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ABSTRACT 

Single-cell multiomics can provide comprehensive insights into gene regulatory 

networks, cellular diversity, and temporal dynamics. While tools for co-profiling the single-cell 

genome, transcriptome, and epigenome are available, accessing the proteome in parallel is 

more challenging. To overcome this limitation, we developed nanoSPLITS (nanodroplet 

SPlitting for Linked-multimodal Investigations of Trace Samples), a platform that enables 

unbiased measurement of the transcriptome and proteome from same single cells using RNA 

sequencing and mass spectrometry-based proteomics, respectively. We demonstrated the 

nanoSPLITS can robustly profile > 5000 genes and > 2000 proteins per single cell, and identify 

cell-type-specific markers from both modalities.   
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MAIN 

 Multicellular organisms contain a variety of cell populations and subpopulations, which 

are well-organized in defined patterns to implement critical biological functions. The 

development and rapid dissemination of single-cell omic technologies have dramatically 

advanced our knowledge on cellular heterogeneity,1-3 cell lineages,4 and rare cell types.5 

However, most existing technologies only capture single modalities of molecular information. 

Such measurement provides only a partial picture of a cell’s phenotype, which is determined by 

the interplay between genome, epigenome, transcriptome, proteome, and metabolome. Indeed, 

proteins are of particular interest in establishing cellular identities because they are the 

downstream effectors and their abundance cannot be easily inferred from other modalities, 

including mRNA6. While the simultaneous acquisition of multiple modalities such as 

transcriptome-genome7 and transcriptome-epigenome8 have demonstrated great depth and 

sensitivity, multimodal transcriptome-proteome9-12 measurements are restricted to at most a few 

hundred protein targets. These measurements also require intermediate antibodies to recognize 

epitopes, which can be limited by availability and specificity13.  

A route for overcoming these limitations is through the adoption of a mass spectrometry-

based proteomics approach. With the advance of microfluidic sample preparation14 and isobaric 

labeling15, single-cell proteomics (scProteomics) is now capable of measuring thousands of 

proteins from single cells in an unbiased manner.16 Encouraged by these developments, we 

sought to acquire multimodal transcriptome-proteome measurements from the same single cell 

by integrating single-cell RNA sequencing (scRNAseq) with scProteomics. To enable efficient 

integration, we developed nanoSPLITS (nanodroplet SPlitting for Linked-multimodal 

Investigations of Trace Samples), a method capable of equally dividing nanoliter-scale cell 

lysates via two droplet microarrays and separately measuring them with RNA sequencing and 

mass spectrometry. NanoSPLITS builds on the nanoPOTS platform that allows for high-
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efficiency proteomic preparation of single cells by miniaturizing the assay volumes to nanoliter 

scale volumes16,17. We have previously demonstrated reaction miniaturization not only reduces 

non-specific adsorption-related sample losses, but also enhances enzymatic digestion 

kinetics.18 Similarly, we reason the use of nanoliter droplets can improve overall sample 

recovery of both mRNA transcripts and proteins for sensitive single-cell multiomics. 

 

 

The overall workflow of the nanoSPLITS-based single-cell multiomics platform is 

illustrated in Fig. 1. Briefly, we employed an image-based single-cell isolation system to directly 

sort single cells into our optimized lysis buffer, followed by a freeze-thaw cycle to achieve cell 

lysis. Next, the microchip containing single-cell lysate was manually aligned with a separate chip 

containing only cell lysis buffer. The droplet arrays in the two chips were merged and separated 

for three rounds to achieve complete mixing (Supplementary Movie 1). One chip containing 

approximately half of the cell lysate can then be transferred into 384-well plate for scRNAseq 

based on Smart-seq 21. For scProteomics, the remaining ~50% lysate is digested with a DDM-

Fig.1: Overview of the nanoSPLITS-based single-cell multiomics platform. Schematic illustration showing 

the workflow including cell sorting, lysis, droplet merging/mixing, and droplet separation for downstream 

scRNAseq and scProteomics measurement.  
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based sample preparation protocol and directly analyzed with an ion-mobility-based MS data 

acquisition method19. Notably, when the same droplet volume (200 nL) was used in an 

evaluation experiment with a model fluorescent dye, the nanoSPLITS procedure can achieve 

splitting ratios between 46% to 47%, with 50% representing an equal split (Supplementary Fig. 

S1 and Supplementary Table S1). 

We first determined the optimal cell lysis buffer that is compatible with both 

scProteomics and scRNAseq workflows. Typically, scProteomics utilizes a buffer containing 

0.1% n-dodecyl-β-D-maltoside (DDM) to reduce non-specific binding of proteins to surfaces14, 

while scRNAseq includes recombinant protein-based RNase inhibitors to reduce mRNA 

degradation. To evaluate their impacts on both methods, we tested these additives in a 

moderately buffered hypotonic solution (10 mM Tris, pH 8) with 20 mouse alveolar epithelial 

cells (C10) (Supplementary Fig.  S2). In short, we found the inclusion of 1 x RNase inhibitor 

suppressed proteomic identifications while 0.1% DDM had no significant impact on 

transcriptomic identifications. Furthermore, the removal of RNase inhibitor from RNAseq 

analysis had minimal effect on transcriptomic identifications. Therefore, we decided on a 10 mM 

Tris solution with 0.1% DDM as the cell lysis buffer for nanoSPLITS.  

To evaluate the nanoSPLITS method, we sorted several quantities (11, 3, and 1) of C10 

cells and measured them using the multiomics workflow (Fig. 2). Considering a 5 read minimum 

per gene for transcriptome identification and 1% FDR cutoff for protein identification, robust 
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coverage of both genes and proteins could be achieved across all tested conditions (Fig. 2a). 

 

As expected, coverage was reduced with the decreasing cell numbers. Single-cell 

transcriptome and proteome measurements provided 5,848 and 2,934 identifications on 

average, respectively. We next evaluated the quantitative reproducibility for each modality by 

calculating the coefficients of variations (CVs) of transcriptome and proteome abundances. 

Median transcriptome CVs ranged from 0.49 for 11 cells to 0.68 for single cells, while proteome 

median CVs ranged from 0.17 for 11 cells to 0.34 for single cells (Fig. 2b). The modestly higher 

Fig. 2: Quantitative and qualitative assessment of transcriptome and proteome measurements after 

nanoSPLITS.  

(a) Average numbers of detected genes and proteins. Error bars indicate standard deviations (±s.d.). (b) 

Distributions of the coefficients of variation (CV) for all proteins and genes with at least 2 observations. Indicated 

values represent median CV, which is also indicated at the center point within each distribution. (c) The ratios of 

protein abundance were calculated for comparisons between the different pooled cell samples (11 vs 1, 11 vs 3, 

and 3 vs 1). Experimental median is indicated at the black crossbar while the theoretical ratio for each 

comparison is shown at the red dotted line within each boxplot. (d) Pearson correlation heatmap with clustering of 

transcriptomics and proteomics results. (e) Cellular component gene ontologies were determined for each gene 

(scRNAseq) and protein (scProteomics) found in the single -cell data. 
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CVs for single cells were expected, as the mixed cell populations represent averages of the 

underlying biological variations. Notably, we observed significantly higher CVs for the 

transcriptome compared to proteome, in agreement with recent reports16,20. Presumably, these 

higher CVs reflect the dynamic nature of mRNA relative to their protein counterparts, which 

have longer half-lives on average21. We next compared the ratios of the measured protein 

abundances between the different cell populations. Encouragingly, the experimental fold 

differences between the median intensities for 11, 3, and 1 C10 cell are very close to the 

expected theoretical values (Fig. 2c). For example, the median protein abundance ratio for 3 

cells compared to single cells was 3.34, within 12% of the theoretical 3-fold difference. Taken 

together, these results provide strong evidence that nanoSPLITS-based single-cell multiomics 

platform can provide sensitive and reproducible measurement of both the transcriptome and 

proteome of the same single cells. 

We next determined the Pearson correlation coefficients (r) across and within modalities 

using conceptually-similar normalized transformations for each modality (Fig. 2d; TPM, 

transcripts per million for transcriptomics, and riBAQ, relative intensity-based absolute 

quantification for proteomics). In line with the CV distributions (Fig. 2b), proteomics data had a 

better agreement between samples compared with transcriptomics data, once again highlighting 

the dynamic nature of transcriptome where many genes are often expressed in short 

transcriptional “bursts” 21. To ensure nanoSPLITS did not introduce a bias toward different 

cellular components due to the nanodroplet splitting process, we also investigated the 

distribution of gene and protein identifications in single cells across several gene ontologies 

(GO).We found scProteomics and scRNAseq had corresponding identifications within cellular 

components that encompassed all major organelles (Fig. 2e). Furthermore, 1,521 proteins from 

the scProteomics analyses have GO localizations to the nucleus, 219 of which of have known 

roles in transcription. This is notable as nuclear proteins are typically drivers in gene regulation  
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Fig.3: Underlying cell phenotype signatures are maintained after nanoSPLITS. (a). Pearson correlation 

heatmap with clustering of transcriptomics and proteomics results for both single C10 and SVEC cells. (b) 

Distributions of Pearson correlations, separated by cell type and modality (scProteomics and scRNAseq). (c) The 

overlap in gene and protein identifications were determined for each modality separately, as well as across the 

modalities. (d) Top 5 gene markers from scRNAseq data and protein markers from scProteomics data were 

determined for each cell type. Candidate marker features were determined using a Wilcoxon Rank Sum test 

(FDR corrected p-values <0.001). (e) Weighted-nearest neighbor (WNN) UMAP generated using Seurat in order 

to integrate the scRNAseq and scProteomic data. Middle and right panels are colored based on H2-K1 gene 

(purple) and protein (red) expression, respectively. (f) UMAP generated for C10 cells based on cell-cycle features 

measured in the scRNAseq data. Middle and right panels are colored based on Cdk1 gene (purple) and protein 

(red) expression, respectively. All expression values shown in d, e, and f are derived from Z-scores after scaling 

and centering of data.  
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and transcription, and current multimodal technologies have been limited in the ability to directly 

measure nuclear protein abundances. 

Having established baseline characteristics of multimodal data, we then applied 

nanoSPLITS to a larger single-cell multimodal analysis encompassing two cell types, mouse 

epithelial (C10) and endothelial cells (SVEC). Because the nanoSPLITS approach uses only 

half the mRNA or protein contents, we sought to determine whether the multimodal 

measurements could precisely distinguish the two cell types and detect gene or protein 

markers. As shown in Fig. 3a, both cell types and modalities could easily be clustered based on 

correlations alone. In line with our pilot experiment, within-modality correlations were higher in 

scProteomics than scRNAseq for both cell types (Fig. 3b).  Cross-modality correlation analysis 

between scRNAseq and scProteomics produced r ranging from 0.31 to as high as 0.56, which 

fell in the range of previously reported mRNA-protein correlations21. We also compared the 

cross-modality correlations between the same single cells (intracell) and the correlations 

between different single cells (intercell). As shown in Fig. 3b, no significant difference was 

observed. This is not entirely unsurprising, considering most of the variation between different 

cells can be attributed to only a small number of genes driving cell cycle progression. These low 

numbers of genes would not have a significant impact on global correlations. Overall, SVEC 

cells had slightly lower correlations across the board, presumably due to their smaller cell size 

and corresponding reduced measurement depth and precision (Supplementary Fig. S3). The 

protein/ gene overlap analysis demonstrates how measurement depth is strongly linked to cell 

size (Fig. 3c). On average, C10 cells had  ~1,800 overlapping identifications while SVEC cells 

had ~900 overlapping identifications across modalities. Next, we evaluated if the multiomics 

data could be used to identify cell-type-specific marker genes and proteins. Fig. 3d shows the 

top-5 significant enriched genes and proteins for each cell type. Interestingly, the overlap of 
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these significant markers was relatively low. Despite this, the previously established SVEC-cell 

marker H2-K1 was identified here at both the protein and mRNA level (Fig. 3d)22. 

Dimensionality reduction with principal component analysis (PCA) showed delineation of 

both cell types for scRNAseq and scProteomics despite only having half the cell contents 

(Supplementary Fig. S4). The integration of both modalities through an unsupervised weighted 

nearest neighbor (WNN)23 analysis provided robust clustering in the two-dimensional space 

(Fig. 3e). This also provided us the ability to visualize both protein and mRNA abundances, 

confirming H2-K1 to be a marker that is differentially expressed at the protein and gene level 

(Fig. 3c). Using canonical cell cycle markers24 we could also identify sub-populations 

constituting specific cell cycle phases, demonstrating that even subtle cell to cell variation was 

retained after the droplet splitting process (Fig. 3d) . For example, the well-established marker 

cyclin-dependent kinase 1 (Cdk1) is upregulated at the transcriptional and translational level in 

S and G2M phase C10 cells (Fig. 3f, Supplementary Fig. S5, and Supplementary Fig. S6). 

Taken together, we demonstrate how the nanoSPLITS approach can enable multimodal 

profiling of thousands of mRNA transcripts and proteins from the same single cells. The 

multiomics data allowed us to precisely quantify the abundances of both mRNA transcripts and 

proteins and identify marker genes and proteins from both modalities. Compared with previous 

technologies that utilize antibodies to infer protein abundances, the nanoSPLITS platform 

employs mass spectrometry to unbiasedly detect proteins, which is highly valuable for 

uncovering rare cell populations that lack reliable protein markers. We expect nanoSPLITS 

could become a powerful discovery tool for biomedical applications, such as characterizing 

tissue heterogeneity and circulating tumor cells. Notably, nanoSPLITS is not restricted to the 

two modalities (transcriptomics and proteomics); other modalities such as metabolomics, 

genomics, and epigenomics can conceptually be integrated into the workflow. As more 

analytical frameworks for integrating multimodal data are created, we anticipate nanoSPLITS 
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will enable greater insight into how different modalities interact with each other to control single-

cell phenotypes in various contexts such as perturbations, mitosis/meiosis, and differentiation.  

Although a low throughput approach was employed in this study, high-throughput 

multiplexing approaches such as CEL-Seq25 for transcriptomics and SCoPE-MS15 for 

proteomics can be readily integrated into the nanoSPLITS workflow. The integration of 

multiplexing approaches to nanoSPLITS would enable analysis of thousands of single cells with 

reasonable instrument time and overall cost26. Finally, recent advances in multimodal single-cell 

data analysis have enabled new avenues for harmonization across modalities by means of 

multi-omic datasets as molecular bridges27. The generation of proteome and transcriptome 

bridge datasets could readily be accomplished using nanoSPLITS, opening the proteome to 

reference mapping. 

METHODS 

Reagents and chemicals 

Deionized water (18.2 MΩ) was purified using a Barnstead Nanopure Infinity system (Los 

Angeles, CA, USA). n-dodecyl-β-D-maltoside (DDM), iodoacetamide (IAA), ammonium 

bicarbonate (ABC), and formic acid (FA) were obtained from Sigma (St. Louis, MO, USA). 

Nuclease-free water (not DEPC-treated) ,Trypsin (Promega, Madison, WI, USA) and Lys-C 

(Wako, Japan) were dissolved in 50 mM ABC before usage. Dithiothreitol (DTT, No-Weigh 

format), acetonitrile (ACN) with 0.1% FA, and water with 0.1% FA (MS grade) were purchased 

from Thermo Fisher Scientific (Waltham, MA, USA). SMART-Seq V4 Plus kit (Cat# R400753) 

was purchased from Takara Bio USA. 

Design, fabrication, and assembly of the nanoSPLITS chips 

The nanoSPLITS chips were fabricated using standard photolithography, wet etching, and 

silanization as described previously18,28. Two different chips were designed and used in this 
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study. Both contained 48 (4 x12) nanowells with a well diameter of 1.2 mm. The inter-well 

distance for the first chip was 2.5 mm while the second was 4.5 mm. Chip fabrication utilized a 

25 mm x 75 mm glass slide pre-coated with chromium and photoresist (Telic Company, 

Valencia, USA). After photoresist exposure, development, and chromium etching (Transene), 

select areas of the chip were protected using Kapton tape before etching to a depth of ~5 µm 

with buffered hydrofluoric acid. The freshly etched slide was dried by heating it at 120 °C for 1 h 

and then treated with oxygen plasma for 3 min (AP-300, Nordson March, Concord, USA). 2% 

(v/v) heptadecafluoro-1,1,2,2-tetrahydrodecyl-dimethylchlorosilane (PFDS, Gelest, Germany) in 

2,2,4-trimethylpentane was applied onto the chip surface and incubated for 30 min to allow for 

silanization. The remaining chromium covering the wells was removed with etchant, leaving 

elevated hydrophilic nanowells surrounded by a hydrophobic background. To prevent retention 

of mRNA via interaction with free silanols on the hydrophilic surface of the nanowells, freshly 

etched chips were exposed to chlorotrimethylsilane under vacuum overnight to passivate the 

glass surface.  A glass frame was epoxied to a standard glass cover slide so that it could be 

easily removed from the 2.5 mm inter-well distance chips for droplet splitting. For the 4.5 mm 

inter-well distance chips, PEEK chip covers were machined to fit the chip. Chips were wrapped 

in parafilm and aluminum foil for long-term storage and intermediate steps during sample 

preparation. 

Cell culture 

Two murine cell lines (NAL1A clone C1C10 is referred to as C10 and is a non-transformed 

alveolar type II epithelial cell line derived from normal BALB/c mouse lungs; SVEC4-10, an 

endothelial cell line derived from axillary lymph node vessels) were cultured at 37°C and 5% 

CO2 in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum and 1× 

penicillin-streptomycin (Sigma, St. Louis, MO, USA). The cultured cell lines were collected in a 

15 ml tube and centrifuged at 1,000 × g for 3 min to remove the medium. Cell pellets were 
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washed three times by PBS, then counted to obtain cell concentration. PBS was then added to 

achieve a concentration of 200 x 106 cells/mL. Immediately before cell sorting, the cell-

containing PBS solution was passed through a 40 µm cell strainer (Falcon™ Round-Bottom 

Polystyrene Test Tubes with Cell Strainer Snap Cap, FisherScientific) in order to remove 

aggregated cells. 

CellenONE cell sorting 

Before cell sorting, nanoSPLITS chips were prepared by the addition of 200-nL hypotonic 

solution consisting of 0.1% DDM in 10 mM Tris to each nanowell. A CellenONE instrument 

equipped with a glass piezo capillary (P-20-CM) for dispensing and aspiration was utilized for 

single-cell isolation. Sorting parameters included a pulse length of 50 µs, a nozzle voltage of 80 

V, a frequency of 500 Hz, a LED delay of 200 µs, and a LED pulse of 3 µs. The slide stage was 

operated at dew-point control mode to reduce droplet evaporation. Cells were isolated based on 

their size, circularity, and elongation in order to exclude apoptotic cells, doublets, or cell debris. 

For C10 cells, this corresponded to 25 to 40 µm in diameter, maximum circularity of 1.15, and 

maximum elongation of 2, while SVEC cells were 24 to 32 µm in diameter, maximum circularity 

of 1.15, and maximum elongation of 2. All cells were sorted based on brightfield images in real 

time. The pooled C10 experiment had 11, 3, and 1 C10 cells sorted into each nanowell on a 

single 2.5 mm inter-well distance chip. For the SVEC and C10 comparison experiment, a single 

48 well chip with 4.5 mm inter-well distance was used for each cell type and had a single cell 

sorted into each well. To perform the transferring identifications based on FAIMS filtering (TIFF) 

methodology for scProteomics19, a library chip was also prepared containing 20 cells per 

nanowell, with each cell type sorted separately on the same chip to reduce technical variation. 

After sorting, all chips were wrapped in parafilm and aluminum foil before being snap-frozen and 

stored at -80ºC, which partially served to induce cell lysis via freeze-thaw. All associated 
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settings, single-cell images, and metadata can be accessed at the GitHub repository provided 

(https://github.com/Cajun-data/nanoSPLITS). 

NanoSPLITS process 

To accomplish splitting of the cell lysate, chips were first allowed to thaw briefly on ice. For each 

split, a complementary chip was prepared that contained the same 200 nL of 0.1% DDM in 10 

mM Tris on each nanowell. The bottom chip containing the cell lysate was placed on an 

aluminum chip holder that was pre-cooled to 4ºC within a PCR workstation (AirClean Systems 

AC600). Precut 1/32” thick polyurethane foam was placed around wells on the exterior of this 

bottom chip while the top chip was slowly lowered onto the polyurethane foam (Supplementary 

Movie 1). Wells were manually aligned for each chip before manual pressure was applied 

equally across the chip in order to merge the droplets for each chip. Pressure was held for 15 

seconds before releasing. The droplets were merged twice more following this process. For 

consistency, the top chip which received 50% of the lysate was used for scRNAseq in all 

experiments while the bottom chip that initially contained the cell lysate was utilized in 

scProteomics. After merging, the top chip was immediately transferred into a 96-well or 384-well 

UV-treated plate containing RT-PCR reagents. For the pooled C10 (11, 3, and 1 cell) 

experiment, the transfer was performed by adding 1µL of RT-PCR buffer to each nanowell 

before withdrawing the entire volume and adding it to a 96-well plate. For the C10 and SVEC 

comparison experiment, the transfer was accomplished by laying the 4.5 mm inter-well distance 

chip onto a 384-well plate containing wells with the RT-PCR mix, sealed with a PCR plate seal, 

and then centrifuged at 3,500 x g for 1 minute.  

Sample preparation and LC-MS/MS analysis for scProteomics 

All post-split chips were first allowed to dry out before placing them into the humidified 

nanoPOTS platform for sample processing. Protein extraction was accomplished by dispensing 
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150 nL of extraction buffer containing 50 mM ABC, 0.1% DDM, 0.3X diluted PBS, and 2 mM 

DTT, and incubating the chip at 60ºC for 60 min. Denatured and reduced proteins were 

alkylated through the addition of 50 nL 15 mM IAA before incubation for 30 min in darkness at 

room temperature. Alkylated proteins were then digested by adding 50 nL 50 mM ABC with 0.1 

ng/nL of Lys-C and 0.4 ng/nL of trypsin and incubating at 37ºC overnight. The digestion reaction 

was then quenched by adding 50 nL of 5% formic acid before drying the chip under vacuum at 

room temperature. All chips were stored in a -20ºC until LC-MS analysis. 

We employed the in-house assembled nanoPOTS autosampler for LC-MS analysis. The 

autosampler contains a custom packed SPE column (100 μm i.d., 4 cm, 5 μm particle size, 300 

Å pore size C18 material, Phenomenex) and analytical LC column (50 μm i.d., 25 cm long, 1.7 

μm particle size, 190 Å pore size C18 material, Waters) with a self-pack picofrit (cat. no. PF360-

50-10-N-5, New Objective, Littleton, MA). The analytical column was heated to 50 °C using 

AgileSleeve column heater (Analytical Sales and services, Inc., Flanders, NJ). Briefly, samples 

were dissolved with Buffer A (0.1% formic acid in water) on the chip, then trapped on the SPE 

column for 5 min. After washing the peptides, samples were eluted at 100 nL/min and separated 

using a 60 min gradient from 8% to 35% Buffer B (0.1% formic acid in acetonitrile). 

An Orbitrap Eclipse Tribrid MS (Thermo Scientific) with FAIMSpro, operated in data-dependent 

acquisition mode, was used for all analyses. Source settings included a spray voltage of 2,400 

V, ion transfer tube temperature of 200ºC, and carrier gas flow of 4.6 L/min. For the TIFF test 

samples19, ionized peptides were fractionated by the FAIMS interface using internal CV 

stepping (-45, -60, and -75 V) with a total cycle time of 0.8 s per CV. Fractionated ions within a 

mass range 350-1600 m/z were acquired at 120,000 resolution with a max injection time of 500 

ms, AGC target of 1E6, RF lens of 30%. Tandem mass spectra were collected from the ion trap 

with an AGC target of 20,000, a “rapid” ion trap scan rate, an isolation window of 1.4 m/z, a 

maximum injection time of 120 ms, and a HCD collision energy of 30%. For the TIFF library 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492137doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492137
http://creativecommons.org/licenses/by/4.0/


samples, a single CV was used for each LC-MS run with slight modifications to the above 

method where cycle time was increased to 2 s and maximum injection time was set to 118 ms. 

Precursor ions with a minimum intensity of 1E4 were selected for fragmentation by 30% HCD 

and scanned in an ion trap with an AGC of 2E4 and an IT of 150 ms.  

RT-PCR, sequencing, and read mapping for scRNAseq 

Following the transfer of samples into a 384-well plate containing RT-PCR buffer with 3’ 

SMART-Seq CDS Primer IIA (SMART-Seq® v4 PLUS Kit, TaKaRa, cat# R400753); the 

samples were immediately denatured at 72ºC for 3 min and chilled on ice for at least 2 min.  Full 

length cDNA was generated by adding RT mix to each tube and incubating at 42ºC for 90 min; 

followed by heat inactivation at 70ºC for 10 min. 18 cycles of cDNA amplification were done to 

generate enough cDNA for template library according to SMART-Seq® v4 PLUS Kit instruction. 

The SMART-Seq Library Prep Kit and Unique Dual Index Kit (TaKaRa, cat# R400745) were 

used to generate barcoded template library for sequencing. Single-read sequencing of the 

cDNA libraries with a read length of 150 was performed on NextSeq 550 Sequencing System 

using NextSeq 500/550 High Output v2 kit (150 cycles, Illumina, cat#20024907). Data quality 

was assessed with fastqc and read-trimming was conducted using bbduk. Reads were aligned 

to the mouse genome (Genome Reference Consortium Mouse Build 39) using STAR 

(https://github.com/alexdobin/STAR). BAM file outputs were mapped to genes using htseq-

count29 with default settings. TPM counts were derived using an R script based on TPM 

procedure30.  

Database searching and data analysis 

All proteomic data raw files were processed by FragPipe31 version 17.1 and searched against 

the Mus musculus UniProt protein sequence database with decoy sequences (Proteome ID: 

UP000000589 containing 17,201 forward entries, accessed 12/02/21). Search settings included 
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a precursor mass tolerance of +/- 20 ppm, fragment mass tolerance of +/- 0.5 Da, deisotoping, 

strict trypsin as the enzyme, carbamidomethylation as a fixed modification, and several variable 

modifications, including oxidation of methione, and N-terminal acetylation. Protein and peptide 

identifications were filtered to a false discovery rate of less than 0.01 within FragPipe. For the 

TIFF method, IonQuant32 match-between-runs (MBR) and MaxLFQ were set to “TRUE” and 

library MS datasets were assigned as such during the data import step. An MBR FDR of 0.05 at 

ion level was used to reduce false matching. FragPipe result files were then imported into 

RStudio (Build 461) for downstream analysis in the R environment (version 4.1.3). All of the 

figures generated and associated code are included in R markdown files at the nanoSPLITS 

GitHub repository  (https://github.com/Cajun-data/nanoSPLITS). 

DATA AVAILABILITY 

The mass spectrometry raw data have been deposited to the ProteomeXchange Consortium via 

the MassIVE partner repository with dataset identifier MSV000089280 (FTP Password: 

Nano4108). The raw RNA-seq data has been deposited to the Gene Expression Omnibus 

(GEO) under the identifier GSE201575.  

CODE AVAILABILITY 

All scripts, tables, single-cell images, and metadata used for figure generation are available at 

the nanoSPLITS GitHub repository (https://github.com/Cajun-data/nanoSPLITS). 
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