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Abstract

Computational pathology is a domain of increasing scientific and social in-
terest. The automatic analysis of histopathology images stained with Hema-
toxylin and Eosin (H&E) can help clinicians diagnose and quantify diseases.
Computer vision methods based on deep learning can perform on par or
better than pathologists in specific tasks [1, 2, 15]. Nevertheless, the visual
heterogeneity in histopathology images due to batch effects, differences in
preparation in different pathology laboratories, and the scanner can produce
tissue appearance changes in the digitized whole-slide images. Such changes
impede the application of the trained models in clinical scenarios where there
is high variability in the images. We introduce stainlib, an easy-to-use and
expandable python3 library that collects and unifies state-of-the-art meth-
ods for color augmentation and normalization of histopathology H&E images.
stainlib also contains recent deep learning-based approaches that perform
a robust stain-invariant training of CNN models. stainlib can help re-
searchers build models robust to color domain shift by augmenting and har-
monizing the training data, allowing the deployment of better models in the
digital pathology practice.
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Code Metadata

Current code version

Nr. Code metadata description 1.0.0
C1 Current code version 1.0.0
C2 Permanent link to code/repository

used for this code version
https :
//github.com/sebastianffx/stainlib

C3 Code Ocean compute capsule
C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
python, jupyter notebook

C7 Compilation requirements, operat-
ing environments & dependencies

scikit-image, scipy, pillow, opencv-
python, spams

C8 If available Link to developer docu-
mentation/manual

C9 Support email for questions juan.otalora@etu.unige.ch

Table 1: Code metadata (mandatory).

1. Motivation and significance1

During the last decade, the automatic analysis of digital pathology images2

has increased until the point where commercial products are now available,3

and new ones are being cleared by health control and supervision organiza-4

tions. In research, modern computational pathology techniques are based5

on the steady development of deep learning algorithms and deep convolu-6

tional neural networks (CNN) [13, 9]. Shifting from handcrafted features7

towards end–to–end training of deep learning models made it possible to8

automatically detect cancer in digitized histopathology images, both, in im-9

age regions and at the whole-slide-image level, with performances previously10

unseen [1, 2].11

Methods have become more reliable, achieving in some cases a perfor-12

mance that is comparable to pathologists for specific segmentation and clas-13

sification tasks [1, 5, 2, 15, 9, 12]. Despite the remarkable good performance14

of some methods, there are still technical barriers that prevent the translation15

of these advances into clinical applications [17]. A clinically applicable deep16

learning method needs to be able to cope with the heterogeneity in the color17
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Figure 1: Training images with H&E concentrations that are noticeable different from
external test sets can lead to model misclassifications; image taken from [14]. P(GP3) and
P(GP4) stands for probability of the image region to contain Gleason patterns 3 and 4
respectively.

of the images that arises from preparing and staining the tissue samples in18

the pathology laboratory [14, 19]. Stains are chemical reagents that attach to19

specific proteins and that are used to enhance the contrast between different20

tissue structures for their examination under a microscope by a pathologist.21

The most commonly used stains are a combination of hematoxylin and eosin22

(H&E). These two reagents highlight the nuclei DNA content with a dark23

blue-purple color (Hematoxylin) and cytoplasm and stromal matrix contents24

with a light pink-red color (Eosin), see Figure 1 for exemplar H&E stained25

image regions of prostate tissue.26

One of the most important factors preventing the application of machine27

learning methods in clinical practice is related to the heterogeneity of H&E28

images due to the many parameters involved in the tissue preparation and29

the digital scanning process (temperature of the tissue, the thickness of the30

cuts, the image sensor of the digital camera, the stitching algorithm among31

others) [11]. Figure 1 shows an example of stain variation in training and32

test sets and its impact on the performance of a CNN model trained only33

with partial variations. Two approaches are most commonly applied to take34

into account such variations when training CNN models. First, methods that35

transform an input H&E image given a target image template are known as36

”stain normalization”. Their aim is to match the input color distributions37

(or H&E concentrations) with the one given in a target image. The second38

approach refers to ”stain” or ”color augmentation methods”, which create39

new synthetic samples to increase the training dataset size, creating more40

robust models regarding color variations. There are novel image processing41
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and machine learning techniques reported in the literature to deal with color42

heterogeneity, improving classification, and segmentation performance for43

various tissue types [19, 6, 14, 4, 11]. While the specific normalization tech-44

nique depends on the task to solve [19, 4], recent work has reported consistent45

improvements in performance and robustness to external datasets employing46

color augmentation techniques [19, 4] or a combination of normalization and47

augmentation [14].48

There are existing tools and methods to deal with H&E color heterogene-49

ity, however not unified under a standard tool-set, many are also written in50

different programming languages, with various dependencies, and others are51

unknown by some researchers.52

Few libraries comprise multiple methods for H&E image normalization53

and augmentation. Furthermore, only a handful of methods tackle color54

heterogeneity in H&E images using the modern machine and deep learning55

techniques. The codebase from articles in the literature is mostly in self-56

contained repositories, and its evaluation is usually performed in ad-hoc tasks57

using specific and often private datasets. The lack of libraries with multiple58

methods limits the possibilities to evaluate the best strategy to deal with59

color heterogeneity for new datasets or tasks.60

This article aims to present and validate stainlib, an easy-to-use, exten-61

sible library to extract homogeneous representations of heterogeneous color62

information. With stainlib we make an effort to find, extract, collect, test,63

and unify most of the existing methods into a single library and make them64

easy to use. stainlib includes the most commonly used methods for color65

augmentation and normalization of histopathology images, having input lo-66

cal image regions (or patches). It contains classical machine learning and67

novel deep learning techniques to tackle the heterogeneity of color in H&E68

images.69

1.1. Related work70

QuPath, Staintools, and HistomicksTK, are likely among the most popu-71

lar existing software tools to deal with color heterogeneity. QuPath (https:72

//qupath.github.io/.) is an open and extensible software platform for73

Whole Slide Image (WSI) analysis. It includes methods for estimating and74

setting stain vectors. Scripts created for running specific color normaliza-75

tion methods can also be used within QuPath. Due to the big codebase of76

QuPath, it is challenging to run a classification or segmentation model with-77

out having to write a considerable amount of scripts to have a full pipeline,78

taking into account datasets with considerable color heterogeneity.79

Staintools is a set of tools for tissue stain normalization and augmentation80

in python 3. It contains implementations that follow the same coding style81
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of scikit-learn, where the methods are made to fit or train a model. It is82

open-source and can be downloaded from the Github repository: https:83

//github.com/Peter554/StainTools. The library contains two extractive84

normalization methods (Macenko, Vahadane), and the only augmentation85

techniques included in staintools are based on the same extractive methods86

by modifying the estimated stain concentrations.87

HistomicksTK is a python toolkit for histopathology image analysis. It88

contains several methods for stain normalization and color augmentation89

based on the stain perturbation methods from Tellez et al. [18]. It can90

be downloaded from https://pypi.org/project/histomicstk/. The His-91

tomicksTK toolkit contains many overlapping methods with stainlib but it92

lacks modularity to use the color tools as standalone modules, which creates93

difficulties for its usage in different research scenarios. Despite the existence94

of few libraries, the domain still lacks a modular library including both stan-95

dard and more modern methods that can be easily evaluated on varying96

datasets.97

2. Software description98

Stainlib is a python library containing methods for H&E image normaliza-99

tion and augmentation. The objective is to develop an easy-to-use python3100

library that includes the most commonly used methods for color augmenta-101

tion and normalization of histopathology images, having as input local image102

regions and to add more recent methods to tackle color heterogeneity based103

on deep learning approaches, too. In Figure 2, the structure and meth-104

ods included in the library are displayed. The library can be downloaded105

from the following github repository: https://github.com/sebastianffx/106

stainlib.107

2.1. Software Architecture108

stainlib is composed of three main modules stainlib.augmentation,109

stainlib.normalization, stainlib.dlmodels. The methods and the un-110

derlying theory of each of the modules are explained in the following subsec-111

tions.112

2.1.1. stainlib.normalization113

In digital pathology, the thin slice tissue cuts that are counter-stained in114

the H&E tissue slides are digitized using digital tissue scanners. The stained115

tissue slide’s light absorbance is quantified and represented in a computer116

as a two-dimensional digital image (despite coming from a three-dimensional117

biological structure). In general, if the digital representation of the image118
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is in the RGB color space, each pixel should contain a composition of the119

color representation of Hematoxylin (purple), Eosin(pink), and background120

(white).121

Images acquired from the same center and using the same preparation
methods share similar stain absorbance coefficients, which can be written as
the linear transformation (omitting background that should be close to white
for the three channels):

S =

(
HR HG HB

ER EG EB

)
Where the first-row vector corresponds to the RGB components of hema-
toxylin and the second one to the components of Eosin. In staining normal-
ization methods, the aim is to estimate the individual staining absorbance
coefficients of the images S and quantify the absorbed light C by the tissue
when it is scanned, which is the value in the H&E space of each pixel. The
Beer-Lambert law provides a way to estimate them in the optical density
space, given the original pixel content for the c-channel Ic:

Ic = I0 exp(−Sc ·C)

Where c ranges in the RGB channels, S ∈ [0,+∞]3×2 is the matrix of ab-122

sorbance coefficients, C ∈ [0,+∞]2 is the vector of the two staining concen-123

tration coefficients and I0 is the background value.124

Several well-known stain extraction methods provide an estimation of125

S. In the widely used method of Macenko [10], this matrix is computed by126

calculating a plane using the two largest singular value decomposition vectors127

of the image and then projecting the data into this plane and clipping extreme128

values. In the method of Vahadane [20] this estimation is done by learning129

a sparse non-negative matrix factorization.130

An alternative approach is to use residual flows for invertible genera-131

tive modeling [3]. Flow-based generative models parameterize probability132

distributions through an invertible transformation and can be trained by133

maximum likelihood. Invertible residual networks provide a flexible family134

of transformations where only Lipschitz conditions rather than strict archi-135

tectural constraints are needed for enforcing invertibility.136

In stainlib we include the Vahadane and Macenko methods using the137

code base from the implementations in the staintools library1. In the Rein-138

hard method [16], the color histogram of the source image (in the LAB color139

1Staintools github repository: https://github.com/Peter554/StainTools/tree/

master/staintools
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Figure 2: Implemented methods in stainlib for stain normalization and augmentation.
The first version of the library includes all the methods in green and linked submodules of
the residual flows and stain adversarial methods. For next versions of the library, further
state of the art methods will be included.

space) is matched with the target image. Despite its simplicity and original140

domain of application of natural images, it yields good results in histopathol-141

ogy images. We have also included the Reinhard normalization method in142

stainlib.143

The invertible flows method is fully compatible with stainlib and can144

be used from the base implementation 2.145

2.1.2. stainlib.augmentation146

It is now well known that deep learning classification and segmentation147

models for histopathology yield better results when data augmentation is148

used [19, 6, 14, 7]. The benefits of data augmentation might be intuitive149

in training deep learning models, where the larger the amount of data the150

model is fed with, the more variations the model is exposed to. Therefore,151

data augmentation usually can make the model more robust to changes in152

appearance in the test set. When there is a wide range of images with153

variations in color and preparation sources included in the training set, the154

models are more likely to output the correct prediction for new samples.155

Such a range of variations could be synthetically simulated, especially for156

the color variations in tissue appearance due to the stain concentrations. In157

2Invertible flows github repository:https://github.com/sara-nl/
color-information

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492245doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492245
http://creativecommons.org/licenses/by-nc-nd/4.0/


stainlib we have included five stain augmentation methods: 1) grayscale158

transformation, 2) shifts of the stain concentrations in H&E space, 3) shifts159

of the stain concentrations in RGB space, 4) shifts of the stain concentration160

matrix using the Macenko method and 5) shifts of the stain concentration161

matrix using the Vahadane method.162

For the RGB to grayscale transformation, the method rgb2gray from
the scikit-image library is used to generate realistic samples using random
uniform variations of the grayscale values within a fixed range as follows:

Grayscaleaug ←− acGrayscaleaug + bc

Where ac and bc are values drawn from a uniform distribution in the [0,1]
range. Similarly, for the shifts of the RGB channels, we generate new samples
as follows for each channel, c as follows:

I ′c ←− acIc + bc

Again, ac and bc are values drawn from a uniform distribution in the [0,1]
range. In the case of the Macenko and Vahadane augmentation, we use the
estimated stain H&E concentration matrices of the methods and shift them
as follows:

S ′c ←− acSc + bc

Where the values ac and bc are drawn from a uniform distribution in the [1−163

αc, 1+αc] and [1−βc, 1+βc] range. Values of α = 0.2 and βc = 0.2 were set as164

default values as they usually yield good qualitative and quantitative results165

in experiments. In the case of the augmentations based on the shifts of the166

stain concentrations in H&E space, we followed the implementation of Tellez167

et al. [18]. Section 3 presents a qualitative evaluation of the normalization168

and augmentation methods included in stainlib. Quantitative evaluation169

of these methods has also been performed in previous research from the170

authors [14, 6, 19].171

2.1.3. stainlib.dlmodels172

Domain-invariant training of CNN’s is a promising technique to address173

training a single model for different domains. It includes the source domain174

information to guide the training towards domain-invariant features, allow-175

ing to achieve state-of-the-art results in classification tasks. In the case of176

training classification models with histopathology images, the domain repre-177

sents the center where the tissue preparation characteristics are similar, e.g.,178

hospital A, hospitals B. This technique shows excellent generalization perfor-179

mance to external test sets, and further improvements have been reported,180

when combined with data augmentation techniques [14, 8].181
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Figure 3: Domain adversarial scheme: A domain-balanced batch of images is passed as
input to the network that has two types of outputs: the task classification output and
the domain classification output. The shared representation θf is optimal for the task
classification and unable to discriminate between the n domains.
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To explicitly write all the possible variations that lead to changes in182

the appearance of H&E images is infeasible. Stain invariant training of183

CNN models aims at detaching the domain or center information, where the184

changes in appearance originate, from the features that the model learns.185

In Figure 3, the inner workings of a stain invariant model is demonstrated186

by showing the flow of gradients in a small neural network example. The187

CNN has shared features for both the mitosis/no-mitosis classifier and the188

domain classifier. The main difference with a multi-task CNN is that the189

gradients from the domain branch are reversed to allow the penalization of190

unwanted domain information in the features. The stain-invariant model pe-191

nalizes when the learned features help classify the domain, guiding the model192

towards features that do not consider the domain information. Evaluation of193

stain invariant models is described in detail in a previously published journal194

article from the authors [14].195

2.2. Software Functionalities196

• H&E image data augmentation: This functionality allows gener-197

ating one or more synthetic, yet realistic, copies of an image region198

extracted from a H&E WSI. Currently, five augmentation techniques199

are implemented, as described in section 2.1.2.200

• H&E image normalization: The second main functionality is to nor-201

malize the color of image regions extracted from a H&E WSIs, given202

a template image. Currently, four normalization techniques are imple-203

mented, as described in section 2.1.1.204

• Stain invariant training of CNNs: This functionality refers to the205

enabling of training a deep convolutional neural network with H&E206

images to tackle the stain heterogeneity when the center or source of207

the images is known. This source-code includes the python implemen-208

tations of gradient reversal strategies [8, 14] and examples in a CNN209

model for the classification of H&E images of prostate and breast tis-210

sues. The method is explained and illustrated in Section 2.1.3.211

3. Visual Examples212

To demonstrate the proposed capabilities of the library, we show ex-213

amples for augmentation and normalization using openly accessible images.214

The code snippets necessary to reproduce these examples are contained in a215

jupyter notebook in the source-code repository.216
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Figure 4: Illustrative examples for the augmentation methods of stainlib.

3.0.1. Image Augmentation217

In Figure 4 the first row corresponds to ten grayscale augmented ver-218

sions of the leftmost image using the method described in section 2.1.2. The219

second row shows ten augmented images using the light-HED augmentation220

from Tellez et al. [18]. Finally, the third and fourth rows correspond to221

the augmentation methods based on Macenko and Vahadane techniques, re-222

spectively. The augmented versions are generated perturbing the estimated223

stains, as in the case for stain normalization. Here the images for both meth-224

ods look similar.225

3.1. Image Normalization226

Figure 5 and 6 show the results for the Vahadane and Macenko normal-227

izations methods. Both methods estimate the stain concentration matrix,228

Vahadane with a non-negative matrix factorization approach and Macenko229

with a singular value decomposition. Thus, results appear similar with the230

images normalized with Macenko being slightly darker or with more stain231

concentration than with the Vahadane method. In Figure 7, examples for232

the Reinhard normalization method are presented. Because the method aims233

to match the color histogram of the target image directly, the background234

matches the lightest color in the target image, which produces unrealistically235

looking images. We included a tissue detector that masks the tissue con-236

tent from the background to alleviate this. The tissue detector is included237

as a parameter in the call for transforming new images using the Reinhard238

method in stainlib 3.239

3https://github.com/sebastianffx/stainlib/blob/main/normalization/

normalizer.py
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Figure 5: Illustrative examples for the implemented Vahadane normalization method in
stainlib.

Figure 6: Illustrative examples for the implemented Macenko normalization method in
stainlib.
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Figure 7: Illustrative examples for the implemented Reinhard normalization method in
stainlib.

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492245doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492245
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Impact240

stainlib allows researchers worldwide to tackle scientific challenges in241

computational pathology more easily in several ways. First, stainlib allows242

testing new algorithms under multiple data-heterogeneity scenarios, given243

the characteristics of the augmented and normalized images that simulate244

uncontrolled variations in the real-world test sets. For example, it allows re-245

searchers to test an algorithm having specific performance on a given test set246

on realistic variations of the same dataset generated with stainlib, to test247

if the performance remains the same over the variations or the algorithms248

requires additional improvement (potentially including such variations of the249

dataset in the training data). Second, it empowers researchers to use small250

data sets for training deep learning models by augmenting significantly the251

data sets with color-shifted versions of the training data. The bigger data-252

augmented training sets make trained CNN models more robust and less253

prone to errors. Third, stainlib includes very recent image processing and254

machine learning techniques reported in the literature to deal with color255

heterogeneity. Finally, the stainlib’s modular structure is designed to be256

easy to expand and the authors encourage researchers to contribute to this257

library by suggesting changes and improvements or directly adding or im-258

proving methods into the code base.259

5. Conclusions260

This article presents and qualitatively tests the stainlib library, imple-261

mented to include novel and widely used tools that extract homogeneous262

representations of heterogeneous color visual information from H&E images.263

stainlib is easy to use and to expand and it includes the most commonly264

used methods not only for stain normalization but also for augmentation, to-265

gether with recent deep learning based approaches. We anticipate continuous266

updates for stainlib, making it efficient and useful for normalizing image267

regions and WSIs. We also strongly encourage the contribution of additional268

tools by researchers worldwide. The source code for all the tools is now fully269

accessible in the repositories. We are confident that these resources allow270

researchers to build more easily and quickly robust models that generalize to271

unseen images from heterogeneous sources.272
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Nr. (Executable) software meta-
data description

Please fill in this column

S1 Current software version 1.0
S2 Permanent link to executables of

this version
https://test.pypi.org/

project/stainlib/

S3 Legal Software License MIT
S4 Computing platforms/Operating

Systems
Linux, OS X, Microsoft Windows,
Unix-like

S5 Installation requirements & depen-
dencies

scikit-image, scipy, pillow, opencv-
python, spams

S7 Support email for questions juan.otaloramontenegro@hevs.ch
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