




It is worth mentioning that the posterior over the molecular trajectories is now broader when

more molecules are present in the confocal volume.

Figure 5: Effect of the configuration of the confocal volumes on the precision of
the trajectory estimate. (a) Trajectory estimates of a freely diffusive molecule where the
confocal volumes overlap substantially and are located at (-0.01, 0.00, -0.01), (0.01, 0.00,
-0.01), (0.00, -0.01, 0.01) and (0.00, 0.01, 0.01). (b) Trajectory estimates of a freely diffusive
molecule with confocal volumes minimally overlapping and located at (-0.3, 0.0, -0.5), (0.3,
0.0, -0.5), (0.0, -0.3, 0.5) and (0.0, 0.3, 0.5). (c) Trajectory estimates of a freely diffusive
molecule with confocal volumes are far away and located at (-1.0, 0.0, -1.5), (1.0, 0.0, -1.5),
(0.0, -1.0, 1.5) and (0.0, 1.0, 1.5). For all three cases, coordinates are with respect to the
point of origin (in units of µm) and the diffusion coefficient of 1 µm2s−1, molecular brightness
of 5 × 104 photons s−1 and background photon emission rate of 103 photons s−1 have been
used to generate the trajectories. The photon detection times are shown with blue lines and
the total number of detected photons for all cases is 104.

That is, for two molecules as compared to one, we have greater uncertainty in both

trajectories. This is because the same number of photons is now needed to learn twice as

many trajectories as we had earlier. Thus the information we have available per trajectory

drops. Fig. 3 also allows us to begin addressing how many photons we need to set uncertainty
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bounds on molecular trajectories given experimental parameters such as confocal volume

dimensions, molecular diffusion coefficients and molecular brightness.

In Fig. 4, we demonstrate the robustness of our method with respect to the molecular

brightness. That depends on the photon emission rate of the molecules and the quantum

yield of detectors. So, for each detector, we have different value for the molecular brightness

and background photon emission rate. We provide more detail in SI Sec. S3.2. In particular,

due to different quantum yields, we end up with different molecular brightness and back-

ground photon emission rate for each detector. Here, we evaluate the method with molecular

brightnesses of 104, 5×104 and 105 photons s−1 and a background photon emission rate of

103 photons s−1; these are values in the range of those previously reported in Refs.24,25 As

expected, higher molecular brightness leads to sharper posteriors. We also learn diffusion

coefficients, molecular brightnesses and background photon emission rates simultaneously;

see SI Fig. S5.

Finally, in Fig. 5 we test the robustness of our method as we vary the configuration of

the four neighboring confocal volumes. Here, we consider the case that the four confocal

volumes are located symmetrically located at (-0.01, 0.00, -0.01), (0.01, 0.00, -0.01), (0.00,

-0.01, 0.01) and (0.00, 0.01, 0.01) in Fig. 5(a), (-0.3, 0.0, -0.5), (0.3, 0.0, -0.5), (0.0, -0.3, 0.5)

and (0.0, 0.3, 0.5) in Fig. 5(b) and (-1.0, 0.0, -1.5), (1.0, 0.0, -1.5), (0.0, -1.0, 1.5) and (0.0,

1.0, 1.5) in Fig. 5(c) with respect to the point of origin (in units of µm). Except the case

that the confocal volumes overlap substantially, these distances are within the realm of what

can be achieved in current experimental setups.15,16,27–30

There exists an optimal, “goldilocks", distance between confocal volumes that allows us

to minimize trajectory uncertainty. As we see in Fig. 5(a), if the confocal volumes are too

close, the information they provide on the molecular positions is redundant. Put differently,

in the extreme case that all volumes exactly overlap, then we revert to the highly symmetric

case of the single-spot (at which point we can only determine the effective distance of each

molecule from the center of the single-focus confocal volume but not its 3D position).11–13
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Similarly, in the case that the confocal volumes are too far from each other, as in Fig. 5(c),

each confocal volume provides independent information from other spots and the position of

each molecule cannot be interpolated between confocal volumes. Thus, in this extreme limit

as well, we revert to the single-focus confocal volume regime.

Although, it is clear that when confocal volumes overlap, our trajectory estimates im-

prove, it is hard to say precisely what distance is optimal. This chiefly depends on the precise

shape of the confocal volumes (we assumed a Gaussian, but this can be replaced by any an-

alytical form), the molecular brightnesses and background photon emission rates. Beyond

learning the number of molecules and their associated trajectories, from this synthetic data,

we also learn diffusion coefficients, molecular brightnesses and background photon emission

rates simultaneously; see SI Fig. S7.

Conclusion

We have proposed a new analysis strategy using existing stationary multi-focus confocal

microscopes to track multiple molecules at once. The use of a multi-focus confocal microscope

is required in order to break the symmetry of the single-focus confocal microscope12 which

allows for multiple molecules tracking from single photon arrival times but only up to a

symmetry originating from the symmetry of the confocal volume. Multiple confocal volumes

not only break symmetry but also provide non-redundant information at each detector. This

allows us to have localization precision as great as ten times that of single-focus confocal

volume width (see Figs. S2, S4, S6 and S8); though, the magnitude of the improvement is

sensitive to the diffusion coefficient, molecular brightnesses and background photon emission

rates; see SI Figs. S1, S2, S3 and S4.

We track many molecules simultaneously within a multi-focus confocal setup by exploiting

not just temporal, but also spatial information encoded within photon arrival time traces.

The ability to exploit information as it arrives one photon at a time, without binning, is

11
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particularly critical in minimizing light exposure or, in the future, to probe rapid processes

resolved over rapid time scales spanning the arrival of thousands of photons.

Minimizing light exposure is not the only downstream advantage we see to our method

as we envision more complex in vivo applications. Beyond tracking, our method retains

molecular identity; for example, in Fig. 3 we see that trajectories can be discriminated even

if molecular trajectories move closer to each other than the conventionally defined diffraction

limit though not indefinitely. Retaining molecular identity is an advantage in resolving single

molecule events unique to individual molecules with high localization precision.

To achieve such tracking, we use Beta-Bernoulli processes31,32 and other tools from com-

putational statistics that we recently benchmarked on a variety of single confocal volume

experiments.11,13 As we discuss in the methods section, our method can be generalized to

treat alternative forms for the confocal volumes which can be distorted in real experiments or

even motion models for the molecules beyond Brownian motion. Assessing, computationally,

the efficiency of our posterior sampling for shapes and dynamical motion models beyond that

considered, and warranted by alternative multi-focus experiments, is worthy of future study.

The method we propose here differs from existing methods such as multi-focus confocal

microscopy,15–17 scanning confocal volume33 and MINFLUX18,19,34 in a number of ways.

First existing methods localize and track labeled molecules one at a time and under low

density conditions to avoid inaccurate tracking induced by overlapping molecular trajectories.

Second, if photobleaching is avoided, they can track molecules over large distances. By

contrast, our method tracks over shorter distances (as our method tracks over a fixed volume

a few molecules) but is, critically, not limited to low density. What is more, we achieve high

temporal resolution without photon binning.

Finally, we add that we considered four stationary confocal volumes and varied their

distances; see Fig. 5. However, as few as three confocal volumes, both axially and laterally

displaced, would be sufficient to pinpoint positions in 3D albeit with greater uncertainty.

While we track over limited distances, it is also conceivable, in the future, that the number

12
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of confocal volumes could possibly be increased to span broader areas.28–30,35–37

Method

Model overview

Here we consider an optical apparatus consisting of multi-focus confocal volumes with, for

sake of concreteness, four detectors all simultaneously collecting photons; see Fig. 1. This

allows us to break the symmetry imposed by a single-focus confocal volume11–13 and conse-

quently track (fluorescing) molecules in 3D.

Based on the graphical model provided in Fig. 6, our goal is to learn the variables:

{xn, yn, zn}n representing the trajectories of the molecules, D representing the diffusion

coefficient, {µback
m , µmol

m }m representing the molecular brightnesses and background photon

emission rates and {bn}n representing the indicators of molecules which tell us about the

population of molecules contributing to the data. We tag the molecules with indices n =

1, . . . , N and the detectors with indices m = 1, . . . ,M .

As the full joint posterior over these variables does not assume an analytic form, we

must develop a numerical scheme to sample from our posterior. For this reason, we generate

samples of our posterior through a Gibbs sampling scheme.38–40 That is, we update each

one of the variables sequentially by sampling from the marginal posterior conditioned on all

other variables as well as the measurements which we describe below.

In greater detail, we start from single photon arrival times. These occur at times tk

with k = 1, . . . , K and may be reported from any of M different detectors. For clarity, we

combine the measurements from all detector channels into two observation traces: the inter-

arrival times between successive photons, ∆ = (∆1, . . . ,∆K−1); and the tags of the confocal

volumes where each photon was collected, s = (s1, . . . , sK). According to our convention,

∆k = tk+1 − tk is the inter-arrival time between two detected photons and sk is the tag of

the confocal volume which observed the photon at time tk.

13
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Our goal is to use the data in ∆ and s to construct a likelihood40,41 and, through it, a

posterior probability distribution40,41 which yields estimates of (i) the number of molecules

contributing photons to the data; (ii) the trajectories of these molecules; (iii) their diffu-

sion coefficient and brightness; and, (iv) the background photon emission rate, which are

represented by the variables introduced above.

In this section, we explain the way to achieve each one of these in detail. Further details

and a computational implementation can be found in the SI Sec. S.5. A summary of the

notation, abbreviations and mathematical definitions can be found in SI Tables S.3 and S.4.

The graphical summary of the model explained below is shown on Fig. 6.

Model description

Since we have two independent inputs, ∆ and s, our likelihood is expressed by two indepen-

dent parts: one expressing photon emission and one expressing photon detection. Respec-

tively, these are:

∆k|{µmol
m , µback

m }m, {bn, xn,k, yn,k, zn,k}n ∼ Exp

(
M∑

m=1

µm,k

)
(1)

sk|{µmol
m , µback

m }m, {bn, xn,k, yn,k, zn,k}n ∼ Cat1,...,M

([
µ1,k∑M

m=1 µm,k

, . . . ,
µM,k∑M
m=1 µm,k

])
. (2)

In the above, µm,k is the rate of detected photons at the mth detector at the kth timepoint.

Eq. (1) applies to k = 1, . . . , K−1 and Eq. (2) applies to k = 1, . . . , K. The photon emission

rates are given by

µm,k = µback
m + µmol

m

∑
n

bn PSFm (xn,k, yn,k, zn,k) (3)

and the point spread function for each of the confocal volumes, PSFm (x, y, z), indexed m is

separately defined. We provide more detail in SI Sec. S3.2.
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Figure 6: Graphical representation of the model for multiple molecules and
many confocal volumes. Molecules diffuse over the course of the experiment. Here,
(xn,k, yn,k, zn,k) denotes the location of molecule n at time tk and the photon arrivals over all
confocal volumes are marked by k = 1, 2, . . . , K. During the experiment, ∆k, is the inter-
arrival time which is equal to the time difference between successive photon detection times
tk and tk+1. The kth photon can be detected by any of the detectors sk = 1, . . . ,M . In full
generality, as each confocal volume may have different properties, we index the molecular
brightness and the background photon emission rate of each as follows: µmol

m and µback
m for

m = 1, . . . ,M . The diffusion coefficient D dictates the molecular dynamics and determines
future molecular locations which, in turn, determine the location of the molecule within the
illuminated volume, influences the photon emission rates and, ultimately, the photon arrival
times. In order to learn the number of existing molecules we introduce auxiliary variables
bn termed “loads”. Following machine learning convention,42 the circle surrounding measure-
ment, ∆ and s, random variables are shaded in grey while model variables requiring prior
probability distributions are shaded in blue.

Here, for all the synthetic observation traces, we consider all confocal volumes as 3D

Gaussians, but as we explain in the SI Sec. S.3.3, any functional form can be readily

incorporated for the generation of analysis data

We mention that, since each confocal volume coincides with a different detector receiving

photons from a different region of physical space, we represent different molecular bright-

nesses and background photon emission rates µmol
m and µback

m associated to each confocal

volume m. We provide more detail in SI Sec. S3.2.

We assume a Brownian motion model11–13 (with unknown diffusion coefficient) connecting
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individual positions in the trajectories, xn, yn, zn, across time by

xn,k+1|xn,k,∆k ∼ Normal (xn,k, 2D∆k)

yn,k+1|yn,k,∆k ∼ Normal (yn,k, 2D∆k)

zn,k+1|zn,k,∆k ∼ Normal (zn,k, 2D∆k)

(4)

where, k = 1, . . . , K − 1.

Model inference

The quantities that we wish to estimate are: the diffusion coefficient D, molecular bright-

nesses µmol
m and background photon emission rates µback

m with respect to each of the confocal

volumes m, the population of active molecules
∑

n bn, and the location of the molecule n

through time (xn, yn, zn). In this study we follow the Bayesian paradigm,10,22,39 and in par-

ticular the Bayesian nonparametric paradigm, to estimate variables of interest described

above.

The variables bn, can take values 0 or 1 for each model molecule. Thus, each bn is a

Bernoulli random variable. Here bn = 0 is associated with an inactive molecule n which does

not contribute to the observations. If the nth molecule contributes photons at any point

during the observation trace, then it is associated with bn = 1 and termed active. Within

the purview of nonparametrics lies our ability to introduce an arbitrarily large number of

molecules, each associated with its own bn, and determine which of these the data warrants

as “active” versus “inactive”.

Within the Bayesian paradigm, whether parametric or nonparametric, we need to define

priors over all unknowns (designated by blue circles in the graphical model of Fig. 6) and

our choices over priors are detailed in the SI Sec. S.4.1.

Once the choices for the priors over random variables of
(
D, {µback

m , µmol
m }m, {bn, xn, yn, zn}n

)
are made, we form a joint posterior probability P

(
D, {µback

m , µmol
m }m, {bn, xn, yn, zn}n |∆,
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s
)

encompassing all unknown variables which we may wish to determine.

On account of the complexity of our posterior with respect to variables D ,{µmol
m , µback

m }m,

{bn, xn, yn, zn}n, our posterior does not assume an analytic form. For this reason, we de-

velop a computational scheme exploiting Markov chain Monte Carlo38,39 that can be used

to generate pseudo-random samples from this posterior. Our MCMC exploits a Gibbs sam-

pling scheme.38–40 Accordingly, posterior samples are generated by updating each one of

the variables involved sequentially by sampling conditioned on all other variables and mea-

surements ∆. Conceptually, the steps involved in the generation of each posterior sample

D, {µback
m , µmol

m }m, {bn, xn, yn, zn}n are:

(1) Sampling the trajectories {xn, yn, zn}n for n = 1, . . . , N

(2) Sampling the diffusion coefficient D

(3) Joint sampling the molecular brightnesses µmol
m and background photon emission rates

µback
m for m = 1, . . . ,M

(4) Sampling the molecular loads bn for n = 1, . . . , N .

To achieve step (1) without approximations on the forms of Eqs. (1) and (2), we use a

Hamiltonian Monte Carlo (HMC) sampling scheme.39,43–45 This is by contrast to our pre-

vious work,11–13 where we exploited approximate Kalman filters46–52 to infer the molecular

positions. Step (2) can be achieved analytically by virtue of the conjugacy of the prior to

the marginal likelihood, steps (3) is achieved by a brute-force Metropolis scheme, and step

(4) can be achieved by direct sampling. More details can be found in SI S.5.

A full detailed mathematical formulation and computational implementation of our pro-

posed model, based on the multi-focus confocal microscope, is explained in the SI Sec. S.4

and S.5.
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