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Abstract 15 

Background: Microbial species often harbor substantial functional diversity driven by structural 16 

genetic variation. Rapid adaptation from such standing variation in pathogens threatens global 17 

food security and human health. Genome wide association studies (GWAS) provide a powerful 18 

approach to identify genetic variants underlying recent pathogen evolution. However, the reliance 19 

on single reference genomes and single nucleotide polymorphisms (SNPs) obscures the true extent 20 

of adaptive genetic variation. Here, we show quantitatively how a combination of multiple 21 

reference genomes and reference-free approaches captures substantially more relevant genetic 22 

variation compared to single reference mapping. 23 

Results: We performed reference-genome based association mapping across 19 reference-quality 24 

genomes covering the diversity of the species. We contrasted the results with a reference-free (i.e., 25 

K-mer) approach using raw whole genome sequencing data. We assessed the relative power of 26 

these GWAS approaches in a panel of 145 strains collected across the global distribution range of 27 

the fungal wheat pathogen Zymoseptoria tritici. We mapped the genetic architecture of 49 life 28 

history traits including virulence, reproduction and growth in multiple stressful environments. The 29 

inclusion of additional reference genome SNP datasets provides a nearly linear increase in 30 

additional loci mapped through GWAS. Variants detected through the K-mer approach explained 31 

a higher proportion of phenotypic variation than a reference genome based approach, illustrating 32 

the benefits of including genetic variants beyond SNPs.  33 

Conclusions: Our study demonstrates how the power of GWAS in microbial species can be 34 

significantly enhanced by comprehensively capturing functional genetic variation. Our approach 35 

is generalizable to a large number of microbial species and will uncover novel mechanisms driving 36 

rapid adaptation in microbial populations. 37 

 38 

Keywords: genome-wide association mapping, single nucleotide polymorphisms, K-mer, 39 

multiple-reference-genome, Zymoseptoria tritici 40 

  41 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.492091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 42 

Rapid genetic change in microbial pathogens has led to significant damage to agricultural 43 

production as well as to human health over recent decades (Casadevall et al. 2011; Fisher et al. 44 

2012; Figueroa et al. 2018). The rapid evolution in pathogen populations of virulence and 45 

resistance to anti-microbial drugs are key concerns in plant, animal and human health. There is an 46 

urgent need to identify the precise genetic determinants in pathogens that underlie differences in 47 

virulence and evasion of control mechanisms. Vast genomic datasets can now be exploited to 48 

retrace evolutionary pathways of pathogen adaptation. Association mapping can be used to 49 

establish relationships between genetic and phenotypic variation using field collections of 50 

pathogens (Bartoli and Roux, 2017; Sánchez-Vallet et al. 2018). The genetic variation relevant for 51 

trait evolution is often more complex than the commonly used single nucleotide polymorphisms 52 

(SNPs). Structural variants (SVs) such as insertions-deletions (indels), copy number variants, 53 

chromosomal rearrangements, inversions and duplications can also be major facilitators of 54 

microbial adaptation (Dutilh et al. 2013: Plaumann et al. 2018; Zeevi et al. 2019; Allen et al. 2021; 55 

Langner et al. 2021). For plant studies, powerful approaches were recently proposed to associate 56 

SVs to causal genes controlling trait variation (Todesco et al. 2020; Guo et al. 2020). However, 57 

our understanding of SVs governing trait variation in microorganisms is limited by approaches 58 

focused on SNPs (Laabei et al. 2014; Pereira et al. 2020b; Singh et al. 2021). Microbial genomes 59 

are highly plastic in terms of gene content and associated SVs. GWAS based on a single reference-60 

genome can only capture the gene content described in that single genome (Lees et al. 2016). Using 61 

a compilation of reference genomes to construct a pangenome resource that integrates a more 62 

comprehensive set of the genes present in a pathogen species shows substantial promise (Badet 63 

and Croll, 2020). The ability to integrate various types of SVs while performing association 64 

mapping will also substantially expand our understanding of microbial adaptation.  65 

Pathogen adaptation is frequently governed by genetic determinants termed accessory genes that 66 

are not shared among all individuals of a species. Accessory genes were found to affect defense 67 

responses, virulence, drug resistance and environmental adaptation (Holt et al. 2015; Sánchez-68 

Vallet et al. 2018; Wu et al. 2018; Zou et al. 2019). The detection of such adaptive accessory genes 69 

can be accelerated by expanding GWAS to include multiple reference genomes covering distinct 70 

segments of the gene space of a species. Additionally, single reference genome based GWAS can 71 
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be confounded by gene presence/absence variation as such variation is challenging to account for 72 

(Gage et al. 2019). These shortcomings of a GWAS based on a single reference genome can be 73 

overcome by repeating the mapping across multiple reference genomes representing the 74 

pangenome of a species (Tettelin et al. 2005; Bayer et al. 2020; Gupta, 2021). Recent advances in 75 

genomics are rapidly expanding the number of microbial pathogens with such pangenome 76 

resources (Baddam et al. 2014; Liu et al. 2014; Badet et al. 2020). These resources can facilitate 77 

the identification of pathogen virulence factors as well as previously unknown anti-microbial 78 

resistance factors emerging after the application of newly designed chemical control agents 79 

(Golicz et al. 2020; Allen et al. 2021). In particular, SVs in highly repetitive regions are unlikely 80 

to be captured. This can be overcome by adopting an alignment-free approach where short reads 81 

are screened for subsequences of specific length, i.e. K-mers (Sheppard et al. 2013; Weinert et al. 82 

2015). A major advantage of K-mer based analyses is the ability to capture genetic variation 83 

without depending on a reference genome, avoid SNP calling ascertainment biases or allow 84 

identifying sequence segments absent from a reference genome (Lees et al. 2016; Jaillard et al. 85 

2018). Capturing complex SVs is particularly relevant because significant genetic variation, 86 

sometimes referred to as the “missing heritability” problem, can go undetected using traditional 87 

reference-based GWAS (Zuk et al. 2012; Rahman et al. 2018). Though their potential advantages 88 

are clear, reference-free methods to capture adaptive genetic variation remain largely unexplored 89 

in pathogenic microorganisms.  90 

The fungal pathogen Zymoseptoria tritici causes septoria tritici blotch (STB), a disease that has a 91 

significant impact on global wheat production (Fones and Gurr, 2015; Torriani et al. 2015). Z. 92 

tritici has a highly plastic genome with 13 core chromosomes and 8 accessory chromosomes that 93 

exhibit presence-absence variation among isolates (Goodwin et al. 2011). Large effective 94 

population sizes, high gene flow and high recombination rates facilitate rapid evolution of 95 

resistance toward fungicides and virulence on resistant hosts (Croll et al. 2015; Hartmann et al. 96 

2018, 2021; Singh et al. 2020). The pathogen population harbors substantial variation for many 97 

life history traits including growth rates, stress tolerance, melanization and reproduction on the 98 

wheat host (Dutta et al. 2021). Structural rearrangements and deletion events were found to be 99 

associated with host adaptation (Hartmann et al. 2017; Meile et al. 2018). GWAS based on single 100 

reference genomes was successful in discerning the genetic underpinnings of pathogen virulence 101 

and fungicide resistance (Hartmann et al. 2021; Singh et al. 2021). The recent pangenome 102 
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constructed for Z. tritici based on 19 different isolates from six continents showed that the pathogen 103 

harbors a substantially larger gene repertoire than the canonical reference genome (Badet et al. 104 

2020). Accessory genes within the species encode diverse but largely unknown functions and were 105 

likely missed in previous analyses that relied on a single reference genome. Thus, expanding 106 

GWAS beyond one reference genome will likely capture a larger fraction of genes underlying 107 

recent adaptation. 108 

Here, we assess the performance of both reference-free and multi-reference GWAS by conducting 109 

a comprehensive mapping analysis based on a global set of Z. tritici populations. We screened for 110 

sources of genetic variation affecting 49 biotic and abiotic traits. Both GWAS conducted on SNP 111 

datasets mapped to 19 different reference genomes and k-mer based GWAS revealed a large 112 

number of previously missed loci contributing to trait variation. Our study provides quantitative 113 

insights how improved GWAS approaches can identify genetic variants underpinning adaptation 114 

in rapidly evolving microbial pathogens.  115 

 116 

 117 

Results 118 

A generalizable framework for conducting microbial GWAS 119 

We performed comprehensive association mapping analyses to detect genetic variants of varying 120 

complexity underlying pathogen adaptation to different hosts and environments (Figure 1). We 121 

analyzed genetically diverse pathogen populations spanning the global distribution of wheat and 122 

recapitulating host diversity and climatic gradients. Isolates were phenotyped under greenhouse 123 

and laboratory conditions to assess both pathogenicity-related traits (e.g., degree of host damage, 124 

amount of spore production) and responses to abiotic stresses (e.g., fungicide, low temperature) 125 

(Dutta et al. 2021). Genetic variation in the mapping panel was assessed in two complementary 126 

ways. (1) Whole-genome sequence datasets were used to generate SNP calls on multiple reference 127 

genomes. A total of 19 telomere-to-telomere reference genomes have been assembled to capture 128 

the global diversity in structural variation (Badet et al. 2020). (2) Short reads were also used to 129 

generate 25-bp K-mer profiles for each isolate. These presence/absence K-mer tables applied to 130 
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mapping populations are highly effective in capturing structural variation independent of a 131 

reference genome (Voichek and Weigel, 2020).  132 

 133 

 134 
Figure 1. A comprehensive workflow for conducting microbial genome wide association studies 135 
(GWAS) using multiple reference genomes and K-mer data from mapping populations. Genetically 136 
diverse pathogen populations from different geographic locations are sampled to construct an association 137 
panel followed by greenhouse and laboratory phenotyping to assess heritable trait variation (right panel; 138 
Dutta et al. 2021). Chromosome-level genome assemblies of representative isolates is performed to generate 139 
reference genomes and establish a species pangenome (left panel; Badet el al. 2020). Whole genome 140 
sequencing of the association panel enables single nucleotide polymorphism (SNP) calling against multiple 141 
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reference genomes and creation of K-mer presence/absence tables (middle panel). GWAS can be performed 142 
simultaneously to take advantage of SNP datasets or K-mer presence/absence tables. 143 
 144 

 145 

Multiple reference genome based GWAS 146 

We performed association mapping for a total of 49 traits including measures of virulence and 147 

reproduction on twelve wheat cultivars and growth and melanization under various stress 148 

conditions such as different temperature regimes and fungicide exposure. The mapping was 149 

performed independently for SNP panels generated from each of the 19 reference genomes based 150 

on mixed linear models. We estimated the genomic inflation factor (GIF; λ), which ranged from 151 

0.91 to 1.09 without principal components as a random effect controlling for population 152 

substructure, and from 0.70 to 1.36 when including principal components (Supplementary Figure 153 

S1). The multiple reference-based GWAS detected a range of significant marker-trait associations 154 

above the Bonferroni threshold (α = 0.05) for a total of 20 traits related to virulence, reproduction, 155 

growth rate, fungicide resistance and melanization (Figure 2A). We found high variability in the 156 

number of significant SNPs for the same trait depending on the choice of the reference genome 157 

SNP panel (Figure 2A, Supplementary Table S5). The number of significant SNPs ranged from 158 

1-55 for pathogen virulence and reproduction on different wheat hosts depending on the reference 159 

genome. The highest number of significant SNPs were identified for virulence on landrace 1204 160 

with the alternative reference genome KE94 (Figure 2B). This trait also showed the highest 161 

variance in the number of significant associations among the 19 reference genomes 162 

(Supplementary Table S5). The number of significant SNPs for environmental stresses ranged 163 

from 1-180 with the azole resistance trait showing the largest and most variable number of SNPs 164 

among the 19 reference genomes. The most significant SNPs for each trait explained 3-15% of the 165 

phenotypic trait variation (Supplementary Table S6). This suggests that numerous genes affect 166 

most trait variation in most environments, consistent with polygenic architectures for most of these 167 

traits.  168 

A substantial fraction of all significant associations could not be mapped with the canonical 169 

reference genome IPO323 (Figure 2B). Also, significant associations for several traits mapped in 170 

to the canonical reference genome were not found using alternative reference genomes (Figure 171 
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2B). This shows that multiple reference genome SNP panels can overcome limitations due to 172 

presence-absence variation and challenges in SNP calling. To analyze putative gene functions 173 

contributing to phenotypic trait variation, we extracted all the genes in close physical proximity to 174 

each SNP (< 1 kb). Z. tritici populations show rapid decay in linkage disequilibrium within this 175 

distance and the average distance between genes is ~1 kb (Goodwin et al. 2011; Hartmann et al. 176 

2017). We identified a variable number of associated genes depending on the reference genome 177 

SNP panel. The number of associated genes ranged from 54 when mapping was performed on the 178 

reference genome Aus01 to 79 on IPO323 for pathogen virulence and reproduction on different 179 

wheat hosts. The number of genes ranged from 88 (reference genome TN09) to 102 (reference 180 

genome CRI10) for environmental stress traits (i.e. fungicide resistance, growth rate and 181 

melanization; Supplementary Table S7). Based on the annotation of the canonical reference 182 

genome IPO323, the identified genes encoded a broad range of functions including major 183 

facilitator superfamily (MFS) transporters, fungal-specific transcription factors, zinc finger and 184 

protein kinase domains (Supplementary Table S7). Such gene functions may have specific 185 

metabolic and regulatory functions underlying pathogen adaptation (Shelest, 2008; Krishnan et al. 186 

2018; Pereira et al. 2020b). Importantly, we detected significant SNPs near three genes encoding 187 

predicted virulence factors (i.e. effectors) on chromosomes 2, 5, and 7 associated with reproduction 188 

on the wheat cultivars Greina, Titlis and Chinese Spring, respectively (Supplementary Table S7). 189 

We also detected numerous significant SNPs for azole resistance tagging the CYP51 gene that is 190 

known to underlie resistance to azole fungicides (Cools and Fraaije, 2012).  191 
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Figure 2. Genome wide association mapping based on 19 reference genomes for 49 pathogen traits 193 
measured under different host and abiotic conditions in Zymoseptoria tritici. (A) Heatmap showing 194 
differences in the number of significantly associated SNPs for each trait obtained for each reference 195 
genome. Pathogen virulence (percentage of the leaf surface covered by necrotic lesions) and reproduction 196 
(pycnidia density within lesions) were measured on 12 genetically diverse wheat lines. (B) Manhattan plots 197 
showing SNP p-values for two traits (pathogen virulence in the left panel and melanization in presence of 198 
fungicide in the right panel) on multiple reference genomes. The shaded gray boxes highlight differences 199 
in significant associations found when using different reference genomes. The red line indicates the 200 
Bonferroni threshold at a 5% significance level. Pathogen virulence and reproduction were measured on 12 201 
genetically diverse wheat lines. 202 
 203 

A challenge associated with performing multiple reference genome GWAS is to identify redundant 204 

associations across SNP panels. To estimate the extent of novel gene functions discovered through 205 

the expansion of the reference genome SNP panels, we performed a saturation analysis based on 206 

orthology information. For each gene with a significant association, we assessed whether any 207 

ortholog identified in a different reference genome was already tagged (i.e. is a member of the 208 

same orthogroup). We randomly selected subsets of the reference genome SNP panels and counted 209 

the number of unique orthogroups with significant associations for groups of traits. We observed 210 

a near-linear increase in the number of unique orthogroups with significant associations with an 211 

increasing number of reference genome panels (Figure 3). The most substantial increase was 212 

observed by including a second reference genome panel. Beyond two reference genome panels, 213 

the benefits for each additional reference genome SNP panel decreased slightly. This shows that a 214 

substantial fraction of the genetic factors contributing to adaptation to host, and environmental 215 

stress factors cannot be identified from a single reference genome SNP panel. Fungicide resistance 216 

related traits show the highest number and fastest gain in significantly associated orthogroups with 217 

additional reference genome SNP panels. Pathogen virulence and reproduction showed 218 

intermediate increases in significantly associated orthogroups and melanization showed the 219 

slowest increase in significantly associated orthogroups. Overall, including multiple reference 220 

genome SNP panels substantially expands the spectrum of identifiable genetic factors 221 

(Supplementary Figure S3).  222 
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 223 
Figure 3. Accumulation curves for the total number of distinct genes (identified by orthogroups 224 
within the species) associated with GWAS for different traits as a function of the number of reference 225 
genomes analyzed. Mapping outcomes are shown for different groups of traits. The numbers in parentheses 226 
indicate the number of traits included in each category. Pathogen virulence (percentage of the leaf surface 227 
covered by necrotic lesions) and reproduction (pycnidia density within lesions) were measured on 12 228 
genetically diverse wheat lines.  229 
 230 

K-mer approach to uncover additional sources of genetic variation 231 

To further expand our survey of structural variation potentially associated with trait variation, we 232 

performed reference-free GWAS on the same trait dataset using 25-bp K-mers generated from 233 

whole genome sequencing data. We identified a total of ~55 million K-mers of which 7,111,640 234 

were detected in at least five isolates. We estimated K-mer based heritability to contrast with SNP-235 

based heritability from Dutta et al. (2021). For pathogen virulence, K-mers explained a higher 236 

proportion of phenotypic variance compared to the SNP-based estimates (Figure 4A). A similar 237 

trend of increased heritability accounted by K-mers was observed for all other traits as well 238 
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(Supplementary Figure S2A, 2B, 2C). The heritability for virulence ranged from 0 to 0.84 239 

(standard error, SE=0.08) with an average of 0.6 (SE=0.16) compared to 0.35 (SE=0.14) based on 240 

SNPs. Heritability for reproduction traits ranged from 0.73 (SE=0.13) to 0.96 (SE=0.01) with an 241 

average of 0.86 (SE=0.06) compared to SNP-based heritabilities with an average of 0.65 (SE=0.1). 242 

The average heritability for environmental stress factors (i.e., fungicide resistance, growth rate and 243 

melanization at different temperatures) was 0.7 (SE=0.18) compared to 0.51 based on SNPs 244 

(SE=0.18). Consistent with the high heritability estimates, the K-mer GWAS yielded numerous 245 

K-mers above the permutation-based significance threshold (α = 0.05) for 33 out of 49 phenotypic 246 

traits. The number of significant K-mers ranged from 3-2066 for pathogen virulence, from 3-640 247 

for pathogen reproduction, from 3-166 for pathogen melanization, and from 9-3606 for fungicide 248 

resistance and growth-related traits.  249 

To identify gene functions mapped through K-mer GWAS, we searched K-mer sequences in the 250 

canonical reference genome IPO323 (Figure 4B, Supplementary Figure S2D). We found a 251 

substantial fraction of significant K-mers tagging either a transposable element (TE) or a gene in 252 

the Z. tritici genome (Figure 4C, Supplementary Figure S2E). For host-related traits (Figure 253 

4B), an average of 63.6% of all significant K-mers tagged a gene compared to 32.1% tagging a 254 

TE. In contrast, the proportions of significant K-mers tagging a TE or a gene were roughly inverted 255 

(59.17% vs. 34.6%) for environmental stress traits (Supplementary Figure S2D). Furthermore, 256 

for the majority of the traits, the K-mer with the highest p-value tagged a TE (Figure 4D, 4E). The 257 

high proportion of K-mers mapping to a TE suggests that active transposition has contributed 258 

significantly to phenotypic variation in Z. tritici. Additionally, the K-mer GWAS discovered a 259 

large number of not previously identified genes associated with both host-related and 260 

environmental stress traits (Figure 4D, 4E; Supplementary Figure S3). The K-mer tagged genes 261 

encoded a broad range of functions including a transcription factor, MFS transporters, and 262 

peptidases as well as effector candidates (Figure 4D, 4E, Supplementary Table S8).  263 
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Figure 4. K-mer GWAS on 49 life-history traits based on a K-mer presence/absence table for all 145 265 
Zymoseptoria tritici isolates. (A) Comparison of heritability estimates for pathogen virulence (percentage 266 
of the leaf surface covered by necrotic lesions) based on SNPs (for the reference genome IPO323) and K-267 
mers. Both SNP-based and K-mer-based heritability were estimated by following a genome-based restricted 268 
maximum likelihood (GREML) approach. Standard errors are indicated by error bars (B) Alignment of 269 
significantly associated K-mers against the reference genome (IPO323) show the proportion of K-mers 270 
having a unique mapping position, multiple locations, or no unambiguous mapping position in host-related 271 
traits i.e. pathogen virulence and reproduction (pycnidia density within lesions). (C) Proportion of 272 
significant K-mers with a unique mapping position in the reference genome either tagging a gene or a 273 
transposable element for host-related traits. (D, E) Manhattan plots showing significant K-mer associations 274 
with pathogen reproduction and fungicide resistance together with quantile-quantile plots for p-value 275 
comparisons. Manhattan plots were created from SNP-based GWAS and blue dots represents the significant 276 
K-mer associations with the K-mers being uniquely mapped to a location in the reference genome. The two 277 
blue dots represent individual K-mers with significant associations. The red and blue lines indicate the 278 
Bonferroni and permutation-based significance threshold at 5% level for SNPs and K-mers, respectively. 279 
Pathogen virulence and reproduction were measured on 12 genetically diverse wheat lines. Overall 280 
virulence and reproduction represent the average value of the respective trait measured on 12 genetically 281 
diverse wheat lines. Reproduction specificity was estimated based on the adjusted coefficient of variation 282 
of mean reproduction across 12 genetically diverse wheat lines. Higher specificity suggests affinity to 283 
certain hosts for maximizing reproductive fitness. 284 
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Figure 5. Analysis of K-mer GWAS identifying causal genes underlying major phenotypes in 286 
Zymoseptoria tritici. (A) Manhattan plot showing significant K-mers associated with fungicide resistance. 287 
The two blue dots represent all 294 significant K-mers with a unique genomic position on chromosome 288 
seven tagging the CYP51 gene encoding the target of azole fungicides. The red and blue lines show the 289 
Bonferroni and permutation-based significance threshold (α=0.05) for SNP and K-mer GWAS, 290 
respectively. (B) Quantile-Quantile plot showing the p-value comparison between SNPs and K-mer based 291 
GWAS. (C) Physical position of 294 significant K-mers mapped to unique positions on chromosome seven 292 
associated with the fungicide resistance gene CYP51. (D) Linkage disequilibrium (LD) heatmap showing 293 
the pairwise r2 value among 294 significant K-mer presence/absence genotypes associated with the CYP51 294 
gene. (E) Proportion of isolates from different populations carrying significant K-mers that tagged CYP51. 295 
(F) Boxplot showing fungicide resistance levels in isolates with presence of the K-mers associated with the 296 
CYP51 gene. 297 
 298 

We analyzed in detail how the K-mer approach expanded the discovery of loci compared to SNP-299 

based GWAS. We focused on the key azole resistance gene CYP51 (Figure 5A). We found 294 300 

K-mers above the 5% significance threshold on chromosome 7 associated with CYP51 301 

(Zt09_07_00450) for the resistance trait EAM_14_dpi_azole. All the K-mers could be located to 302 

a unique position on the chromosome. The K-mer p-values tagging this gene were lower than the 303 

SNP p-values (Figure 5B). Nearly all (293/294) K-mers were located in the upstream region of 304 

the gene spanning between the positions 1,446,325 and 1,446,893 bp. The K-mer presence/absence 305 

among isolates were in full linkage disequilibrium (Figure 5C, 5D; r2=1). One additional K-mer 306 

localized (1,447,308 bp) to the fourth and largest exon of the gene and showed lower linkage 307 

disequilibrium (r2=0.48) with the other K-mers. Most of the isolates from Switzerland (71.1%) 308 

and a few from Israel (10%) carried the K-mers associated with increased azole resistance (Figure 309 

5E; 5F). We expanded our analyses of K-mer associations to virulence traits (Figure 6A). We 310 

discovered 11 significant K-mers on chromosome 7 (from 1,897,941-1,897,951 bp) for virulence 311 

on the cultivar Runal. The tagged gene was previously identified through QTL mapping and 312 

encodes a virulence factor termed Avr3D1. No SNPs in the same region passed the Bonferroni 313 

significance threshold (Figure 6B). All K-mers were located in the largest exon and all but one 314 

was in full linkage disequilibrium with each other (Figure 6C, 6D). The K-mer with lower linkage 315 

disequilibrium to the other K-mers was primarily detected in isolates of the Israel population 316 

(Figure 6E). The isolates carrying the significant K-mers produced less leaf damage (Figure 6F).   317 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.492091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

 318 

SNP

K-mer

O
bs

er
ve

d 
-lo

g 10
 (P

-v
al

ue
)

Expected -log10 (P-value)

1.25

1.50

1.75

2.00

Significant K−mer

Pa
th

og
en

 vi
ru

len
ce

Absent Present

A B

C

FE

Pathogen avirulence factor (Avr3D1)

K-mer

K-mer presentK-mer absent

ST01AUS_1A4
ST01AUS_1A5
ST01AUS_1A6
ST01AUS_1A9
ST01AUS_1B1
ST01AUS_1B2
ST01AUS_1B7
ST01AUS_1B8
ST01AUS_1C1
ST01AUS_1C2
ST01AUS_1C3
ST01AUS_1C6
ST01AUS_1C8
ST01AUS_1D4
ST01AUS_1D5
ST01AUS_1D8
ST01AUS_1E1
ST01AUS_1E4
ST01AUS_1E5
ST01AUS_1F2
ST01AUS_1F3
ST01AUS_1F8
ST01AUS_1G2
ST01AUS_1G5
ST01AUS_1H2
ST01AUS_1H6
ST01AUS_1H8

ST90ORE_a12_3B_10
ST90ORE_a12_3B_11
ST90ORE_a12_3B_12
ST90ORE_a12_3B_13
ST90ORE_a12_3B_14
ST90ORE_a12_3B_15
ST90ORE_a12_3B_17
ST90ORE_a12_3B_18
ST90ORE_a12_3B_19
ST90ORE_a12_3B_2

ST90ORE_a12_3B_21
ST90ORE_a12_3B_3
ST90ORE_a12_3B_4
ST90ORE_a12_3B_5
ST90ORE_a12_3B_6
ST90ORE_a12_3B_7
ST90ORE_a12_3B_8
ST90ORE_a12_3B_9
ST90ORE_a12_4A_1

ST90ORE_a12_4A_10
ST90ORE_a12_4A_11
ST90ORE_a12_4A_2
ST90ORE_a12_4A_4
ST90ORE_a12_4A_5
ST90ORE_a12_4A_6
ST90ORE_a12_4A_7

ST90ORE_a15_2A_11
ST90ORE_a15_2A_13
ST90ORE_a15_2A_14
ST90ORE_a15_2A_15
ST90ORE_a15_2A_16
ST90ORE_a15_2A_20
ST90ORE_a15_2A_6
ST90ORE_a15_2A_7
ST90ORE_a15_2A_8
ST90ORE_a15_3B_1

ST90ORE_a15_3B_10
ST90ORE_a15_3B_13
ST90ORE_a15_3B_15
ST90ORE_a15_3B_18
ST90ORE_a15_3B_19
ST90ORE_a15_3B_3
ST90ORE_a15_3B_4
ST90ORE_a15_3B_5
ST90ORE_a15_3B_6
ST90ORE_a15_3B_9

ST90ORE_a15_4A_10
ST90ORE_a15_4A_11
ST90ORE_a15_4A_13
ST90ORE_a15_4A_15
ST90ORE_a15_4A_17
ST90ORE_a15_4A_19
ST90ORE_a15_4A_2
ST90ORE_a15_4A_3
ST90ORE_a15_4A_4
ST90ORE_a15_4A_7

ST92ISR_Ar_11g
ST92ISR_Ar_11i

ST92ISR_Ar_12d
ST92ISR_Ar_12e
ST92ISR_Ar_12f
ST92ISR_Ar_15a
ST92ISR_Ar_15c
ST92ISR_Ar_16a
ST92ISR_Ar_16h
ST92ISR_Ar_17b
ST92ISR_Ar_17d
ST92ISR_Ar_17e
ST92ISR_Ar_17i
ST92ISR_Ar_17r
ST92ISR_Ar_18b
ST92ISR_Ar_19e

ST92ISR_Ar_1b
ST92ISR_Ar_1c
ST92ISR_Ar_1j

ST92ISR_Ar_21a
ST92ISR_Ar_22f
ST92ISR_Ar_2b
ST92ISR_Ar_2c
ST92ISR_Ar_2f
ST92ISR_Ar_4b
ST92ISR_Ar_4e
ST92ISR_Ar_4f
ST92ISR_Ar_4g
ST92ISR_Ar_5a
ST92ISR_Ar_5g

ST99CH_28
ST99CH_3A1

ST99CH_3A10
ST99CH_3A2
ST99CH_3A4
ST99CH_3A5
ST99CH_3A6
ST99CH_3A8
ST99CH_3A9
ST99CH_3B2
ST99CH_3B4
ST99CH_3B8
ST99CH_3C4
ST99CH_3C7
ST99CH_3D1
ST99CH_3D3
ST99CH_3D5
ST99CH_3D7
ST99CH_3D8
ST99CH_3F1
ST99CH_3F2
ST99CH_3F3
ST99CH_3F4
ST99CH_3F5
ST99CH_3G2
ST99CH_3G3
ST99CH_3G6
ST99CH_3H1
ST99CH_3H3
ST99CH_3H4

ST99CH_SW39
ST99CH_SW5

K-mer

Is
ol

at
e

A
us

tra
lia

O
re

go
n.

R
O

re
go

n.
S

Is
ra

el
S

w
itz

er
la

nd

D

Avr3D1

(11 K-mers)

Linkage disequilibrium R2 value

Wilcoxon, p-value = 1.6e-08

n=20n=125

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.492091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Figure 6. K-mer based GWAS recovered a known effector gene in Zymoseptoria tritici with a higher 319 
statistical power than SNP-based GWAS. (A) Manhattan plot showing significant K-mers associated 320 
with pathogen virulence on the wheat cultivar Runal. The two blue dots represent all 11 K-mers uniquely 321 
mapping to positions on chromosome seven and tagging the avirulence gene Avr3D1 encoding an effector 322 
protein. The red and blue lines indicate the Bonferroni and permutation-based significance threshold 323 
(α=0.05) for SNP and K-mer GWAS, respectively. (B) Quantile-Quantile plot showing the p-value 324 
comparison between SNPs and K-mers. (C) Physical position of 11 uniquely mapped K-mers on 325 
chromosome seven associated with Avr3D1. (D) Linkage disequilibrium (LD) heatmap showing the 326 
pairwise r2 value among 11 significant K-mers associated with Avr3D1. (E) Presence/absence pattern of 11 327 
significant K-mers associated with Avr3D1 in five Z. tritici populations. The continuous horizontal blue 328 
line indicates isolates containing all the significant K-mers. (F) Boxplot showing pathogen virulence 329 
(percentage of the leaf surface covered by necrotic lesions) on the wheat cultivar Runal in isolates with or 330 
without the significant K-mers associated with Avr3D1. 331 
 332 

 333 

Discussion 334 

Here, we report the most comprehensive assessment of association mapping performance to date 335 

for microbial pathogens to unravel genetic determinants of phenotypic trait variation. We find that 336 

expanding association mapping to include multiple reference genome SNP datasets provides a near 337 

linear increase in the number of additional loci detected by GWAS. Performing a reference-free 338 

GWAS approach using K-mers similarly boosted the power to uncover genetic variation 339 

underlying important traits. The extensive gains in the power of GWAS analyses that take into 340 

account structural variation reveals a greater proportion of the complexity inherent in adaptive 341 

genetic variation within microbial species.  342 

SNP-based GWAS based on a single reference genome dataset have been successful in describing 343 

the genetic basis of complex pathogen traits (Mohd-Assaad et al. 2016; Pereira et al. 2020b; Caseys 344 

et al. 2021; Singh et al. 2021). By expanding the number of reference genome SNP datasets used 345 

for GWAS, we identified substantially more independent loci than what was previously identified 346 

using the same phenotype dataset (Dutta et al. 2021). The number of loci associated with most trait 347 

variation increased almost linearly with the addition of reference genome SNP datasets. Such an 348 

increase is striking given the fact that most traits are thought to be significantly constrained by 349 

stabilizing selection and have a conserved genetic basis (e.g. growth, melanization, reproduction; 350 

Steffansson et al. 2014, Qin et al. 2016, Pereira et al. 2020a). Stabilizing selection tends to reduce 351 
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shared additive genetic variation between populations and closely related species, which ultimately 352 

reduces phenotypic variation (Yair and Coop, 2021). Pathogen trait expression is expected to 353 

stabilize at an optimal level due to genetic trade-offs (Bonneaud et al. 2020; Dutta et al. 2021). 354 

Climatic conditions and host genotype turnover may lead to rapid shifts in selection pressures. 355 

Hence, there should also be turnover in the genes underlying adaptation to previous environmental 356 

conditions. The Z. tritici pathogen model may be an outlier given the maintenance of very large 357 

population sizes, high gene flow and extensive chromosomal polymorphism (Hartmann et al. 358 

2018; Badet and Croll, 2020). The near-linear increase in associated loci may also be explained, 359 

at least in part, by the use of a highly diverse, global panel of reference genomes. The reference 360 

genome isolates originating from six continents stem from populations that likely experienced 361 

divergent selection pressure from locally adapted hosts and local climatic conditions. Overall, we 362 

show that including a broad set of reference genome SNP datasets efficiently overcomes 363 

limitations imposed by using a single reference genome. Such limitations often stem from 364 

ascertainment bias in SNP calling and genetic distance between the reference genome and mapping 365 

populations (Valiente-Mullor et al. 2021). A particular concern is that a single reference may not 366 

represent the full catalog of gene functions relevant for adaptation in the species pool (Golicz et 367 

al. 2020). For instance, missed associations for genes that are absent from a reference genome may 368 

underpin an adaptive advantage in a specific ecological context and/or geographic region (Lassalle 369 

et al. 2015; Gori et al. 2020).  370 

We find that accounting for genetic variation using K-mers instead of SNPs explains more genetic 371 

variation (i.e. gives a higher heritability). This implies that significant phenotypic variation is 372 

explained by genetic factors located in genomic regions that are difficult to access using SNPs. 373 

Such genetic variants are likely to be found in non-coding and TE-rich regions. Such variants may 374 

be in accessory genomic regions absent from the reference genome and not easily assessed through 375 

SNP calling. Missing heritability in human traits has been recovered by including rare genetic 376 

variants (Wainschtein et al. 2021). We show that incorporating genetic variants other than SNPs 377 

in plant pathogen GWAS increases trait heritability as well. We also found K-mers in extremely 378 

polymorphic regions of the core genome such as the regions surrounding the genes CYP51 and 379 

Avr3D1. Recent studies have shown that SVs such as chromosomal rearrangements and copy 380 

number variations contribute to adaptive evolution in pathogens (Peter et al. 2018; Firrao et al. 381 

2018; Badet et al. 2021). The K-mer approach broadly revealed three classes of loci: (1) loci 382 
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previously identified by SNP-based GWAS, (2) gene functions that were not identified through 383 

SNP-based GWAS but have independent evidence for their contribution to phenotypic trait 384 

variation (i.e. CYP51 and Avr3D1) and (3) previously unknown gene functions including genes 385 

encoding effector candidates for host manipulation and genes encoding detoxification functions 386 

(e.g. MFS transporters). The K-mer approach for GWAS has been successfully implemented for 387 

plants (Voichek and Weigel, 2020) and bacteria (Lees et al. 2016; Young et al. 2019). Here we 388 

provide strong evidence that such reference-free GWAS can also be successfully performed in 389 

eukaryotic microbial pathogens. 390 

Genetic variation in plant pathogens is characterized by high degrees of functionally relevant 391 

polymorphism as well as genomic plasticity underpinning accessory genes (Ehrlich et al. 2005; 392 

Hammond et al. 2020; Badet and Croll, 2020). Beyond this, we found substantial complexity in 393 

the genes underlying the expression of the same trait under different environmental conditions. 394 

Working with such highly diverse pathogen populations poses serious challenges for selecting 395 

appropriate reference genome resources. Here we show that GWAS conducted on multiple 396 

reference genome SNP datasets and using reference-free approaches effectively compensates for 397 

this genetic diversity. This is supported by our recovery of known causal loci for specific 398 

phenotypes, including loci missed by previous GWAS, as well as a general improvement in 399 

heritability for all traits. Further refinements of our approach should integrate recent developments 400 

such as pangenome graphs that might alleviate limitations of studies based on SNPs and single 401 

reference genomes. Leveraging a multitude of GWAS signals following our combinatorial 402 

approach is likely to significantly advance our mechanistic understanding of pathogen emergence 403 

and adaptation. 404 

 405 

  406 
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Methods 407 

Fungal material 408 

A collection of 145 Z. tritici isolates sampled independently from four different wheat fields was 409 

used in this study. The field isolates were sampled between 1990 and 2001 from four different 410 

countries (Zhan et al. 2005): Australia (n=27), Israel (n=30), Switzerland (n=32) and USA 411 

(Oregon.R, n=26; Oregon.S, n=30). The two Oregon populations were sampled from the wheat 412 

cultivar Madsen (moderately resistant) and Stephens (susceptible), growing simultaneously in the 413 

same field. Clones were removed from the field populations so that the analyzed panel comprises 414 

only strains with unique genotypes. Blastospores of each isolate were preserved in either 50% 415 

glycerol or anhydrous silica at −80°C.  416 

 417 

Phenotyping for host infection traits 418 

Datasets on virulence and reproduction for each pathogen strain were previously established by 419 

Dutta et al. (2020) (Supplementary Table S1). Virulence and reproduction were measured on 12 420 

genetically different wheat cultivars displaying varying degrees of resistance and susceptibility to 421 

STB. The wheat panel included six commercial varieties (Drifter, Gene, Greina, Runal, Titlis, 422 

Toronit), a back-cross line (ArinaLr34) and five landraces (1011, 1204, 4391, 5254, Chinese 423 

Spring). Four of the landraces (1011, 1204, 4391, 5254) came from the Swiss National Gene Bank 424 

(www.bdn.ch). Detailed phenotyping protocols are described in Dutta et al. (2020). Briefly, three 425 

seeds of each cultivar were planted in a six-pot strip arrayed in a 2 × 3 pattern. Due to space 426 

limitations, the experiment was conducted in two stages, each including six cultivars. All plants 427 

were maintained in a greenhouse chamber at 22 °C (day) and 18 °C (night) with 70% relative 428 

humidity (RH) and a 16-h photoperiod. Blastospores of each isolate were inoculated using an 429 

airbrush spray gun until run-off on two-week-old seedlings to initiate the infection process. In both 430 

stages, the inoculations were repeated separately three times to generate three biological 431 

replications in separate greenhouse chambers. All inoculated second leaves were collected 432 

between 19-26 days post inoculation (dpi) and fixed on QR-coded A4 paper for scanning. The 433 

scanned images were analyzed using automated image analysis (AIA; Karisto et al. 2018) to 434 
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generate quantitative data on the amount of damaged leaf tissue (i.e. virulence) and the density of 435 

pathogen fruiting bodies called pycnidia produced within the damage area (i.e. reproduction). 436 

Phenotyping for growth and stress-related traits 437 

In vitro traits comprised fungal growth rate (mm per day), thermal sensitivity, mean colony area, 438 

fungicide resistance and melanization measured at different temperatures with or without fungicide 439 

(Supplementary Table S2) following previously described phenotyping protocols (Lendenmann 440 

et al. 2014, 2015, 2016; Mohd-Assaad et al. 2016). Briefly, after revival from long-term storage, 441 

each isolate was cultured on Petri dishes filled with yeast malt sucrose agar (4 g/L yeast extract, 442 

4 g/L malt extract, 4 g/L sucrose, 50 mg/L kanamycin) for 4-5 days at 18 °C. Blastospore solutions 443 

were diluted using sterile water to a final concentration of 200 spores/ml using KOVA counting 444 

slides (Hycor Biomedical, Inc., Garden Grove, CA, USA). Petri dishes containing potato dextrose 445 

agar (PDA, 4 g/L potato starch, 20 g/L dextrose, 15 g/L agar) were inoculated with 500 µl of the 446 

spore solution. Inoculated plates were maintained at 15 °C (cold treatment) or 22 °C (control 447 

treatment) at 70% RH. Images were captured with a digital camera at 8, 11 and 14 days post 448 

inoculation (dpi) to generate five technical replicates. The photographs were analyzed using AIA 449 

macros in ImageJ as described in Lendenmann et al. (2014) to measure colony growth. The 450 

estimates of colony growth rate for each isolate were obtained by fitting a general linear model 451 

over three time points by taking the mean colony radii from 45 colonies. The growth rate ratio 452 

between colonies growing at 15 °C or 22 °C, or on 22 °C PDA plates with or without propiconazole 453 

(Syngenta, Basel, Switzerland; 0.05 ppm) were expressed as temperature and fungicide sensitivity 454 

at 14 dpi, respectively. Fungicide resistance was also quantified on microtiter plates by growing 455 

100 µl spore solutions at a concentration of 2.5 ´ 104 spores/ml of each isolate on 100 µl 456 

Sabouraud-dextrose liquid media (SDLM; 20 g/L dextrose, 5 g/L pancreatic digest of casein, 5 g/L 457 

peptic digest of animal tissue; Oxoid, Basingstoke, UK) with 12 different concentrations of 458 

propiconazole (0, 0.00006, 0.00017, 0.0051, 0.0086, 0.015, 0.025, 0.042, 0.072, 0.20, 0.55, 459 

1.5 ppm  propiconazole). Plates containing fungal spores amended with the fungicide of each 460 

isolate were gently shaken for one minute, sealed and incubated in the dark for four days at 22 °C 461 

with 80% RH. Three technical replicates of each isolate were performed. Fungal growth was 462 

estimated with an ELISA plate reader (MR5000, Dynatech) by examining the optical density (OD) 463 

at 605 nm wavelength. We estimated the EC50 value (concentration at which the growth was 464 
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reduced by 50%) for each isolate using dose-response curves across the varying fungicide 465 

concentrations using the drc v.3.0-1 package (Ritz et al. 2015) in the R-studio (R Core Team, 466 

2014). Melanization of each isolate was measured at 8, 11, 14 and 18 dpi during growth at 15°C, 467 

22°C and at 22°C with 0.05 ppm propiconazole. We measured the mean gray value of fungal 468 

colonies from replicated plates for each isolate ranging from 0 (black) to 255 (white) for each time 469 

point. To provide a more intuitive interpretation of melanization, each mean gray value was 470 

subtracted from 255 to transform the original melanization scale to range from 0 (white) to 255 471 

(black). 472 

Read mapping and single nucleotide polymorphism calling  473 

We used publicly available raw Illumina whole genome sequences of 145 Z. tritici isolates 474 

(Supplementary Table S3; Dutta et al. 2021). Trimmomatic v.0.36 (Bolger et al. 2014) was used 475 

with the following settings (illuminaclip = TruSeq3-PE.fa:2:30:10, leading = 10, trailing = 10, 476 

slidingwindow = 5:10, minlen = 50) to trim off low-quality reads and remove adapter 477 

contamination from each isolate. Trimmed sequence data from all isolates were aligned to the Z. 478 

tritici reference genome IPO323 (Goodwin et al. 2011) using Bowtie2 v.2.3.3 with the option “--479 

very-sensitive-local” (Langmead et al. 2009). We removed PCR duplicates from the alignment 480 

(.bam) files by using the MarkDuplicates module in Picard tools v.1.118 481 

(http://broadinstitute.github.io/picard). Single nucleotide polymorphism (SNP) calling and variant 482 

filtration steps were performed using the Genome Analysis Toolkit (GATK) v.4.0.1.2 (McKenna 483 

et al. 2010). We performed SNP calling for all 145 Z. tritici isolates independently using the GATK 484 

HaplotypeCaller with the command “-emitRefConfidence GVCF; -sample_ploidy 1” (Z. tritici is 485 

haploid). Then, GenotypeGVCFs was used to conduct joint variant calls on a merged gvcf variant 486 

file with the command -maxAltAlleles 2. SNPs found only in the joint variant call file were 487 

retained. As recommended by GATK Best Practices, we performed hard filtering of SNPs based 488 

on quality cut-offs using the GATK VariantFiltration and SelectVariants tools. Variants matching 489 

any of the following criteria were removed: QUAL < 250 (overall quality filter); QD < 20.0 490 

(avoiding quality inflation in high-coverage regions); MQ < 30.0 (avoid calls from ambiguously 491 

mapped reads); −2 > BaseQRankSum > 2; −2 > MQRankSum > 2; −2 > ReadPosRankSum > 2; 492 

FS > 0.1. Using this procedure, the genotyping accuracy was shown to be high and congruent with 493 

an alternative SNP caller (Hartmann et al. 2018). We retained a genotypic call rate of ≥80% and 494 
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minor allele frequency (MAF) > 5% to generate a final SNP dataset containing 883,207 biallelic 495 

SNPs based on the reference genome IPO323. We repeated the SNP calling and filtering procedure 496 

separately for 18 additional fully assembled Z. tritici genomes from Badet et al. (2020). The 497 

number of biallelic SNPs called on the 18 additional reference genomes ranged from 827,851 498 

(genome TN09) to 883,119 (genome I93; Supplementary Table S4).  499 

SNP-based genome-wide association mapping 500 

Log-transformed least-square means for each isolate ´ environment combination including 49 501 

traits were obtained from Dutta et al. (2021) to conduct genome-wide association (GWAS) 502 

mapping. We used a mixed linear model (MLM) approach implemented in the program GEMMA 503 

v.0.98 (Zhou and Stephens, 2012) to perform GWAS on all the traits. MLMs control for genetic 504 

relatedness and population structure (Kang et al. 2008; Zhang et al. 2012). Prior to GWAS, we 505 

converted all 19 SNP datasets (one per reference genome) into PLINK “.bed” format to perform 506 

principal component analyses (PCA) using the “--pca” command in PLINK v.1.90 (Purcell et al. 507 

2007). To account for genetic relatedness among isolates, a centered genetic relatedness matrix 508 

(GRM) for each SNP dataset was constructed using the option “-gk 1” in GEMMA by considering 509 

all genome-wide SNPs. As both PCA and GRM can efficiently control for p-value inflation, we 510 

estimated genomic inflation factors (GIF, l; Devlin and Roeder, 1999) to make decisions on 511 

whether PCs should be included in the GWAS models as covariates or not. The GIF for each trait 512 

was estimated as l = M/E, where M is the median of the observed chi-squared test statistics and E 513 

is the expected median of the chi-squared distribution (Yang et al. 2011). The distribution of all 514 

SNP effects follows a one degree of freedom chi-square distribution under the null hypothesis with 515 

a median of ~0.455, which can be inflated by discrepancies in allele frequencies caused by 516 

population structure, genetic relatedness, and genotyping errors. The inflation is proportional to 517 

the deviation from the null hypothesis. When the fitted GWAS model efficiently accounts for such 518 

systematic deviations, the l value is close to 1. Therefore, depending on the l value, the reference 519 

genome based GWAS were performed using either LMM+K or LMM+K+PC, where K is the 520 

GRM used as a random effect and the first three PCs were used as fixed covariates. We used the 521 

following LMM model in GEMMA: 522 

y = Wα + xb + u + e; u ~ MVNn(0, lτ-1K), e ~ MVNn(0, τ-1In)          523 
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where y represents a vector of phenotypic values for n individuals; W is a matrix of covariates 524 

(fixed effects with a column vector of 1 and the first three PCs), α is a vector of the corresponding 525 

coefficients including the intercept; x is a vector of the genotypes of the SNP marker, β is the effect 526 

size of the marker; u is a vector of random individual effects; ε is a vector of random error; τ-1 is 527 

the variance of the residual errors; λ is the ratio between the two variance components; K is the n 528 

× n genetic relatedness matrix and In is an n × n identity matrix and MVNn represents the 529 

multivariate normal distribution. We set the MAF to 5% with a maximum of 50% missing values 530 

with the option “-miss 0.5”. SNP p-values were estimated following a likelihood ratio test in 531 

GEMMA. We used the stringent Bonferroni threshold (α = 0.05; p = α / total number of SNPs) to 532 

define a SNP significantly associated with a phenotype. The proportion of phenotypic variance 533 

explained by the most significant SNPs was estimated by 2f(1-f)a2, where f is the minor allele 534 

frequency and a is the standardized coefficient (Gudbjartsson et al. 2008). To obtain the 535 

standardized coefficient for each SNP, we estimated the standardized regression coefficient 536 

applying a linear regression model with the “standard-beta” option implemented in PLINK v.1.9. 537 

We restricted this analysis only to the canonical reference genome IPO323. To identify genes close 538 

to significantly associated SNPs in one of the reference genomes (Badet et al. 2020), we used the 539 

BEDtools v.2.29.0 (Quinlan and Hall, 2010) closest command. We further investigated patterns of 540 

linkage disequilibrium (LD) in the genomic regions with the most significantly associated SNPs. 541 

All possible SNP pairs in 5 kb windows were analyzed using the “--hap-r2” command in vcftools. 542 

To visualize the r2 values, heatmaps for each locus were generated using the R package LDheatmap 543 

v.0.99-7 (Shin et al. 2006). We created a heatmap summarizing the number of significant SNPs 544 

passing the Bonferroni threshold for each trait and each genome using the R package pheatmap 545 

(Kolde, 2012). 546 

 547 

K-mer based genome-wide association mapping 548 

We performed K-mer based GWAS on all 49 traits in the panel of 145 Z. tritici isolates following 549 

the methodology described in Voichek and Weigel (2020). This approach uses raw sequencing 550 

reads of specific length and was designed for settings where a reference genome is lacking or to 551 

account for structural variation. K-mers of 25 bp length were counted with and without 552 

canonization, sorted and listed in a textual format for each isolate separately. K-mer canonization 553 
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refers to storing K-mers and their reverse-complement for generating presence/absence patterns 554 

since these sequences are indistinguishable (Voichek and Weigel, 2020). K-mer length has an 555 

impact on the number and accuracy of K-mers. For small genomes of the size of Z. tritici, 25-bp 556 

K-mers are recommended (Voichek and Weigel, 2020). K-mers were filtered based on the 557 

presence/absence patterns among isolates with a 5% MAF and compressed into a presence/absence 558 

table for running GWAS. There were 55,758,186 unique K-mers generated from 145 isolates. Prior 559 

to GWAS, a GRM was estimated with EMMA (Efficient Mixed-Model Association) that 560 

comprised an identity-by-state (IBS) matrix under the assumption that each K-mer has a small, 561 

random effect on the phenotype. GWAS was performed by using an LMM+K model in GEMMA 562 

with the likelihood ratio test to estimate p-values. A K-mer was considered to be significant when 563 

the p-value passed the permutation-based threshold as described in Voichek and Weigel (2020). 564 

The pairwise LD among significant K-mers for each trait was estimated by converting the K-mer 565 

presence/absence table containing all the K-mers into PLINK format and using the command “--566 

r2” in PLINK. We attempted to map all the significant K-mers for each trait to the Z. tritici 567 

reference genome IPO323 using the short-read aligner bowtie v1.2.2 (Langmead and Salzberg, 568 

2012) with the command “-a --best –strata”. We used the center position of the K-mer alignment 569 

to the reference genome as a coordinate to inspect nearby features using BEDtools. If no significant 570 

K-mer could be mapped to the reference genome, we retrieved the isolates carrying the specific 571 

K-mer and used the paired-end raw sequencing reads to detect the origin of the K-mer. These 572 

paired-end reads were then aligned to the canonical reference genome IPO323 using Bowtie2 573 

v.2.3.3 (Langmead and Salzberg, 2009). 574 

 575 

Heritability estimation using SNPs and K-mers 576 

We estimated SNP-based heritability on multiple reference genomes and K-mer-based heritability 577 

following the same procedure described in Dutta et al. (2021). Briefly, the phenotypic data of each 578 

trait and the GRM representing the additive effect of all genome-wide SNPs from the canonical 579 

reference genome IPO323 and K-mers were included in a genome-based restricted maximum 580 

likelihood (GREML) approach using the genome-wide complex trait analysis (GCTA) tool 581 

v.1.93.0 (Yang et al. 2011) to estimate heritability. GRMs for reference genome SNP datasets and 582 

the K-mer presence/absence table (converted into PLINK format) were estimated following a 583 
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normalized identity-by-state method and fitted as a random factor in the model to estimate the 584 

proportion of phenotypic variance for each trait. The following formula from Yang et al. (2011) 585 

was used to estimate the relatedness between two individuals: 586 

                                              Ajk= !
"

 ∑ #$!"%&'!(($"#%&'!)
&'!(!%'!)

"
+,!  587 

Where xij is the number of copies of the reference allele for the ith SNP of the jth individual and pi 588 

is the frequency of the reference allele and N is the number of SNPs. Here, the GRMs were 589 

constructed using all genome-wide SNPs and K-mers irrespective of the nature of their relationship 590 

with the phenotype, thus indicating the approximated genetic similarities at causal loci and the 591 

accuracy of the heritability estimates. 592 

Pangenome analyses 593 

We generated accumulation curves to estimate the gain in additional loci from performing GWAS 594 

on more than one reference genome. For this, we retrieved for each GWAS based on SNPs mapped 595 

to a particular reference genome the set of genes within 1 kb distance with significantly associated 596 

SNPs. Then, we matched the set of associated genes among genomes using within-species gene 597 

orthology information (Badet et al. 2020) to determine whether genes belong to the same 598 

orthogroup. We used a sampling procedure (without replacement) among reference genomes to 599 

assess the total number of distinct orthogroups with a significantly associated gene. The 600 

accumulation curves for 1-19 genomes were produced using the “specaccum” function in the R 601 

package vegan (Oksanen et al. 2011). We fitted an Arrhenius nonlinear model to the gene 602 

accumulation curve to visualize the distribution using the “random” and “fitspecaccum” 603 

commands. UpSetR package (Lex et al. 2014) was used to visualize the number of significantly 604 

associated genes identified by the multiple reference-based GWAS and K-mer GWAS. All other 605 

figures were generated using the R packages qqman (Turner, 2014) and ggplot2 v.3.1.0 (Wickham, 606 

2016). 607 

 608 

  609 
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Figure legends 986 
 987 

Figure 1. A comprehensive workflow for conducting microbial genome wide association studies 988 
(GWAS) using multiple reference genomes and K-mer data from mapping populations. Genetically 989 
diverse pathogen populations from different geographic locations are sampled to construct an association 990 
panel followed by greenhouse and laboratory phenotyping to assess heritable trait variation (right panel; 991 
Dutta et al. 2021). Chromosome-level genome assemblies of representative isolates is performed to generate 992 
reference genomes and establish a species pangenome (left panel; Badet el al. 2020). Whole genome 993 
sequencing of the association panel enables single nucleotide polymorphism (SNP) calling against multiple 994 
reference genomes and creation of K-mer presence/absence tables (middle panel). GWAS can be performed 995 
simultaneously to take advantage of SNP datasets or K-mer presence/absence tables. 996 
 997 

Figure 2. Genome wide association mapping based on 19 reference genomes for 49 pathogen traits 998 
measured under different host and abiotic conditions in Zymoseptoria tritici. (A) Heatmap showing 999 
differences in the number of significantly associated SNPs for each trait obtained for each reference 1000 
genome. Pathogen virulence (percentage of the leaf surface covered by necrotic lesions) and reproduction 1001 
(pycnidia density within lesions) were measured on 12 genetically diverse wheat lines. (B) Manhattan plots 1002 
showing SNP p-values for two traits (pathogen virulence in the left panel and melanization in presence of 1003 
fungicide in the right panel) on multiple reference genomes. The shaded gray boxes highlight differences 1004 
in significant associations found when using different reference genomes. The red line indicates the 1005 
Bonferroni threshold at a 5% significance level. Pathogen virulence and reproduction were measured on 12 1006 
genetically diverse wheat lines. 1007 
 1008 
Figure 3. Accumulation curves for the total number of distinct genes (identified by orthogroups 1009 
within the species) associated with GWAS for different traits as a function of the number of reference 1010 
genomes analyzed. Mapping outcomes are shown for different groups of traits. The numbers in parentheses 1011 
indicate the number of traits included in each category. Pathogen virulence (percentage of the leaf surface 1012 
covered by necrotic lesions) and reproduction (pycnidia density within lesions) were measured on 12 1013 
genetically diverse wheat lines.  1014 
 1015 
Figure 4. K-mer GWAS on 49 life-history traits based on a K-mer presence/absence table for all 145 1016 
Zymoseptoria tritici isolates. (A) Comparison of heritability estimates for pathogen virulence (percentage 1017 
of the leaf surface covered by necrotic lesions) based on SNPs (for the reference genome IPO323) and K-1018 
mers. Both SNP-based and K-mer-based heritability were estimated by following a genome-based restricted 1019 
maximum likelihood (GREML) approach. Standard errors are indicated by error bars (B) Alignment of 1020 
significantly associated K-mers against the reference genome (IPO323) show the proportion of K-mers 1021 
having a unique mapping position, multiple locations, or no unambiguous mapping position in host-related 1022 
traits i.e. pathogen virulence and reproduction (pycnidia density within lesions). (C) Proportion of 1023 
significant K-mers with a unique mapping position in the reference genome either tagging a gene or a 1024 
transposable element for host-related traits. (D, E) Manhattan plots showing significant K-mer associations 1025 
with pathogen reproduction and fungicide resistance together with quantile-quantile plots for p-value 1026 
comparisons. Manhattan plots were created from SNP-based GWAS and blue dots represents the significant 1027 
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K-mer associations with the K-mers being uniquely mapped to a location in the reference genome. The two 1028 
blue dots represent individual K-mers with significant associations. The red and blue lines indicate the 1029 
Bonferroni and permutation-based significance threshold at 5% level for SNPs and K-mers, respectively. 1030 
Pathogen virulence and reproduction were measured on 12 genetically diverse wheat lines. Overall 1031 
virulence and reproduction represent the average value of the respective trait measured on 12 genetically 1032 
diverse wheat lines. Reproduction specificity was estimated based on the adjusted coefficient of variation 1033 
of mean reproduction across 12 genetically diverse wheat lines. Higher specificity suggests affinity to 1034 
certain hosts for maximizing reproductive fitness. 1035 
 1036 
Figure 5. Analysis of K-mer GWAS identifying causal genes underlying major phenotypes in 1037 
Zymoseptoria tritici. (A) Manhattan plot showing significant K-mers associated with fungicide resistance. 1038 
The two blue dots represent all 294 significant K-mers with a unique genomic position on chromosome 1039 
seven tagging the CYP51 gene encoding the target of azole fungicides. The red and blue lines show the 1040 
Bonferroni and permutation-based significance threshold (α=0.05) for SNP and K-mer GWAS, 1041 
respectively. (B) Quantile-Quantile plot showing the p-value comparison between SNPs and K-mer based 1042 
GWAS. (C) Physical position of 294 significant K-mers mapped to unique positions on chromosome seven 1043 
associated with the fungicide resistance gene CYP51. (D) Linkage disequilibrium (LD) heatmap showing 1044 
the pairwise r2 value among 294 significant K-mer presence/absence genotypes associated with the CYP51 1045 
gene. (E) Proportion of isolates from different populations carrying significant K-mers that tagged CYP51. 1046 
(F) Boxplot showing fungicide resistance levels in isolates with presence of the K-mers associated with the 1047 
CYP51 gene. 1048 
 1049 

Figure 6. K-mer based GWAS recovered a known effector gene in Zymoseptoria tritici with a higher 1050 
statistical power than SNP-based GWAS. (A) Manhattan plot showing significant K-mers associated 1051 
with pathogen virulence on the wheat cultivar Runal. The two blue dots represent all 11 K-mers uniquely 1052 
mapping to positions on chromosome seven and tagging the avirulence gene Avr3D1 encoding an effector 1053 
protein. The red and blue lines indicate the Bonferroni and permutation-based significance threshold 1054 
(α=0.05) for SNP and K-mer GWAS, respectively. (B) Quantile-Quantile plot showing the p-value 1055 
comparison between SNPs and K-mers. (C) Physical position of 11 uniquely mapped K-mers on 1056 
chromosome seven associated with Avr3D1. (D) Linkage disequilibrium (LD) heatmap showing the 1057 
pairwise r2 value among 11 significant K-mers associated with Avr3D1. (E) Presence/absence pattern of 11 1058 
significant K-mers associated with Avr3D1 in five Z. tritici populations. The continuous horizontal blue 1059 
line indicates isolates containing all the significant K-mers. (F) Boxplot showing pathogen virulence 1060 
(percentage of the leaf surface covered by necrotic lesions) on the wheat cultivar Runal in isolates with or 1061 
without the significant K-mers associated with Avr3D1. 1062 
 1063 
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