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Abstract:

The distribution  of  fitness  effects  of  new mutations  is  central  to  predicting  adaptive  evolution,  but
observing  how it  changes  as  organisms adapt  is  challenging.  Here  we use  saturated,  genome-wide
insertion  libraries  to  quantify  how  the  fitness  effects  of  new  mutations  changed  in  two  E.  coli
populations that adapted to a constant environment for 15,000 generations. The proportions of neutral
and  deleterious  mutations  remained  constant,  despite  large  fitness  gains.  In  contrast,  the  beneficial
fraction declined rapidly, approximating an exponential  distribution, with strong epistasis profoundly
changing the genetic identity of adaptive mutations.  Despite this volatility,  many important targets of
selection were predictable  from the ancestral  distribution.  This predictability  occurs because genetic
target size contributed to the fixation of beneficial mutations as much as or more than their effect sizes.
Overall,  our  results  demonstrate  that  short-term  adaptation can  be  idiosyncratic  but  empirically
predictable, and that long-term dynamics can be described by simple statistical principles.

One-Sentence Summary:

Couce et al.  demonstrate  that  short-term  bacterial  adaptation is predictable at the scale of individual
genes, while long-term adaptation is predictable at a global scale.
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Main Text:

Evolution in asexual populations results from the accumulation of new mutations. Therefore, detailed
knowledge of the proportions of mutations that are beneficial, neutral, or deleterious is important for
predicting the course and outcomes of evolution. Indeed, assumptions about the distribution of fitness
effects (DFE) of new mutations lie at the core of many theories describing fundamental evolutionary
phenomena, including  the  speed  of  adaptation  (1), fitness  decay  in  small  populations  (2),  the
maintenance of genetic variation (3), the probability of parallel (4) versus divergent  (5) evolution, the
pace of the molecular clock  (6), and the evolution of sex  (7) and mutation rates  (8). Driven by this
interest,  many experimental and comparative studies have produced estimates of this  distribution in
different organisms. While most studies have been small in scale (9) or focused on narrow genomic
regions  (10), some important features appear similar across a variety of model systems. In particular,
most mutations are neutral or deleterious, lethal mutations form a distinct class within the deleterious
tail, and those rare beneficial mutations are usually exponentially distributed (11).

However, the DFE only indicates what is possible at a particular point in time, and it is unknown how
long the distribution will remain relevant as evolution proceeds and especially as beneficial substitutions
accumulate. Predictions on how the shape of the DFE changes are implicit in some theoretical models,
most famously that the beneficial tail should approach an exponential distribution near a fitness peak
(12,  13). The picture is more ambiguous for the deleterious tail, with different models predicting it to
become heavier (14)  or lighter  (15) with adaptation. In any case, these predictions address only the
macroscopic form of the DFE, with little attention to the microscopic processes underlying the changes
in shape. And while the shape influences the dynamics, the microscopic details—especially the sign and
intensity of interactions among mutations (i.e., epistasis)—determine the outcomes of adaptation (16).
For example, in the absence of epistasis, adaptation will shorten the beneficial tail simply by the process
of sampling without replacement. In this case, a complete DFE would suffice to specify the probabilities
of all possible adaptive trajectories in a given environment. At the other extreme, if sign epistasis is the
norm—such that mutations go from beneficial to deleterious, and vice versa, as the genome evolves (17)
—then new mutations will continually change the effects and rank order of the remaining mutations,
rendering futile any prediction about adaptive trajectories beyond the very short term.

High-throughput insertion mutagenesis and fitness measurements

To determine  experimentally  how adaptation  and epistatic  interactions  change the  DFE, one  would
ideally like to measure the relative fitness of a large set of mutants at multiple time points along a broad
and well-characterized adaptive  trajectory.  To do so,  we take advantage  of  the long-term evolution
experiment (LTEE) in which populations of  Escherichia coli have been adapting to a glucose-limited
medium for tens of thousands of generations, resulting in large fitness increases (18). Examples of both
weak  and  strong epistasis  among  beneficial  mutations  have  been  reported  in  this  system (16,  19).
Moreover,  the most  important  mutations  driving adaptation have been identified from signatures of
parallelism in whole-genome sequences (20, 21), allowing the predictive capacity of a DFE at one time
point to be compared with the actual fate of mutations during later adaptation. To measure the DFE, we
created genome-wide libraries of insertion mutants using a transposon engineered to capture the 14-bp
sequence adjacent to each insertion site, which in most cases identifies unequivocally the target locus
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(22) (Methods, Fig. S1). We typically identified >100,000 different insertion mutants, which mapped to
>78% of the ancestral genome’s 8424 loci including both open reading frames (ORFs) and intergenic
regions (Methods).

We estimated the fitness effects of all these mutants as selection coefficients, obtained by tracking the
frequency trajectory of every allele during 5-day, bulk competition assays under the same conditions as
in the LTEE (Fig. 1, a-c; Methods). Although transposon insertions typically cause losses of function, we
also saw two types of more subtle effects (Fig. 1, d). First, an insertion in the C-terminus of a gene may
cause only a partial loss of function or even a change in function. This outcome is prominently revealed
by the tolerance of many essential genes to insertions in that region, notably including insertions in topA
and serB that show large benefits (23). Second, the position of many beneficial insertions, including in
intergenic regions and genes upstream of known targets of adaptation in the LTEE, suggests changes in
gene expression. Polar effects within transcription units are expected because the 1.5 Kb insert carries
two transcriptional terminators after a kanamycin resistance gene. To detect these phenomena, while also
ensuring robust fitness estimates, we divided each locus into 5 segments of equal length and then pooled
all insertions in each segment. As an added benefit, comparing the fitness effects among segments of the
same locus allows identification of potential artifacts and provides an internal control to quantify the
reproducibility of the fitness estimates (Methods, Fig. S2).

Changes in the size and shape of the beneficial tail of the DFE

Using this approach, we first sought to characterize how the macroscopic shape of the DFE changed as
fitness increased during the LTEE. The rate of fitness increase declined, such that half of the ~70% gain
typically  seen  at  50,000  generations  had  already  occurred  by  5,000  generations  (18).  We  decided
therefore to create transposon libraries in three genetic backgrounds: the ancestor (which we call “Anc”)
and clones  sampled from population Ara+2 at  2,000 (“2K”) and 15,000 (“15K”) generations,  when
fitness had increased by ~25% and ~50%, respectively. Despite these large fitness gains, Figure 2 shows
that the overall shape of the DFEs remained similar, with one critical difference—namely, the fraction of
beneficial insertion mutations is substantially larger in the ancestor than in the evolved backgrounds
(6.8% for Anc versus 3.5% and 2.6% for 2K and 15K, respectively; P < 0.043 both cases, two-sample
Kolmogorov–Smirnov [K-S] test). In contrast, the deleterious fraction is essentially constant across the
three backgrounds (20.4% for Anc versus  17.2% and 16.1% for 2K and 15K, respectively;  P > 0.083
both cases, two-sample K-S test). These patterns are consistent with analyses performed at the level of
individual genes for both beneficial and deleterious mutations (Fig. 3, a-b). 

We also examined whether these results depended on the particular evolutionary lineage that we chose to
study. To that end, we measured the DFEs for clones sampled at 2,000 and 15,000 generations from
population Ara–1, an independent lineage that accumulated a different set of beneficial mutations along
its  adaptive trajectory (Methods, Table S1). At least  two major features distinguish the evolutionary
history of this lineage from that of Ara+2. First, Ara–1 fixed a mutation in  topA early in the LTEE,
which confers the highest fitness benefit seen in this system for any single substitution (19). Mutations
in this locus fixed in five of the twelve LTEE populations, but they never reached detectable frequency
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in  Ara+2.  Second,  Ara–1  evolved  a  mutator  phenotype,  whereas  Ara+2  retained  the  low  ancestral
mutation  rate  throughout  the experiment;  however,  Ara–1 became hypermutable  only  after  ~21,000
generations, and hence poses no added technical complications to our study. Despite their independent
histories,  we  obtained  strikingly  similar  results  for  the  two  lineages,  at  both  the  macroscopic  and
microscopic levels (Fig. S3).

How do our findings compare to previous studies and expectations? An influential prediction based on
statistical arguments is that the effects of beneficial mutations should be exponentially distributed when
a population is well-adapted to its environment (1,  12). Despite some empirical support (24–26), the
evidence remains inconclusive owing to a severe limitation of most studies: without detailed knowledge
of a population’s evolutionary history, it is difficult to characterize its level of adaptation to a particular
environment.  Our  data,  by contrast,  provides a uniquely powerful  test of these ideas.  We find that,
indeed, beneficial  mutations in the evolved backgrounds are well  fit  by an exponential  distribution,
whereas this distribution can be rejected for the ancestor (P < 0.001 for Anc versus P = 0.554 and P =
0.852 for  Ara+2 clones  2K and 15K, respectively;  one-sample K-S test).  We also considered other
alternative distributions, but the exponential provides the best fit for the evolved backgrounds (Methods,
Table S2).  Note that  the  exponential  distribution  is  a  special  case of  both  the  Weibull  and gamma
distributions, so  it is not surprising that the data also fit well to them. These two distributions can be
thought of as natural transitional shapes before reaching the limiting case of the exponential distribution.
Indeed, the beneficial  tail  for the ancestor was fit  to different degrees by both gamma and Weibull
distributions (P = 0.035 and  P = 0.29, respectively; one-sample K-S test),  consistent with previous
studies of viral and bacterial genotypes thought to be poorly adapted to their test environments (26, 27).
Overall, our results support the view that, after an early period of rapid adaptation to a new environment,
the distribution of beneficial mutations becomes exponential. Thus, by analyzing changes in the DFE in
a  temporal  series  of  genetic  backgrounds  becoming  better  adapted  to  their  environment,  we  can
reconcile  otherwise  disparate  pieces  of  evidence  and  provide  insights  relevant  to  many  models  of
adaptation.

Constancy of the deleterious tail of the DFE

The constancy of the deleterious tail we observe over time stands in contrast to a study that measured the
DFE for 710 insertion mutations in hybrid yeast genotypes with fitness values spanning ~20%, in which
deleterious effects were significantly worse in the more-fit backgrounds (28).  A potentially important
difference is that the fitness variation among the yeast backgrounds was generated by crossing two
distantly related strains, whereas we use a series of backgrounds from lineages undergoing adaptation to
the same environment in which we assess the fitness effects of the new mutations. As further support for
our findings, a companion study focused on the effects of deleterious mutations found no systematic
changes in those effects across all of the LTEE lineages over 50,000 generations (29).  In any case,
theoretical predictions about the tail of deleterious mutations differ substantially and have been guided
mostly by plausibility arguments (14, 15), and so all of these studies should help refine current models
by clarifying the assumptions and narrowing the range of parameters. 
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Changing identity of beneficial mutations and sign epistasis

Having examined how the macroscopic structure of the DFE changed as the bacteria adapted to the
LTEE environment, we next sought to understand how the macroscopic changes emerged from changes
at the level of genes and mutations. Figure 3a shows that deleterious mutations typically exhibit only
slight epistasis across the three focal genetic backgrounds of the Ara+2 lineage. That is, the magnitude
of their harmful effects may vary, but the tendency is for mutations that are deleterious mutations in the
ancestor to remain deleterious in the evolved backgrounds, consistent with the observed constancy of the
deleterious tail (see Fig. S4 for more details). In stark contrast, beneficial mutations are dominated by
strong, sign-epistatic interactions (Fig. 3b). Only  5.9% of the mutations beneficial in the ancestor are
still  beneficial  at  2,000  generations,  with  most  becoming  effectively  neutral  (76.9%)  and  some
deleterious (17.2%) (Fig. 3c, left panel). This pattern also holds in the reverse direction: most beneficial
mutations at 2,000 generations are neutral (78.4%) or deleterious (19.3%) in the ancestor (Fig. 3c, left
panel). Similar patterns occur when comparing how fitness effects changed between 2,000 and 15,000
generations  (Fig.  3c,  right  panel).  Intrigued by the  transitory  nature of  beneficial  effects,  we asked
whether the overall DFE of the initially beneficial mutations retains even a slightly positive tendency at
the later time points. In fact, it does not. The DFE of mutations that were beneficial in the ancestor
becomes indistinguishable from a random sample of the parent distribution (Fig. 3d, left panel), and the
same holds for the reverse scenario (Fig. 3d, right panel) (P > 0.116 both cases; two-sample K-S test).
This regression to the mean persists even when we account for measurement noise around neutrality
(Fig. S2). 

What might explain this turnover in the identity of the beneficial mutations? In a previous study, the first
five mutations to fix in one LTEE population were shown to exhibit diminishing-returns epistasis, such
that  their  benefits  declined in  magnitude as the background fitness increased (19).  However,  it  was
unlikely  a priori that these five early mutations would show sign epistasis because they were chosen
precisely because their combination was favored by natural selection (30). By contrast, another study
analyzed the co-occurrence of fixed mutations across 115 lines of E. coli that had evolved under thermal
stress, and it found that sign epistasis was indeed common  (31). Moreover, that study found that the
prevalence of different types of epistasis reflected the modular architecture of cellular traits: mutations
affecting different modules tend to interact more or less additively, while mutations impacting the same
module tend to be redundant. We therefore investigated the extent of modularity in our data, and we
found that beneficial mutations tend to cluster together in operons (Methods, P < 0.01). Mutations in the
same operon typically alter the same cellular process in similar ways, and therefore the potential for
redundancy  at  this  functional  level  provides  a  simple  explanation  for  why  large  sets  of  beneficial
mutations  disappear,  and other sets  emerge,  as adaptation proceeds.  Even without  considering these
specific details, the increased prevalence of sign epistasis with adaptation has also been predicted from
general properties of the genotype-to-fitness map (32).

We identified a large set of loci that can produce beneficial mutations, including some known targets for
adaptation in the LTEE (e.g., topA,  pykF,  nadR)  (20).  However,  the fate  of beneficial  mutations  is
determined not only by their individual fitness effects, but also by their occurrence rate and the nature
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and intensity of their interactions with  other beneficial mutations (16,  17). As a consequence, only a
fraction of all possible beneficial mutations will contribute to adaptation in an evolving population. To
gain further insight into this issue, we compared our data with metagenomic data previously obtained by
sequencing  whole-population  samples  from  the  12  LTEE  populations  over  the  course  of  60,000
generations (21). We see a significant, but fairly weak, correlation between our fitness estimates for
mutations in the ancestor and the abundance of corresponding alleles during the LTEE (r = 0.27, Fig.
4a), and this correlation largely disappears when using the beneficial effects estimated in the evolved
backgrounds.  An important  factor  contributing to  these weak correlations  may be that  our methods
involve insertion mutations,  which usually,  but not always, cause losses of function (Fig.  1). While
losses of unused functions have contributed to adaptation in the LTEE (20,  33),  subtle changes that
typically require point mutations have also been important in refining some functions (16, 20, 34). In
contrast, the abundance of alleles in the metagenomic data correlates more strongly with the target size
of the locus (r = 0.71, fig. 4b) (Methods). These patterns are consistent with intense competition among
independently segregating beneficial mutations (i.e., clonal interference), a pervasive phenomenon in the
LTEE (21, 35). Under intense clonal interference, the probability that particular beneficial mutations
occur may shape genomic evolution even more than their individual fitness effects (36). In any case, the
best  linear  model  includes  target  size  as  the  most  explanatory  single  variable,  but  it  also  includes
significant  contributions  from the  fitness  effects  in  both  the  ancestral  and  2,000-generation  genetic
backgrounds (Fig. 4c, Table S3).

Predicting future beneficial mutations as adaptation proceeds

Finally, given that sign epistasis is widespread, it is natural to ask for how long the information about the
particular loci in the beneficial tail of a DFE can successfully predict the subsequent steps of adaptation.
To address this question, we used the metagenomic data to record the alleles that were nearing fixation
through time, and we calculated how many of those alleles corresponded to loci for which we detected
beneficial effects. We found that the ancestral DFE predicted most of the loci where mutations became
dominant early in the LTEE populations; the predictive power decays rapidly, but it was still evident for
~15,000 generations (Fig. 4d). This decay was largely driven by lineages that evolved hypermutability
early in the LTEE; when these mutator populations are removed from the analysis, the ancestral DFE
retained  significant  predictive  power  through  50,000  generations  (Fig.  S5,  a).  In  turn,  the  DFEs
measured in the evolved backgrounds had less predictive power, and it took longer for their predictions
to  materialize;  the  latter  effect  may  reflect  the  declining  rate  of  adaptation.  These  patterns  are
reminiscent of work showing that parallel genomic evolution was more common early in the LTEE than
in later generations (20, 37). 

Why does the ancestral DFE have such predictive power, when it is estimated from insertion mutations
that represent only a limited set of all possible mutations from a functional standpoint? To address this
question,  we  quantified  how  many  loci  with  frequent  beneficial  mutations  in  the  LTEE  include
mutations with presumed loss-of-function effects. To that end, we assumed that nonsense, frameshift and
structural  variants  cause  losses  of  function.  We find  that  these  presumptive  inactivating mutations
contribute most of the initial adaptive mutations in the LTEE, and they represent a sizable fraction over
the  long run  (Fig.  S5,  b).  This  result  provides  support  for  the  “coupon-collecting”  model  of  rapid
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evolution (21, 31), in which “rough-and-ready” loss-of-function mutations dominate the early phase of
adaptation to a new environment owing simply to their high rates of occurrence. Under this model, many
initially beneficial mutations are also redundant because they inactivate the same functional module. As
a result, the model implies that fitness effects alone are a poor predictor of adaptive fixations, but taking
target size into account can compensate for this uncertainty. This interpretation satisfactorily explains
our findings that the initial drivers of adaptation are predictable despite widespread and strong epistasis,
and that target size is the best predictor of beneficial alleles that fix early when a population encounters a
new environment.

Taken together, our results shed new light on which aspects of adaptation to a novel environment are
predictable, and which are not, given our current understanding of genetics and evolution. While the first
steps of adaptation are not yet well-described by theory, we have shown that the identity of many drivers
of early adaptation can be predicted from high-throughput empirical fitness data. By contrast, the long-
term dynamics of adaptation are well-described using simple statistical arguments. However, predicting
the genetic identity of the late drivers of adaptation is more difficult, and it will remain a challenge until
a general theory of epistasis has been developed.
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Figures:

Fig. 1. Overview of experimental procedures. (A) Several saturated, genome-wide insertion libraries
in the ancestor and two evolved isolates (2K and 15K generations) from each of two LTEE populations
(Ara+2 and Ara–1) were subjected to bulk competition and sequencing. (B) The abundance trajectories
of well-known neutral  loci were used to normalize coverage depth across time points,  providing an
internal reference to estimate selection coefficients (left). The values for this set of neutral loci were
closely  centered  around zero  (right).  (C)  Frequency trajectories  of  the  whole  mutant  library  in  the
ancestor (left), and mapping of the selection coefficient estimates along the chromosome (right). Colors
indicate fitness effects, from deleterious (red) to beneficial (blue). (D) Examples of important sub-genic
structure for known targets of selection including polar effects involving the preceding regions of the
same transcription unit (mrdA, nadR, and topA), and tolerance to insertions in the C-terminal portion of
essential genes (serB, topA, and spoT).
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Fig. 2. Change in the DFE along a large fitness gradient. (A) DFEs in the ancestor (black), 2K (blue)
and 15K (red) evolved strains from population Ara+2. Note that the logarithmic scaling of the y-axis
exaggerates minor, nonsignificant differences in the extreme deleterious tails. (B) Deleterious tails were
unchanged during adaptation,  as indicated  by comparing the cumulative  fitness distributions  for the
ancestor and 2K evolved strain (left), and for the ancestor and 15K strain (right). Shaded areas show
90% bootstrapped confidence intervals. (C) Beneficial tails were rapidly truncated during the LTEE, and
they  became  exponentially  distributed.  Histograms  show  the  best  fits  to  exponential  distributions
(dashed lines) in the ancestor (gray), 2K (blue), and 15K (red) backgrounds. Note that all three x-axes
use the same scale.
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Fig. 3. Effect of genetic background on the fitness effects of mutations in specific gene targets. (A)
The genes and intergenic regions subject to the most severely deleterious mutants in three backgrounds
in the Ara+2 lineage. Colors indicate ancestor (black), 2K (blue), and 15K (red) evolved strains. Gray
shaded areas indicate loci in the same transcription unit. Values show the average across the different
segments of each locus. Error bars indicate 90% confidence intervals.  (B) The genes and intergenic
regions with the most beneficial alleles in the ancestral background, and their fitness effects in the 2K
(blue) and 15K (red) backgrounds. (C) Most of the beneficial mutations available to the ancestor became
neutral  or  deleterious  in  the  2K  background,  while  most  beneficial  mutations  available  in  the  2K
background were neutral or deleterious in the ancestor (left).  The same general pattern occurs when
comparing beneficial mutations in the 2K and 15K backgrounds (right). (D) More than 90% of initially
beneficial mutations became neutral or deleterious in later generations (left). Likewise, more than 90%
of beneficial mutations from later generations were neutral or deleterious in the ancestor.
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Fig. 4. Determinants of evolutionary outcomes. (A, C) The prevalence of mutations in the LTEE is
better explained by mutational target size (A, area and color of dots represent fitness) than by beneficial
fitness effects measured in the ancestor (C, area and color of dots represent target size).  (B) The best
linear model for mutation prevalence includes fitness but is more strongly dependent on the mutational
target size (area of dots represents target size, and color represents fitness). (D) The predictive capacity
of DFEs as a function of time in the LTEE. Values show the fraction of numerically dominant alleles at
each generation that were captured by the DFE measured in the ancestor (black), 2K (blue), and 15K
(red) evolved strains. For the ancestor, we measured this fraction across all 12 LTEE populations; for the
evolved  backgrounds,  the  fraction  includes  only  the  focal  population.  Shaded  areas  show the  null
expectations based on randomly sampling neutral and deleterious mutations.
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