 of the 1000 Genomes Project, and 737 
computed the features used in Table 2 in 50kb sliding windows (step size = 10kb). Specifically, 738 
we first defined the genomic coordinates of the sliding 50kb windows throughout each of the 739 
autosomes (excluding the telomere and centromere regions). Within each window, we use the 740 
start and end position to extract the genotypes from the Yoruba (YRI, phased) as the non-741 
introgressed population/outgroup, one of the 19 non-African populations (phased) as the 742 
introgressed population/recipient group, and one of the high-quality archaic genomes (Altai 743 
Neanderthal3 or Altai Denisovan5, unphased) as the introgressing population/donor group. We 744 
join the genotypes together as a matrix, and additionally removed sites in the archaic genomes 745 
having potential quality issues (quality score < 40 and/or mapping quality < 30). We computed all 746 
summary statistics included in the feature set in MaLAdapt, and repeated the process across all 747 
windows across all autosomes. We computed features for Neanderthal introgression and 748 
Denisovan introgression separately for all populations. We applied the trained model to all 19 749 
non-African populations and obtained prediction probabilities in all windows across the whole 750 
genome for Neanderthal or Denisovan adaptive introgression, respectively. We further converted 751 
the prediction probability of Pr(AI) to a prediction score, which equals -log10(1-Pr(AI)). We plot 752 
the prediction scores of all windows for each population, and label the gene names in AI regions. 753 
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