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Abstract 23 

Head and neck squamous cell carcinoma (HNSCC) cells are highly heterogeneous in 24 

their metabolism and typically experience elevated reactive oxygen species (ROS) 25 

levels in the tumor microenvironment. The tumor cells survive under these chronic 26 

oxidative conditions by upregulating antioxidant systems compared to healthy cells. 27 

Radiation and the majority of chemotherapies used clinically for treatment of HNSCC 28 

rely directly or indirectly upon the generation of short-lived ROS to induce cancer cell 29 

death. To investigate the heterogeneity of cellular responses to chemotherapeutic ROS 30 

generation in tumor and healthy tissue, we leveraged single cell RNA-sequencing 31 

(scRNA-seq) data to perform redox systems-level simulations of quinone-cycling -32 

lapachone treatment as a source of NQO1-dependent rapid superoxide and hydrogen 33 

peroxide (H2O2) production. Transcriptomic data from 10 HNSCC patient tumors was 34 

used to populate over 4000 single cell antioxidant enzymatic models. The simulations 35 

reflected significant systems-level differences between the redox states of healthy and 36 

cancer cells, demonstrating in some patient samples a targetable cancer cell population 37 

or in others statistically indistinguishable effects between non-malignant and malignant 38 

cells. Subsequent multivariate analyses between healthy and malignant cellular models 39 

point to distinct contributors of redox responses between these phenotypes. This model 40 

framework provides a mechanistic basis for explaining mixed outcomes of NQO1-41 

bioactivatable therapeutics despite the tumor specificity of these drugs as defined by 42 

NQO1/catalase expression.  43 

 44 

 45 
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Introduction 46 

Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent types 47 

of cancer globally (1). Prophylactic measures such as HPV vaccination and the 48 

reduction of alcohol consumption and smoking are improving outcomes; however, five-49 

year survival rates of HPV-negative HNSCC remain lower than 60% (2). While the 50 

etiology of HNSCC and anatomical locations within the oral cavity epithelial tissue are 51 

diverse, a hallmark of this cancer is elevated oxidative stress (3).  Reactive oxygen 52 

species (ROS) at physiological concentrations are important as second messengers for 53 

many signaling processes including the MAPK, PI3K, NF-κB, and HIF pathways (4–8); 54 

however, ROS at higher levels promote tumorigenesis by causing genomic instability 55 

and proliferative signaling (9). If ROS levels are elevated even further, the level of 56 

oxidative stress cannot be managed and cells will go through one of several cell death 57 

mechanisms including necrosis, apoptosis, and ferroptosis (10,11). Cancer cells 58 

manage levels of ROS through multiple antioxidant enzyme systems (12), and under 59 

sustained oxidative stress will transcriptionally upregulate several antioxidant enzymes 60 

via the Keap1-Nrf2 axis (13,14). One treatment strategy is to selectively target cancer 61 

cells through the generation of reactive oxygen species (ROS) and disrupt the delicate 62 

balance these cells have between their higher antioxidant capacity and higher ROS 63 

levels (15–19). A unique approach to this strategy is utilizing NQO1-activatable quinone 64 

drugs to generate ROS. Because NQO1 is a quinone-reducing enzyme that is 65 

upregulated by Nrf2 (20), this approach should selectively target cancer cells that have 66 

constitutive Nrf2 activation. Furthermore, the generation of acute ROS by NQO1-67 

activatible therapeutics causes a positive feedback response to more NQO1 68 
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expression, thereby enhancing the lethality of these compounds. Numerous studies 69 

have shown the benefit of these types of drugs alone, and targeting additional 70 

antioxidant and survival systems concurrently can improve the efficacy of the drug (21–71 

24); however, there is debate as to whether the currently considered metric of 72 

NQO1:catalase expression or activity ratio is useful for identifying tumors susceptible to 73 

NQO1-activatable quinone drugs (25–28). To improve our understanding of the complex 74 

interplay between various antioxidant systems and the production of ROS by NQO1-75 

activatable drugs, we developed and analyzed a differential equation model based on 76 

enzyme kinetic mechanisms that leverages the diversity of expression levels relevant to 77 

cancer redox systems. Furthermore, we explored potential uses for such a model by 78 

initializing parameter and species values using scRNA-seq data as a way to understand 79 

intratumor and patient variability in response to this type of chemotherapeutic 80 

intervention.  81 

 82 

Methods 83 

Cell Lines and Culture 84 

HNSCC cell lines SCC-61 (Dr. Ralph R. Weichselbaum, The University of Chicago) and 85 

rSCC-61 (29)were cultured in RPMI-1640 cell culture media with L-glutamine (Caisson 86 

Labs, Cat#RPL03) with 10% FBS (Sigma-Aldrich, Cat#F4135) and 1% Pen/Strep 87 

(Caisson Labs, Cat#PSL01) at 37°C and 5% CO2. Cell media was changed every other 88 

day and cultures were passaged at 80% confluence and regularly tested for 89 

Mycoplasma (MycoAlert PLUS, Lonza, Cat#LT07).  90 

 91 
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siRNA Transfection 92 

3,000 cells were seeded in the wells of a black clear-, flat-bottom 96-well plate (Corning, 93 

Cat#3603). After 24 hours, cells were washed three times with PBS and siRNA 94 

packaged in lipid nanoparticles using the N-TER Nanoparticle siRNA Transfection 95 

System (Sigma-Aldrich, Cat#N2913) was applied to each well at 50 nM in 100 uL of 96 

serum-free media for 4 hours. After this, an equal volume of media with 2X FBS (20%) 97 

was added for the remaining 20 hours of transfection. For each gene, three of the top-98 

performing predesigned MISSION siRNA constructs from Sigma-Aldrich were pooled 99 

and transfected concurrently. The transfection efficiency of these siRNAs against 100 

GAPDH has been performed previously (30) via Western Blot, and we repeated similar 101 

validation Western Blots with the pooled siRNAs against NQO1, a critical enzyme within 102 

our system (Figure S1). After 24 hours of transfection by siRNA, cells were washed 103 

three times with PBS and further experiments performed. 104 

 105 

-Lapachone Treatment Response H2O2 Measurements 106 

Following siRNA transfection and PBS washes, Amplex Red and Horseradish 107 

Peroxidase (HRP) (Thermo Fisher Scientific, Cat#A2188) were added to the wells and 108 

kinetic fluorescent reads of resorufin (excitation 571 nm, emission 585 nm), the product 109 

of Amplex Red and H2O2 in the presence of HRP, were taken to measure H2O2 over 110 

time. After 10 minutes of reads to determine baseline extracellular concentrations of 111 

H2O2, 3 µM of β-Lapachone (synthesized in Boothman Lab, Indiana University) was 112 

applied to cells in serum-free media and reads were taken for 2 hours. 113 

 114 
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Ordinary Differential Equation Model Construction 115 

The redox system ODE model was built upon a previously published model originally 116 

developed to describe the H2O2 clearance within Jurkat T cells in response to a bolus of 117 

extracellular H2O2 addition (12). The additional species included in new reactions are: 118 

oxidized extracellular β-lapachone (β-lapext), intracellular  O2•-, oxidized intracellular β-119 

lapachone (β-lapQ), reduced intracellular β-lapachone (β-lapHQ), semioxidized 120 

intracellular β-lapachone (β-lapSQ), and glutathionylated intracellular β-lapachone (β-121 

lap-GSH). New reaction rate terms are provided in Table 1. Supplemental Tables 1 and 122 

2 list the complete parameters and initial values, respectively, used within the ODE 123 

system which were updated from the model originally characterized for Jurkat cells (12).  124 

Table 1. 

Reaction Name Rate Term 

β-lap permeation* k34 * Acells * ([β-lapext] – [β-lapQ]) 

β-lap reduction k29 * [β-lapQ] * [NADPH] 

β-lap semioxidation k30 * [β-lapHQ] * [O2] 

β-lap oxidation k31 * [β-lapSQ] * [O2] 

superoxide dismutase k32 * [O2•-]2 

β-lap semireduction k33 * [β-lapQ] * [NADPH] 

β-lap glutathionylation k35 * [β-lapHQ] * [GSH] 

Glutathionylated β-lap permeation* k36 * Acells * [β-lapHQ-SG] 

*Permeation rate terms are divided by respective compartment volumes 125 

ODEs were solved with ode15s in MATLAB R2020b, using a max timestep of 1 second. 126 

 127 
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Sensitivity Analysis 128 

Sensitivity values were calculated by increasing or decreasing parameter values by 129 

10%, running the ODE solver for a simulated 2 hours, and using the following formula.  130 

𝑆𝑖,𝑗(𝑡) =
𝜕𝑥𝑖(𝑡)

𝜕𝑘𝑗

 131 

 132 

scRNA-seq Data Analysis 133 

HNSCC scRNA-seq data was collected from the gene expression omnibus (GEO 134 

Accession: GSE103322). This data had already been preprocessed to exclude cells 135 

with fewer than 2,000 genes detected or an average expression level below 2.5 of a 136 

curated list of housekeeping genes (31,32). Of the data from 18 patients, we retained 137 

the 10 patients that contained the most malignant cell transcriptomes as previously 138 

performed (31,33). t-SNE dimensional reduction was performed using the scikit-learn 139 

python library with default parameters besides PCA initialization. Enzyme abundance 140 

calculations from scRNA-seq data was performed as previously described (30). Briefly, 141 

kinetic rate constants from a mechanistic model of RNA production, RNA degradation, 142 

protein production, and protein degradation were used to determine equilibrium protein 143 

abundances given RNA levels. For proteins where these rate constants were not given, 144 

linear regression between RNA and protein was used to estimate protein abundance. 145 

Partial least squares regression (PLSR) was performed with log-transformed and zero-146 

mean unit variance standardized data in SIMCA. Plots were generated using Seaborn 147 

and Matplotlib python libraries. The kernel density estimate plot was generated with 148 

default parameters using seaborn.kdeplot(). Scipy was used to conduct the Welch’s t 149 

tests with stats.ttest_ind() and equal_variance set to False.  150 
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Results 151 

A systems level model of ROS generation by quinone cycling  152 

We developed our model system to encompass three main aspects: 1) sets of critical 153 

H2O2-stabilizing antioxidant systems; 2) metabolism of the xenobiotic drug β-lapachone; 154 

and 3) the permeation of key species across membranes of the cell, including organelle-155 

specific transport. We assumed that mitochondrial ROS production would remain 156 

constant due to basal respiratory metabolism, and mitochondrial antioxidant systems 157 

were not included, nor did we factor in activation of NADPH oxidases as a source of 158 

ROS as the consumption of NADPH by NQO1-catalyzed cycling of -lapachone would 159 

render the NADPH oxidases inactive. Another assumption made was that due to high 160 

catalytic rates of NQO1 and antioxidant enzymes, 2 hours of simulated time was 161 

sufficient to capture the dynamics of the system. The relatively short period of simulated 162 

time allowed us to ignore transcriptional and translational regulation, such as how 163 

increased cellular oxidation would trigger Nrf2 nuclear translocation and upregulation of 164 

antioxidant genes including NQO1; therefore, total enzyme concentrations were 165 

assumed constant. The system and directionality of reactions and transport are shown 166 

in Figure 1.  167 
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 168 

Figure 1. Generation of a relevant model of drug metabolism and hydrogen peroxide 169 

clearance pathways. The metabolism of β-lapachone by NQO1 results in the generation 170 

of superoxide (O2
•-) and the oxidation of NADPH. Superoxide dismutase 1 (SOD1) in 171 

the cytosol converts the superoxide to hydrogen peroxide (H2O2) which is converted to 172 

water and oxygen by antioxidant systems including the 173 

peroxiredoxin/thioredoxin/thioredoxin reductase/sulfiredoxin system, the glutathione 174 

peroxidase/glutathione/glutathione reductase system, catalase, and the oxidation of free 175 

protein thiols. NADPH often serves as the reductant for cycling these antioxidant 176 

enzymes and it is used to reduce β-lapachone, thus canonical metabolic reactions 177 

involved in the production of NADPH are also included, such as glucose-6-phosphate-178 

dehydrogenase (G6PD). 179 

 180 
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Head and neck squamous cell carcinoma cells exhibit heterogeneity of redox gene 181 

expression 182 

We sought to understand how variation in redox profiles of in vivo HNSCC tumors may 183 

reflect the distributed control of H2O2 clearance in tumor cells. To take advantage of 184 

new highly resolved omics technologies that provide rich tumor characterization, we 185 

analyzed scRNA-seq data from 10 HNSCC patients originally collected by Puram et al 186 

(31). In this dataset, there is a varying degree of cell type representation from each 187 

patient, likely due to both cross-patient tumor microenvironment heterogeneity and 188 

preprocessing of scRNA-seq reads for quality control. After splitting the dataset into 189 

malignant and non-malignant cells and reducing the variables to just 35 redox genes 190 

represented in our quinone cycling systems model, t-SNE clustering revealed malignant 191 

cells tend to cluster by patient (Figure 2a), suggesting that there are distinct, patient-192 

based tumor redox profiles. We observed after clustering that tumors across patients 193 

have overall similar NQO1 levels, but that individual tumors display heterogeneity with 194 

respect to the distribution of cells expressing higher NQO1 (Figure 2b). This 195 

heterogeneity can also be observed when inspecting TXNRD1 and GLUD1 expression 196 

(Figures 2c, 2d). With this knowledge of heterogeneity between and within patient 197 

tumors, we leveraged redox transcriptional profiles per cell per patient to explore 198 

potential ROS buildup on cell- and tumor-based scales.  199 
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 200 

Figure 2. Head and neck cancers demonstrate intratumor and intertumor redox 201 

heterogeneity. Figure 2. Head and neck cancers demonstrate intratumor and 202 

intertumor redox heterogeneity. A) Malignant cells from 10 HNSCC patients cluster 203 

A) 

B) C) 

D) E) 
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together based on redox profiles. B) Clusters colored by NQO1, C) GLUD1, D) TXN, 204 

and E) TXNRD1 expression. 205 

 206 

Initializing single cell ODE models with scRNA-seq  207 

While scRNA-seq data has been widely used for exploratory data analysis and to 208 

understand gene expression correlations within developing tissues and cancer, this 209 

form of characterization has only recently been used to inform mechanistic kinetic 210 

models (34). We generated unique cell-based ODE systems using the previously 211 

analyzed scRNA-seq data. With the redox transcriptional profiles of almost 5000 cells 212 

from 10 patients, we first estimated the redox protein profiles as previously described 213 

(30,35) and imported these protein concentrations and related rate constants into our 214 

ODE model followed by simulation of the redox metabolism for each cell undergoing 215 

acute ROS generation by -lapachone treatment. Specifically, AQP3, GSR, TXNRD1, 216 

NQO1, SOD1, POR, G6PD, and GLUD1 expression levels were used to adjust reaction 217 

rate constants by multiplying the rate constants by the percent change in the single cell 218 

expression from the average. G6PD and GLUD1 both generate NADPH and were 219 

combined into a single reaction in the model. GPX1, CAT, PRX1, PRX2, TXN, and 220 

GLRX expression levels were used to estimate initial enzyme abundances. PRX1 and 221 

PRX2 expression levels were combined and represent a single reaction in the model. 222 

All other parameters and species levels were kept from prior modeling (12). 223 

 224 

Sensitivity analysis shows H2O2 production is insensitive to individual enzymatic 225 

parameters 226 
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After constructing the ODE system, we sought to understand how influential each 227 

simulation parameter was on our system by performing a sensitivity analysis. We 228 

assessed the effect on intracellular H2O2 as the output variable of interest by altering 229 

model parameters up or down 10%. With sensitivities remaining below 1 and H2O2 only 230 

being somewhat sensitive to several parameters, we concluded that no single 231 

parameter could alter the H2O2 production significantly (Figure 3a).  232 

 233 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492281doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492281
http://creativecommons.org/licenses/by/4.0/


Figure 3. Sensitivity analyses. A) Analysis of system sensitivity to single parameter 234 

10% perturbations colored by antioxidant subsystem shows low sensitivity of A) 235 

intracellular H2O2, B) NADPH:NADP+, C) Trx-SH:Trx-SS, and D) GSH:GSSG at 2 hours 236 

to any single parameter. 237 

 238 

Parameter labels colored by antioxidant subsystem also indicate no single antioxidant 239 

system is controlling a majority of the H2O2 scavenging load. Expanding the number of 240 

outcomes to include redox ratios of reduced glutathione to oxidized glutathione, reduced 241 

thioredoxin to oxidized thioredoxin, and NADPH to NADP+ allowed us to assess the 242 

impact of these parameters on alternative indicators of redox status within the cell. The 243 

distribution of parameter importance in the sensitivity analyses across multiple redox 244 

mechanisms suggests that the reductive capacity of a cell is robust, and no single 245 

antioxidant enzyme system is predominantly responsible for clearance of H2O2 (Figure 246 

3b-d). 247 

 248 

Experimental knockdown of antioxidant enzymes confirms model sensitivities 249 

To experimentally validate the model, we used siRNA to perturb antioxidant enzyme 250 

levels and then observed the knockdown effect on acute H2O2 production induced by 251 

−lapachone over a 100 minute period (Figure 4a). We confirmed via NQO1 Western 252 

blots that 24 hours of siRNA exposure leads to approximately 50% knockdown of 253 

expressed protein (Figure S1). We also probed NQO1 after silencing Nrf2 and PRDX1 254 

and observed changes in NQO1 expression (Figure S1), suggesting either a global siRNA 255 

impact on ROS-related protein expression as demonstrated by Kippner et al. (36) or an 256 
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indirect, downstream effect of these proteins on overall redox state. One possibility is that 257 

lowering Nrf2 and PRDX1 can increase basal ROS levels resulting in the production of 258 

antioxidant enzymes such as NQO1 through other mechanisms. After confirming pooled 259 

siRNA silencing, we knocked down a set of antioxidant or antioxidant-related enzymes 260 

including CAT, GPX1, GPX4, SOD1, GSR, PRDX1, TXN, TXNRD1, GLUD1, and G6PD 261 

to explore their impact on H2O2 production during -lapachone treatment. We 262 

hypothesized that knockdown of antioxidants would result in an increase in H2O2, while 263 

knockdown of NQO1 would reduce drug metabolism and therefore H2O2 levels with -264 

lapachone treatment would be lower. We used Amplex Red to probe extracellular H2O2 265 

levels over the course of 2 hours of drug treatment and compared the fold change in H2O2 266 

relative to control scrambled siRNA (Figure 4b,c). With the maximum fold change no 267 

greater than 30% and relatively large standard deviation, these single knockdowns did 268 

not impact the redox state of the cells significantly by Welch’s t test, confirming our 269 

simulated parameter sensitivities.  270 
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 271 

Figure 4. siRNA perturbation studies validate sensitivity analyses. A) siRNA 272 

knockdown workflow. B) Kinetic reads of H2O2 for PRDX1, CAT, and TXNRD1 enzyme 273 

knockdowns in a representative experiment showing increase in H2O2 after antioxidant 274 

knockdown (mean +/- s.d.). C) Aggregated fold change in H2O2 at 2 hours for each 275 
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antioxidant knockdown shows limited increase in H2O2 confirming computational 276 

sensitivity analyses (mean +/- s.d). 277 

 278 

Comparison of H2O2 accumulation in healthy and cancer cells identifies patients with 279 

greatest potential for targeted therapy 280 

Using this new system of generating single cell ODE models, the redox profiles of 281 

individual cells within HNSCC can vary greatly and result in a range of H2O2 spanning 282 

many orders of magnitude. After removing simulations that were unstable, we had 4,260 283 

single cell simulation outputs across all ten patients. All of the ten patients showed a 284 

trend of more H2O2 generated by the malignant cells relative to the normal cells, with six 285 

patients exhibiting a statistical difference (Figure 5a).  286 

 287 
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Figure 5. Model results using single cell gene expression values. A) Differences 288 

between extracellular H2O2 in healthy and malignant cells under −lapachone by 289 

patient. B) Differences between NADPH:NADP+ ratio and extracellular H2O2 in healthy 290 

and malignant cells under −lapachone. 291 

 292 

Additionally, when comparing both H2O2 output and endpoint NADPH:NADP+ ratios 293 

across the 4,260 cellular models, we generally see higher H2O2 levels in cancer cells 294 

but no trend in NADPH:NADP+ ratios (Figure 5b). This shift demonstrates a potential for 295 

using single cell profiling to select patients for treatment with this targeted 296 

chemotherapy based on their redox profile. For the four patients where treatment 297 

induced H2O2 in both healthy and malignant cells without a statistically significant 298 

difference, the therapy may induce normal tissue toxicity impacting treatment and long-299 

term quality of life. 300 

 301 

Initializing single cell ODE models with scRNA-seq identifies proteins correlated with 302 

H2O2 production 303 

H2O2 concentrations and glutathione redox ratios after a 2 hour simulation were 304 

collected and used in partial least squares regression to probe the correlations between 305 

the protein concentrations within the model and the four output variables. With 7 and 6 306 

components, respectively, both the malignant and non-malignant regression models are 307 

able to achieve both high explained output variance (non-malignant R2Y = 0.672, 308 

malignant R2Y = 0.689) and goodness of prediction (non-malignant Q2 = 0.656, 309 

malignant Q2 = 0.672). VIP scores identify NQO1, POR, TXNRD1, AQP3, and G6PD as 310 
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the most important variables in the malignant model (Figure 6a) and POR, GLUD1, 311 

TXNRD1, NQO1, and GPX1 as the most important variables in the non-malignant 312 

model (Figure 6b).  313 

 314 

Figure 6.  Partial least squares regression VIP scores and loadings. A) Genes with top 315 

5 VIP scores in PLSR model in malignant simulations and B) non-malignant simulations. 316 

C) Breakdown of output into individual variables and loadings for each X and Y variable 317 

in malignant PLSR model and D) non-malignant PLSR model. 318 

 319 

Collectively, the distribution of redox enzymes across principal components 1 and 2 320 

differ between the two statistical models (Figure 6c,d). The distribution of NQO1 and 321 

CAT loadings in latent space reflects prior reports of NQO1/CAT as a useful metric in 322 

explaining the lack of −lapachone lethality in non-cancerous tissues albeit not 323 

reflecting LD50 values across a diverse HNSCC panel (21). Additionally, the importance 324 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492281doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492281
http://creativecommons.org/licenses/by/4.0/


of POR demonstrates how the alternative path for −lapachone reduction can still lead 325 

to significant superoxide production and therefore higher levels of H2O2. Expression of 326 

thioredoxin reductase 1 (TXNRD1) and NADPH-producing enzymes GLUD1 and G6PD 327 

are correlated with reduced thioredoxin levels, and most other antioxidant enzyme 328 

expression levels are less important due to low magnitude of their loading weights, i.e. 329 

proximity to the origin (Figure 6c,d).  330 

 331 

Discussion 332 

Because the main mechanism of action by NQO1-activatable drugs is the generation of 333 

ROS, the ability for a cancer cell to manage ROS is a critical metric for 334 

chemotherapeutic response. NQO1:CAT ratio has been proposed as a predictive 335 

variable of NQO1-activatable drug success, but the utility of this metric is debated. Bey 336 

et al. in 2013 first speculated that NQO1:CAT could be useful after finding the use of 337 

exogenous catalase reduced the effects of −lapachone in breast cancer (25), and 338 

higher NQO1:CAT were observed in NSCLC tumors that responded to treatment than in 339 

matched healthy tissue (26). In 2017 it was reported that the LD50 of −lapachone did 340 

not correlate with NQO1:CAT in head and neck cancer (21). Additionally, while 341 

NQO1:CAT was not directly measured, inhibition of catalase and GSH did not lead to a 342 

sensitization of KEAP1-mutated NSCLC during −lapachone treatment while inhibition 343 

of TXNRD and SOD1 sensitized cancers (28). A recent TCGA analysis revealed higher 344 

NQO1:CAT levels in hepatocellular carcinoma (HCC) than in matched healthy tissue, 345 

and the authors reported that the high NQO1 patient cohort had lower survival (37). 346 

These studies serve to highlight the complexity of the antioxidant system in the context 347 
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of NQO1-activatable drugs like −lapachone, and suggest the current approach for 348 

identifying how well a cancer would respond to the treatment is underdeveloped. In this 349 

report, we generated a more accurate model of ROS generation and scavenging under 350 

−lapachone conditions by including additional antioxidant systems in an ODE-based 351 

approach in which H2O2 generation is a surrogate for drug potency. Including additional 352 

antioxidant systems and the kinetic information of enzymes simultaneously allowed us 353 

to predict measures other than NQO1:CAT that can serve as an indication of 354 

−lapachone success.  355 

When building a model to represent a biological system, there are always 356 

simplifications and assumptions that must be made using field expertise. Transcriptional 357 

regulation of the Keap1-Nrf2 axis on the scale of hours to days is not accounted for, in 358 

which the positive feedback of H2O2 activation of Nrf2-targeted genes results in 359 

enhanced NQO1 expression (14,38). Another major assumption used was that 360 

mitochondrial antioxidant systems would not reduce the large amount of ROS in this 361 

chemotherapeutic context due to the cytosolic location of NQO1 (39). Work done by Ma 362 

et al. shows that mitochondrial-targeted β-lapachone produces mitochondrial ROS using 363 

MitoSOX, while 3-hydroxy β-lapachone which is not mitochondrially targeted produces 364 

no substantial mitochondrial ROS (40).This allowed us to omit antioxidant enzymes 365 

expressed in the mitochondria such as SOD2, PRDX3, PRDX5. We did, however, find 366 

relatively high sensitivities of H2O2 permeabilities in the model, indicating the importance 367 

of how quickly a cell can export ROS during treatment. While H2O2 can passively diffuse 368 

through the phospholipid bilayer, it is also known to utilize aquaporin membrane 369 

proteins to travel through the plasma membrane (41–44). Because of the high 370 
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sensitivities, measuring aquaporin expression levels could serve as a useful indicator of 371 

β-lapachone success.  372 

When generating enzymatic models, direct expression levels of proteins can be 373 

acquired experimentally or from published datasets of other scientists’ experiments. We 374 

chose an alternative strategy by estimating protein abundance based on the scRNA-seq 375 

mRNA levels. Because transcriptional levels do not directly correlate to protein levels, 376 

we used a quantitative pipeline to estimate protein abundances that leverages 377 

previously published data from Schwanhausser et al (30,35). This allowed us to 378 

generate an ODE system specific to each cell sequenced in the scRNA-seq data. From 379 

our initial exploration of the scRNA-seq data, we observed the cells cluster by patient 380 

regardless of if they were healthy or cancerous similar to the results of an analysis 381 

conducted by Xiao et al. (33), so we concluded that each tumor was composed of a 382 

population of cells that were similar in redox profile. Yet when analyzing the expression 383 

of each antioxidant enzyme within these clusters, the overall antioxidant capacity or 384 

diversity of each tumor was unclear due to varied levels of each antioxidant enzyme. 385 

Our ODE model was able to stratify the patient tumors based on the differences in the 386 

expected response of healthy and cancerous cells to β-lapachone, shedding some light 387 

on the complex nature of redox systems. Because we used scRNA-seq data that had 388 

transcriptomes of both normal and cancerous cells, we were able to assess the relative 389 

dependence of these two cell populations on their antioxidant enzyme expression under 390 

oxidative stress. When the contours of the two cell populations are plotted in a 2D 391 

phase space of the two output variables, extracellular H2O2 and NADPH ratio, we find 392 

these overlap quite closely, but the cancer cell range is more compact. This suggests 393 
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the cancer cell antioxidant phenotype can lead to a more controlled range of 394 

concentrations of ROS and reducing cofactors in oxidative environments, which can be 395 

seen as a survival advantage of the cancer cells. Similarly, while our comparisons of 396 

healthy and cancerous cells’ redox state after treatment were of the aggregated 397 

samples in each population per patient, there is wide variability within each group and 398 

some healthy cells show a more oxidatively stressed state than cancerous cells in the 399 

same tumor. The healthy cells represent a repertoire of components found in the tumor 400 

microenvironment ranging from fibroblasts to macrophages, and thus a diversity of 401 

responses to an oxidative insult is expected. While cancer cells are typically seen as 402 

being more oxidized, these results predict that tumor heterogeneity assessed at a single 403 

cell resolution can potentially challenge narratives established using bulk-based 404 

characterization. 405 

A current issue with scRNA-seq data is a large volume of dropouts which leads to 406 

imputed values that are not true data (45). Methods for both higher quality sequencing 407 

and imputation are being developed, and as higher quality datasets are published this 408 

model can be updated to reflect that (46,47). Additionally, the added value of spatial 409 

information from new spatial omics technologies could further improve the model. With 410 

the model currently representing a single cell system, a multicellular model of all of the 411 

cells simultaneously with physical parameters included could better represent the tumor 412 

system and buildup and breakdown of ROS. Lastly, our model only predicts how these 413 

cells within patient samples would respond to β-lapachone. Working with directly 414 

validated samples is a more ideal workflow, and we look forward to testing these 415 

models’ accuracies if clinical data is made available in the future. 416 
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Altogether, this analysis demonstrates that developing a comprehensive enzymatic 417 

model of ROS generation and clearance using scRNA-seq data has the potential to 418 

identify the relative importance of various axes in the complex antioxidant network. We 419 

suggest that metrics other than NQO1:CAT should be considered when characterizing a 420 

HNSCC tumor and its capacity to respond to −lapachone. These metrics include 421 

expression of TXNRD1, POR, and NADPH-producing enzymes such as G6PD and 422 

GLUD1. Ultimately, the systems approach outlined here demonstrates the value of 423 

utilizing mechanistic modeling in conjunction with omics data to attain a more 424 

comprehensive understanding of the cellular redox state. 425 
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