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Abstract1

Variation in species richness across the tree of life, accompanied by the incredible variety of2

ecological and morphological characteristics found in nature, has inspired many studies to link3

traits with species diversification. Angiosperms are a highly diverse group that has fundamentally4

shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem5

functioning. Numerous traits and processes have been linked to differences in species richness within6

this group, but we know little about how these interact and their relative importance. Here, we7

synthesized data from 152 studies that used state-dependent speciation and extinction (SSE) models8

on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to9

diversification but a set of universal drivers did not emerge as traits did not have consistent effects10

across clades. Importantly, dataset properties were correlated to SSE model results - trees that11

were larger, older, or less well-sampled tended to yield trait-dependent outcomes. We compared12

these properties to recommendations for SSE model use and provide a set of best practices to follow13

when designing studies and reporting results. Finally, we argue that SSE model inferences should14

be considered in a larger context incorporating species’ ecology, demography and genetics.15
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Introduction16

Species diversity is unevenly distributed across the tree of life and while substantial research17

has investigated why some clades are more diverse than others, many fundamental questions18

remain unanswered. The causes behind this unevenness can be diverse, from catastrophic mass19

extinctions that decimate diversity (Raup & Sepkoski, 1982) to key innovations that spur on rapid20

speciation (Hodges & Arnold, 1995) to ecological factors such as competition that shapes species21

co-existence (Drury et al., 2016; Rabosky, 2013). A greater understanding of the drivers of species22

diversification is important because they can provide insights into the assembly of communities and23

their phylogenetic structure, the evolution of functional traits that underpin a species’ role in its24

environment, the formation of species interaction networks, and simply how biodiversity has evolved25

through time (Morlon, 2014). Research aiming to link species characteristics to macroevolutionary26

dynamics has been boosted over the last decade by the increasing availability of large phylogenetic27

trees (Jetz et al., 2012; Rabosky et al., 2018; Smith & Brown, 2018; Upham et al., 2019) and the28

continuing development of a range of statistical models to infer patterns in species diversification and29

the drivers behind them (Barido-Sottani et al., 2020; Beaulieu & O’Meara, 2016; Maliet et al., 2019;30

Rabosky & Huang, 2016). The increasing amount of empirical knowledge provides an opportunity31

to synthesise what we know so far about a wide range of ecologically diverse and species-rich clades32

to uncover general dynamics about the traits that have driven their diversification.33

Species diversification can be linked to traits via state-dependent speciation and extinction34

(SSE) models. This popular family of models are based on birth-death processes where the35

diversification rates (birth is speciation, and death is extinction) are dependent on character states,36

and where transition rates between states define how state changes occur. The simplest SSE model37

is the binary-state speciation and extinction (BiSSE) model (Maddison et al., 2007) that takes as38

input a phylogenetic tree and state values (0 or 1) for each species in the tree. This allows users to39
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uncover whether lineages with one state diversify faster than those with the other. SSE models can40

also be used to test whether the transition rates between states in one direction (0 to 1) are faster41

than the other (1 to 0). The original model has been extended in various ways (Fig. 1) to address42

different types of macroevolutionary questions. For example, ClaSSE (Goldberg & Igić, 2012) and43

BiSSE-ness (Magnuson-Ford & Otto, 2012) are extensions of BiSSE that include cladogenetic events44

(speciation simultaneously associated with change in state), and GeoSSE (Goldberg et al., 2011)45

explicitly models how diversification differs among geographic regions. Other developments include46

models with more than two character states (MuSSE; FitzJohn, 2012), quantitative traits (QuaSSE;47

FitzJohn, 2010) and semi-parametric models (FiSSE; Rabosky and Goldberg, 2017). Perhaps the48

most important innovation after the initial wave of SSE models was the introduction of hidden49

states into SSE models (Beaulieu & O’Meara, 2016; Caetano et al., 2018; Herrera-Alsina et al.,50

2019) as a way to account for background heterogeneity that can lead to false positives (Rabosky51

& Goldberg, 2015). The incorporation of hidden states into SSE models allowed diversification52

rates to be influenced by the focal traits as well as an unobserved trait(s) and provided a new set53

of more complex null hypotheses (the character independent (CID) models). This allowed users to54

test how relevant the focal trait is to species diversification (Beaulieu & O’Meara, 2016; Caetano55

et al., 2018) in the context of other factors. Here we focus on synthesizing results from SSE models56

used to investigate trait-dependent diversification in flowering plants, or angiosperms. There have57

been more than 150 such studies, providing an opportunity for an updated perspective on the role58

different traits have played in angiosperm diversification (Vamosi et al., 2018).59

Angiosperms form a clade of more than 350,000 extant species, despite their relatively young60

age of a 140 to 270 million years (Crepet & Niklas, 2009; Foster et al., 2017; Li et al., 2019; Magallón61

et al., 2015; Sauquet et al., 2021; Silvestro et al., 2021). Almost all of terrestrial life is linked, directly62

or indirectly to angiosperms (Benton et al., 2021) and their success makes them an ideal study group63
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for uncovering the intrinsic traits and extrinsic factors driving their diversification. Previous work64

has suggested that the origins of angiosperm diversity can neither be tied to major global events65

nor the evolution of a single key innovation. Instead various combinations of traits, environment66

and ecology acting to stimulate diversification in different groups (Davies et al., 2004; Magallón &67

Castillo, 2009; Sauquet & Magallón, 2018), creating a landscape of macroevolutionary dynamics68

that vary substantially across different angiosperm clades (Magallón et al., 2019). One hypothesis69

proposes that the traits driving the differences in diversification are a range of vegetative and70

reproductive characteristics, some of which are unique to angiosperms (Stebbins, 1974). In sexual71

systems, for example, dioecy originated in 890-5000 independent instances (Renner, 2014) but these72

appear to have led to quite different macroevolutionary dynamics (Käfer et al., 2014; Sabath et al.,73

2016; Wang et al., 2021). In the majority of studied traits, we do not know how pervasive such74

differences are, nor have broad-scale empirical studies of trait-dependent diversification provided a75

general consensus on which traits are most important for angiosperm diversification.76

In this study we bring together the latest empirical knowledge on angiosperm diversification77

to compare the effects of traits in different evolutionary contexts and identify those that have78

repeatedly stimulated diversification. We also investigate the relationship between the properties79

of datasets (e.g. tree size and global sampling fraction) and the results of published studies,80

highlighting how biases in our use of SSE models can affect our conclusions when searching for81

general trends. Finally, we identify gaps in our current knowledge and provide a set of best practices82

for diversification result-reporting to enhance our ability to fill these gaps in the future.83
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Materials & Methods84

Data collection85

We collected all published studies that cited SSE methods papers (Beaulieu & O’Meara, 2016;86

Caetano et al., 2018; FitzJohn, 2010, 2012; Freyman & Höhna, 2018; Goldberg & Igić, 2012;87

Goldberg et al., 2011; Herrera-Alsina et al., 2019; Maddison et al., 2007; Magnuson-Ford & Otto,88

2012; Nakov et al., 2018; Rabosky & Goldberg, 2017; Verboom et al., 2020) using Google Scholar,89

last accessed 18th May 2021. To facilitate data collection from papers using SSE models, we90

developed a new R package called ‘papieRmache’ (https://github.com/ajhelmstetter/papieRmache).91

This package has two main purposes (1) to classify papers into different categories based on the92

frequency of term use in the text and (2) to pull out sections of the main text that contain a keyword93

or a pair of keywords while highlighting relevant information. We identified the SSE studies on94

angiosperms by using the keywords ‘angiosperm’, ‘flowering’ and ‘plant’ subsequently validating the95

subset of papers by hand and removing any studies on groups other than angiosperms. We then96

collected up to 30 different dataset properties from each paper relating to the trait investigated, the97

group studied, the phylogenetic tree and the outcome of the SSE model used (see appendix S1 for98

a detailed explanation of each property). In cases where there was uncertainty in how to interpret99

or collect data from a study we contacted the authors for their assistance and clarification, where100

possible.101

Trait classification102

While some sets of character states were the same among studies (e.g. annual vs perennial;103

diploid vs polyploid), many of them did not overlap. We classified traits into different categories to104

facilitate comparisons among different trait types. At the broadest classification these were intrinsic105

(traits belonging to the species), extrinsic (environmental or geographic traits), interaction (traits106
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related to other species), and combination (multiple traits belonging to different categories that were107

grouped, e.g. species that have both small fruits and are found on islands). To allow for analyses108

at different grouping levels we developed a trait ontology (Table S1) starting at the broadest level109

as just described and becoming more specific, up to level six.110

Data analysis111

To examine the effect of particular traits on diversification we used the trait categories defined112

above and calculated the proportion of models in which trait-dependent diversification was inferred.113

In many cases multiple models are run per study, typically to investigate the effect of a single114

trait across different clades or the effects of different traits on diversification in a single clade.115

We considered each model separately here with an outcome of 1 (trait-dependent diversification116

detected) or 0 (no effect of trait detected) recovered per model. We examined patterns at different117

levels of trait categorization, as well as using only those models with hidden states. Whether118

or not trait-dependent diversification was detected was typically based on significance in model119

comparisons and/or posterior distributions of rates among states. However, if significance wasn’t120

inferred or reported, we followed the study narrative and statements made in the text. If model121

comparisons were conducted and reported, only the best-fitting model was considered, unless other122

models were explicitly referred to in the study. To facilitate comparison, we mainly consider123

whether or not a trait has an effect on diversification, irrespective of the direction of the effect (i.e.124

increase or decrease of diversification), as the direction is only defined at the state level. When125

both the effect and the absence of an effect of a trait on diversification has been inferred in different126

studies, we consider these studies ‘inconsistent’. Note that inconsistency doesn’t necessarily imply127

a contradiction, as the differences in the results of SSE models might be caused by differences in128

statistical power, type I errors, or biological differences between clades, as we will discuss below.129
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In models where information was available, net diversification rates (lineages per million years)130

were extracted for each character state. At a broad scale, relative differences in net diversification131

rates were calculated as (rmax − rmin)/rmax and were used to represent the magnitude of the effect132

of a given trait on diversification, while taking into account general variation in diversification133

rates among clades. Comparisons were then made across trait level 1 and 2 categories. For ease of134

interpretation, these analyses were restricted to those models where all net diversification rates were135

positive. At a narrower scale, we identified eight traits for which there was enough replication to be136

able to assess whether one character state was consistently inferred to have higher net diversification137

rates than the other(s). We ensured these traits had been tested at least five times, in at least two138

different studies and two different clades.139

We examined the relationship between SSE model inferences and continuous dataset properties;140

number of tips, root age, number of genetic markers, sampling fraction (here referring to global141

sampling fraction unless stated otherwise) and tip bias (here calculated as the number of tips142

with the most common state divided by the number of tips with rarest state). For each of these we143

constructed two density plots representing the distributions of values in cases where trait-dependent144

diversification was, and was not, inferred and compared the overlap between densities. We also145

fitted generalized additive models (GAM, Hastie and Tibshirani, 2017) to the continuous dataset146

properties with the SSE model result as a binary response variable (trait-dependent diversification147

vs no effect). The GAM approach allows linear or non-linear smooth functions to be used for148

predictor variables, giving greater flexibility in the estimation of relationships between predictors149

and the dependent variable. When analysing continuous data, all variables were log-transformed150

(or arcsine in the case of sampling fraction) to conform better to a normal distribution. Initially,151

we constructed a GAM using all five variables and assigned the mean of the known values to152

any missing values. We also assessed each variable individually to determine the shape of each153
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relationship when examined in isolation. In all cases we used smoothing functions (cubic regression154

splines) and the dimension of the basis used to represent the smooth term was set to k = 5 for each155

variable.156

Predicting results based on dataset properties157

After collecting information from all studies we found that the dataset properties were sometimes158

associated with the outcome of the SSE model, that is, whether trait-dependent diversification was159

inferred or not. We therefore attempted to predict SSE model results (inference of trait-dependent160

diversification vs no effect) from dataset properties alone, and identify those properties with161

the largest predictive power. We used all available dataset properties except for highly-specific162

categorical variables (e.g. trait levels 5-6, clade, family) and those that varied among different163

states (putative root state, sampling per state, samples per state). We used a machine learning164

approach, extreme gradient boosting, with the R package ‘xgboost’ (Chen & Guestrin, 2016), a165

supervised learning approach based on gradient boosting machines. This family of methods uses a166

labelled dataset (the outcome is known) and an ensemble of weak prediction models (e.g. decision167

trees) whereby new models are added on to existing models per iteration to minimize error. The168

xgboost algorithm improves upon other boosting methods with its increased speed and enhanced169

regularization to minimize overfitting (Chen & Guestrin, 2016). Prior to running our models,170

categorical variables with more than two categories were converted into binary, dummy variables171

using one-hot encoding (i.e. each unique category is converted into its own binary variable) to172

facilitate model building. We trained models on a random selection of 80% of our dataset and173

tested them on the other 20%. After a parameter optimisation step we repeated this process 500174

times to produce a range of accuracy values, the percentage of cases where the real outcome matched175

the classification, to account for stochasticity in the test and training datasets. For each iteration176
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we also recovered the relative importance of each variable, which allowed us to determine which177

dataset properties had the most influence on the model. Given the inter-dependency of variables178

across the different decision trees, it is difficult to uncover whether a given property generally leads179

to trait-dependent diversification or not with xgboost. We avoid interpreting the results in this180

way, focusing on how accurate prediction can be and the variables that are most important to the181

model’s predictive ability.182

Results183

Traits studied and their effects on diversification184

We collated information on trait-based diversification from 152 studies using a total of 629 SSE185

models to study angiosperm diversification. We found that 124 studies were conducted on a single186

clade, the rest examined diversification patterns across multiple clades. Variation in breadth of187

different traits investigated was also observed within studies. In total, 92 studies examined just a188

single trait (i.e. one level 6 category, see Table S1), while 38 studies looked at diversification patterns189

in sets of traits that belonged to more than one trait category at the highest level (e.g. extrinsic and190

intrinsic traits). In terms of taxonomic level, SSE models were most often run on focal genera, or191

families (Fig. S1) and study clades were relatively evenly-distributed across the angiosperm tree of192

life (Fig. S2). Studies have focused on 36 out of 64 angiosperm orders, and 83 out of 416 families.193

As expected, diversification interest is generally proportional to the amount of species diversity194

in different parts of the angiosperm tree of life. There was a clear, positive correlation between195

the number of species in a clade (order, family) and the number of state-dependent diversification196

studies applied to the clade (Fig. S3, S4).197

At the highest level of classification, intrinsic traits (i.e. those belonging to the plant species198
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itself) were tested more often (295 models or 47% of models run) than extrinsic traits (i.e. those199

related to the species’ habitat and geography, 255 models or 41%). Researchers tended to study200

intrinsic traits relating to reproduction (e.g. flower morphology, fruit morphology, breeding system),201

traits related to species’ biogeography (e.g. biome, geographic region) and vegetative traits (e.g.202

life form, leaf morphology), investigating less often physiological characters (e.g. photosynthesis)203

or those related to interaction (e.g. symbiosis or dispersal) (Fig. 2). We compared the proportion204

of trait-dependent diversification outcomes in SSE models at different category levels. In general,205

intrinsic traits were found to be associated with diversification slightly more often than extrinsic206

traits (57.3% vs 52.5%).207

If a trait has been studied more than once we can compare the effect of this trait on diversification208

in different evolutionary contexts to see if similar trends are found. Our collation of data showed that209

results inferred with SSE models were inconsistent at both broad and narrow scales (grey vs coloured210

portions of bars in Fig. 2). For example, traits such as lifespan (Azani et al., 2019; Drummond211

et al., 2012; Salariato et al., 2016; Soltis et al., 2013) and ploidy level (Folk & Freudenstein, 2014;212

Han et al., 2020; Landis et al., 2018; Zenil-Ferguson et al., 2019) yielded different results depending213

on the angiosperm group studied. Polyploidy has been linked to increased diversification in Allium214

(Han et al., 2020), while it had no effect on the diversification of Brassicaceae (Román-Palacios et al.,215

2019). Among those trait level 2 categories that have been tested using >25 models, vegetative216

traits yielded trait-dependent diversification more often than any other trait type, while pollination217

yielded the lowest proportion (Fig. 2a).218

Though replication among character states was typically low we found eight traits that were219

tested often enough to assess whether there was a consistent effect of one state on diversification220

and the magnitude of the effect (Fig. S5). In three of these traits (lifespan, sexual system221

and woodiness) trait-dependent diversification was rarely found while in the remaining traits222
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(epiphytism, biome, ploidy, photosynthesis and self-compatibility) results more often indicated223

trait-dependent diversification. However, we did find conflict in which states increased in diversification224

among different models in all traits except epiphyte form and self-incompatibility. Examining the225

absolute net diversification rates among states of seven traits (sexual system could not be assessed as226

most rates were not time-calibrated) we found that patterns across clades reflected those detailed227

above (Fig. S6). Net diversification rates in traits rarely associated with diversification (e.g.228

woodiness or lifespan) were generally similar among the different states (Fig. S6). To understand229

the effect of major trait categories on diversification we plotted the distribution of relative differences230

in net diversification rates for models belonging to each trait category (Fig. S7). Generally we231

found that there was a wide range of relative differences in each trait category but no statistically232

significant differences among categories.233

The evolution of SSE model use and methodological innovation234

As SSE models themselves have diversified, the relative frequency of model-use has evolved.235

We collated data on the types of SSE model used in each study, and plotted their use by year236

of publication (Fig. 3). BiSSE has remained popular even as newer more complex models have237

emerged. Models with multiple states, predominantly MuSSE, have also been commonly used238

showing that researchers are interested in the effects of more complex traits or trait groups with239

more than two states. There has also been a consistent focus on using SSE approaches related240

to geography in models like GeoSSE and GeoHiSSE. When examining the number of studies that241

use SSE models each year we find a rapid increase since the first use of BiSSE on angiosperms in242

2009 until a conspicuous slowdown and slight drop in 2015 (Fig. 3). This appears to coincide with243

the publication of a number of influential papers that criticised the propensity of SSE methods for244

false positives (Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015) and pointed out power245
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limitations (Davis et al., 2013). After this, SSE model use continued with a greater variety of246

models owing to the development of models with hidden states (Beaulieu & O’Meara, 2016), which247

have since spread to all aspects of SSE model use (Fig. 1), becoming the dominant set of models248

by 2019 (Fig. 3). We tested whether the use of hidden state models (30 studies) lead to more249

consistent results than those reported for all studies (see above). We found that the proportion of250

trait-dependent outcomes increased for pollination, remained about the same for reproduction and251

decreased substantially for biogeography, vegetative and habitat (Fig. S8).252

The importance of dataset properties253

The input data for macroevolutionary studies have grown in size and quality, in parallel with254

the innovations in the SSE models. For example, we found evidence that over time, trees used with255

SSE models have gradually grown larger (Fig. S9). We examined the relationship between tree size256

and whether or not trait dependent diversification was inferred, regardless of the trait investigated.257

We found that, in general, trait-dependent diversification was detected less often when trees had258

smaller numbers of tips (Fig. 4a, S10a). The number of tips in a tree is important for robustness259

of SSE model results and guidelines for adequate power were put forward by Davis et al. (2013)260

who suggested that results from models using trees with fewer than 300 tips should be treated with261

caution. But has this recommendation shaped SSE model use? We examined sizes of trees used262

before and after this guideline was published, across all SSE models. The proportion of models263

run on trees with fewer than 300 tips was initially very high (94% of 139 total models) in studies264

published up until 2013. It then decreased to 57% (277 of 482) models in studies published from265

2014 onwards. Despite this reduction, more than 60 models were run on trees with fewer than 50266

tips after Davis et al. was published in 2013.267

Tree size and root age are closely linked because trees with larger numbers of tips are generally268
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older (Fig. S11). Indeed, we found that trait-dependent diversification was detected more often269

when trees with an older root age were used (Fig. 4b, S10b). Regardless of their size or age, trees270

that more accurately represent the true phylogeny of a group will allow us to more reliably estimate271

its diversification history. We used information on the total number of molecular markers (nuclear272

+ plastid + mitochondrial) as a proxy for tree quality. We found a difference in the distributions273

indicating that models with trait-dependent outcomes usually had better quality trees than those274

that did not (Fig. 4c, S10c).275

Another issue that has been repeatedly brought up in simulation studies is the potential effect276

of inflated tip bias (Davis et al., 2013; Maddison et al., 2007). Tip bias increases when there is a277

higher frequency of one state than the others across the tips of the tree. Upon examining the data278

used with SSE models we found substantial overlap between densities (Fig. 4e) except for extreme279

values of tip bias where SSE models tended to find no effect of the trait studied (Fig. S10e). Tip280

ratio bias recommendations were also made by Davis et al. (2013), who cast doubt on inferences281

made when the rarest state occurs in less than 10% of the taxa. Prior to 2014, 83% of SSE models282

(55 of 66) had suitable tip ratios and this figure remained similar (87%, 313 of 360) for the studies283

that came after.284

Global sampling fraction is the proportion of known species that are present in the tree. If285

the sampling fraction is low it can drastically affect diversification rate estimation (Chang et al.,286

2020; FitzJohn et al., 2009; Sun et al., 2020). The sampling fraction was explicitly modeled in SSE287

methods by Fitzjohn et al. (2009), who recommended that the sampling fraction should be at least288

25% to adequately capture diversification dynamics. In our data set, sampling fraction ranges from289

<0.1% to complete (100%) sampling. All 10 models published in 2009 and earlier had sampling290

fractions greater or equal to 25% compared to 60% of 606 models after its publication. This trend291

(Fig. S12) probably reflects easing of assumptions on complete species sampling, but also indicates292
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that high levels of incomplete sampling are common in recent literature.293

Furthermore, we found a striking pattern, showing that those models that used trees in which294

sampling fraction was low generally yielded trait-dependent diversification, particularly when sampling295

was less than 40% (Fig. 4d, Fig. S10d). Conversely, high sampling fraction was more often296

associated with a lack of trait-dependent diversification. Given that the inference of trait-dependent297

diversification varies with tree size (Fig. 4a), we wondered whether there may also be a relationship298

between sampling fraction and tree size. However, upon examination we found only a weak, negative299

trend where trees with more tips had slightly lower sampling fractions (Fig. S13). We then looked at300

the relationship between sampling fraction and the number of species in the study clade of interest301

and found a steeper negative relationship (Fig. S14) meaning that the larger the clade of interest is,302

the less well-sampled it tends to be. Datasets of small clades with low sampling fraction generally303

dont exist (as they should not be studied) and large clades with high sampling are currently very304

rare, causing points in the bottom left and top right of figure S14 to be missing. These negative305

trends remain similar regardless of whether trait-dependent diversification is inferred or not.306

How predictable is the inference of trait-dependent diversification?307

Empirical results in angiosperms clearly exhibit strong relationships between various dataset308

properties and whether trait-dependent diversification is inferred by the SSE model. To assess the309

importance of the continuous dataset properties together we fit a GAM including the number of310

tips, root age, the number of markers, the percentage of sampling and the tip bias (Fig. S15). We311

found that all variables except age of tree were significant when predicting SSE model outcome312

(r2 = 0.239, see Table S2 for full details).313

If we had comprehensive information about the input data, including the dataset properties314

investigated above but also information about taxonomy and traits, could we predict whether315

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.490882doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.490882
http://creativecommons.org/licenses/by-nc-nd/4.0/


trait-dependent diversification would be inferred? Using a machine learning approach, extreme316

gradient boosting (Chen & Guestrin, 2016), we were able to correctly predict, with approximately317

72% accuracy (60-80%, Fig. S16), whether SSE models would infer trait-dependent diversification.318

The most important factors were the information-dense, continuous variables (Fig. 5), further319

reinforcing earlier observations about their potential influence on SSE model outcomes (Fig. 4,320

S10, Table S2). Generally, categorical variables related to the trait studied (e.g. fruit morphology),321

SSE model used (e.g. HiSSE) and order investigated (e.g. Poales) played a smaller but still322

important role in the model’s predictive ability (Fig. 5).323

Discussion324

No consistent drivers of angiosperm diversification325

Previous work has proposed that diversity in different angiosperm groups may have been shaped326

by various combinations of ecology, traits and environment (Davies et al., 2004; de Queiroz, 2002;327

Donoghue, 2005; Donoghue & Sanderson, 2015; Hernández-Hernández & Wiens, 2020; Magallón &328

Castillo, 2009). Indeed, our compilation of the results of 152 studies on trait-dependent diversification329

in angiosperm clades supports this proposal; that is, the factors driving angiosperm diversification330

are more complex than a set of universal drivers. When we compared studies investigating the331

same trait types we found that conclusions generally differed with some indicating that the trait332

does have an effect on diversification and others concluding there is no effect. We note that the333

inconsistency observed might reflect real trends in the data, or be due to dataset properties (lack334

of power, model mis-specification). In the following, we will first discuss the biological conclusions335

of our study, before considering dataset and model properties.336

Our analyses and results centered around how traits (e.g. pollination-related traits) rather337
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than the character states of these traits (e.g. bee vs bird pollination) affect diversification. After338

grouping traits into several levels of categories (Table S1), we found that some types of traits339

were more often found to affect angiosperm diversification than others. It may come as no340

surprise that floral traits, are among the most investigated and influential (Fig. 2b). Indeed,341

the flower contains the organs needed for sexual reproduction, making it central to the biology,342

ecology and evolution of angiosperms, and flower characteristics certainly have a large role in343

determining differences in diversification (Vamosi et al., 2018). In particular, reproductive systems344

are highly variable in angiosperms (Barrett, 2013) and are again thought to be closely linked to345

their success (Barrett et al., 1996). Results from SSE models lend some support to this idea - for346

example, trait-dependent diversification was commonly inferred when mating system traits were347

investigated (Fig. S5). Even so, we found that in most cases, breeding system (the higher level trait348

classification including all aspects of mating and sexual systems) often did not yield trait-dependent349

diversification, due to variability in the effects of sexual systems. Vegetative traits (those related to350

the growth and non-floral morphology of the plant) and other intrinsic traits including those related351

to photosynthesis and the genome have received less attention than floral traits (Fig. 2). However,352

they were more consistently associated with trait-dependent diversification than reproductive traits.353

Unfortunately we could say little about which state was advantageous for a given trait because354

a lack of overlap among states across the 152 studies. Nevertheless we were able to examine how355

particular states affected diversification in eight traits. Five of these demonstrated how different356

states of the same trait (e.g. woody and herbaceous species) can increase diversification in different357

groups (Fig. S5) meaning that only three showed consistent patterns where one state was associated358

with elevated diversification rates (epiphytism, non-C3 photosynthesis and self-incompatibility).359

However it is difficult to say whether these have truly consistent effects on diversification as they360

have only been investigated a handful of times in a relatively small proportion of angiosperm species361
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(e.g. self-incompatibility has been tested in Solanacaeae and Onagraceae only).362

Despite some general patterns in those traits that are more often influencing angiosperm363

diversification, the overarching trend is that the effect of a trait on diversification is clade-dependent.364

Therefore, the main question remains open: what drives differences in diversification among angiosperms?365

The fact that a definitive answer has yet to be found suggests that it’s the complex interplay366

between trait evolution, biotic interactions and geography that matters. Indeed, geography (range367

size, biome) has been identified many times as an important factor (Hernández-Hernández & Wiens,368

2020; Vamosi et al., 2018), but it is unclear whether this is a cause or a consequence of differences369

in diversification. Others have suggested that it is not the presence or absence of a trait that370

determines the evolutionary success of a clade, but rather the capacity to change (Onstein, 2019;371

Ricklefs & Renner, 1994). This could partly explain the inconsistency of the inferences, but again,372

trait diversity could be both a cause and a consequence of species richness. Furthermore, the choice373

of clades and traits, as well as the quality of the input data, also influence whether or not differences374

in diversification are detected, and therefore our conclusions.375

The importance of evolutionary scale and context376

Users of models of trait-based diversification face an important challenge - choosing the context377

in which to conduct analyses. In the simplest scenario, where a trait only evolved once in the378

study clade, its effect on diversification cannot be tested (Maddison & FitzJohn, 2015) and thus379

this type of context should be avoided. At the intermediate scale a trait may have evolved multiple380

times in closely-related clades but their evolutionary context (i.e. species’ genomes, morphology,381

ecology, or external environments) is much more similar than distantly-related ones. So, associations382

between states and rates cannot be interpreted as a general pattern in this limited phylogenetic383

scope. Broadening the scope of the analysis, by way of either a larger tree, or multiple trees in a384
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meta-analytic framework (Sabath et al., 2016) can help to reveal these general patterns but leads385

to different challenges.386

At larger phylogenetic scales, trees with many taxa are more likely to contain a range of387

branching patterns where lineage accumulation is faster in some parts of the tree than in others. In388

older clades there has been more time for macroevolutionary processes to have an impact on the trees389

we infer and the traits we observe today. As we observed, larger, older trees more commonly yield390

trait-dependent diversification (Fig. 4). However, their heterogeneity (due to e.g. molecular clock391

rate variation; Shafir et al., 2020) would also make them more susceptible to false-positive errors392

that could over-inflate the number of times trait-dependent diversification is detected (Rabosky &393

Goldberg, 2015). Indeed, one of the major criticisms of early SSE models was the propensity to394

infer false positives due to model inadequacy: the models were based on the assumption that only395

the trait of interest would influence diversification, so any kind of heterogeneity would lead to the396

rejection of the null hypothesis (Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015). This397

could explain the inconsistency of the effects of traits across clades - it may be that false positives398

caused by lineage-specific factors correlated with the shared focal trait are driving the disparate399

patterns. Models with hidden states go some way towards alleviating this issue as they can account400

for lineage-specific factors. When only considering results from models with hidden states we found401

that the proportion of trait-dependent diversification changed substantially for some traits, though402

inconsistency was still common (Figs. 2, S8). As more studies with hidden states are conducted,403

we will find out whether these trends are general. While hidden states models certainly are an404

improvement, they assume that these states are categorical and have constant transition rates,405

which very likely doesn’t capture all sources of heterogeneity. They cannot handle all cases of406

possibly misleading inferences, e.g. when the effect of a trait that evolved multiple times is driven407

by one clade where it strongly influences diversification while leaving it unchanged in other clades408
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(Beaulieu & O’Meara, 2016; Maddison & FitzJohn, 2015). Furthermore, there has yet to be a study409

that thoroughly assesses the model adequacy of HiSSE, as has been done for BiSSE (Rabosky &410

Goldberg, 2015).411

Best practices for SSE model use and result reporting412

Though a number of recommendations have been made for accurate inference with SSE models,413

most empirical studies do not meet them. When using the strict thresholds suggested in the414

literature (25% taxon sampling, 300 tips and minor tip state frequency of 10%; Davis et al., 2013;415

FitzJohn et al., 2009) we find that just 20 of 152 studies contain models that meet all criteria. The416

apparent relationship between sampling fraction and inference of trait-dependent diversification417

(Fig 4) should invite us to be cautious about studies using low sampling fractions, as it has been418

shown that better sampled trees yield more accurate estimates of diversification rates (Chang419

et al., 2020; FitzJohn et al., 2009). However, publication bias may also be playing a role. If no420

trait-dependent diversification is detected in a poorly sampled clade this may be attributed to a421

lack of power that ultimately prevents publication, thereby inflating the number of studies with422

low sampling that detect trait-dependent diversification. To clarify these observations, simulation423

studies should be undertaken to investigate the influence of sampling fraction together with model424

inadequacy on SSE model inference.425

In most studies, some of the information we consider crucial for the interpretation of the results426

was lacking, or it was difficult to access. Collecting data for many properties (e.g. samples per427

state) required us to count from figures or extract statistics from archived raw data, which were not428

always freely available. For example, we were unable to extract and use the number of independent429

origins of each character state. Robust estimates of associations between traits and diversification430

rates necessitate multiple independent origins (but not too many (Rabosky & Goldberg, 2015))431

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.490882doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.490882
http://creativecommons.org/licenses/by-nc-nd/4.0/


and corresponding rate changes (FitzJohn et al., 2009), so an idea of this value per study, inferred432

using ancestral state reconstructions, would be useful for interpretation of the robustness of results.433

This could be done by combining stochastic mapping of traits with an SSE model (Freyman &434

Höhna, 2019), though this is generally not available for SSE approaches. Likewise, diversification435

and transition rates were often not reported in an easily-accessible and standardized manner, or in436

some cases, not at all. These should be reported, and if possible, with confidence metrics around437

rate estimates e.g. Bayesian credible intervals.438

Louca & Pennell (2020a) recently pointed out how diversification rate estimation can be susceptible439

to issues of unidentifiability. Though SSE models are not directly implicated (Helmstetter et al.,440

2021), one potential way to help ‘future proof’ analyses from unidentifiability caused by overfitting441

would be to avoid reporting and assessing speciation and extinction rates separately, focusing442

instead on compound parameters such as net diversification rate (λ − µ), turnover rate (λ + µ)443

and extinction fraction (µ/λ) that are typically used in more recent SSE models (e.g. HiSSE). To444

encourage standardized result reporting we propose an initial set of characteristics that should be445

made available in all future studies using SSE models (Supplementary Data 1).446

Given that evolutionary context appears to be important for understanding trait-dependent447

diversification, how to best choose a trait and clade to study? Trait choice can be helped by448

preliminary knowledge of the phylogenetic tree and ancestral state reconstruction, which could be449

used to ensure that the derived state(s) arose multiple times and that the ratio among different450

states is not extreme (<10:1). In terms of choosing a clade, it is first important to adhere, as best451

as possible, to the recommendations for using SSE models e.g. avoid clades much smaller than 300452

taxa and focus on those that are well sampled (>25%). If recommendations cannot be followed,453

because of natural limitations in clade size, for example, these should be stated clearly as caveats.454

Working at a much larger scale, e.g. angiosperm-level analyses, is certainly appealing but creates455
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a range of issues related to confounding factors that current models will find difficult to disentangle.456

To better learn about the factors that influence angiosperm diversity we therefore suggest studies457

focus on multiple intermediate-sized clades i.e. large genera, families or tractable orders. However, if458

these clades are well-sampled they would approach the limit of our current computational feasibility459

(but see Louca and Pennell, 2020b). Working with many smaller clades may therefore be more460

feasible in the near future and also yield important insights via the comparison of diversification461

patterns among many different groups (e.g. Sabath et al., 2016), which we think is an acceptable462

tradeoff for reduced power in standalone analyses. Examining the effect of the same trait in multiple463

clades would allow researchers to account for the unique and shared aspects of their biology (e.g.464

through the use of hidden states or trait combinations), and then to combine results (Rabosky &465

Goldberg, 2015) to uncover general patterns.466

Knowledge gaps and future avenues467

Our review allowed us to identify groups that are understudied and therefore good focal points468

for future research to gain a more well-rounded picture of angiosperm macroevolutionary dynamics.469

One of the most obvious is Asteraceae, species-rich yet subject to relatively few trait-based diversification470

studies (Fig. S4), or Alismatales, an order that has more than 4,500 species (Fig. S3) but just a471

single study on their trait-based diversification (Canal et al., 2019). In addition, some families with472

more than 1,000 species, such as Phyllanthaceae or Orobanchaceae have yet to be studied in this473

way.474

High-quality phylogenetic trees are not the only ingredient for SSE studies; trait data also need475

to be available. We highlight traits related to lifespan, dispersal and symbiosis as ripe avenues for476

future work that have potential to unearth important patterns in trait-dependent diversification.477

However, apart from a few traits such as geographical range or climatic preferences, gathering478
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high-quality data for large numbers of species is a time-consuming activity. We encourage the479

integration of trait data generated from SSE studies (and others) into large, global trait databases480

such as eFLOWER (Sauquet et al., 2017), TRY (Kattge et al., 2020) or more focused databases481

(e.g. AusTraits (Falster et al., 2021)). These will act as important resources as researchers consider482

several traits in tandem when testing for context-dependent effects of traits, or when disentangling483

the traits hiding in the hidden-state approaches. Most importantly, studies should be conducted484

on traits where clear hypotheses can be generated about their effect on diversification in the chosen485

study clade.486

SSE methods are statistical tools that are aimed to uncover correlations, and cannot themselves487

discover causal relationships. By definition, macroevolutionary models try to capture the result of488

many aggregated small-scale processes in a few high-level parameters. Speciation is an instantaneous489

split of one branch into two in most macroevolutionary models, although in reality there might be490

a wide range of different dynamics depending on environmental heterogeneity, biotic interactions,491

and intrinsic traits (e.g. breeding systems, genomic incompatibilities) (Coyne & Orr, 2004). Thus,492

if a trait is predicted to affect speciation and extinction, high-quality inferences of diversification493

rates, for which our synthesis provides some guidelines, should be able to detect a signal. However,494

this signal is only a piece of the puzzle, as it is through various ecological and genetic processes that495

can also be put to the test. For example, Park et al. (2018) compared sister species with contrasted496

mating systems (selfing vs. outcrossing) and showed that niche breadth tended to decline over time497

in selfing lineages, in agreement with the dead-end scenario proposed for this trait and detected498

in macroevolutionary analyses (Goldberg & Igić, 2012; Höhna et al., 2019). Additionally, we can499

identify traits that have an effect on ecological and genetic mechanisms that control speciation500

and extinction, such as traits affecting coexistence and niche partitioning (Adler et al., 2013) (e.g.501

specific leaf area or seed mass), genetic differentiation between populations or species (Gamba502
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& Muchhala, 2020) (e.g. pollination mode, mating system, growth form) or those associated with503

commonness and rarity (Murray et al., 2002) (e.g. seed production). Such traits come with a priori504

hypotheses and could be ideal candidates for macroevolutionary studies exploring their effect on505

diversification.506

Conclusions507

When bringing together the last 12 years of study on trait-dependent diversification in angiosperms,508

it is the inconsistent effects of traits that stand out, rather than the importance of a particular set509

of universal drivers. This highlights the important role the evolutionary context of a clade plays510

in determining how a particular trait affects diversification. Furthermore, the nature of the data511

itself, relating to factors such as how well-sampled or large a clade is, was shown to have substantial512

influence on SSE model results. The guidelines we set out in this review will help to improve how513

we use trait-dependent models and our template for reporting results will facilitate future synthesis514

as SSE models continue to be used and developed. We have only touched the surface of what we can515

learn about trait-dependent diversification in angiosperms. Will results from novel studies change516

the trends we observe here? Given the production of new datasets that meet recommendations517

for robust inference, future methodological developments enabling studies at wider scopes and the518

potential for new discoveries in understudied traits and clades, we think it is certainly possible.519

Though our study focused on angiosperms the conclusions we draw about consistency, context520

dependence and SSE model use will apply to studies of trait-dependent diversification across the521

entire tree of life.522
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Figure 1: The development of state-dependent speciation and extinction (SSE) models.

The original binary-state speciation and extinction model (BiSSE) model (Maddison et al.,

2007) is shown at the top of the diagram with all other models depicted below, in the

order of their publication. Acronyms are defined as follows; Binary-State Speciation and

Extinction–node enhanced state shift (BiSSE-ness; Magnuson-Ford and Otto, 2012), Cladogenetic

and Anagenetic Models of Chromosome Number Evolution (ChromoSSE; Freyman and Höhna,

2018),Character-Independent Diversification (CID Beaulieu and O’Meara, 2016), Cladogenetic

State change Speciation and Extinction (ClaSSE; Goldberg and Igić, 2012), Fast, intuitive

State-dependent Speciation-Extinction (FiSSE; Rabosky and Goldberg, 2017, Geographic State

Speciation and Extinction (GeoSSE; Goldberg et al., 2011), Hidden Geographic State Speciation

and Extinction (GeoHiSSE; Caetano et al., 2018), Hidden State Speciation and Extinction

(HiSSE; Beaulieu and O’Meara, 2016), Multi-State Speciation and Extinction (MuSSE; FitzJohn,

2012), Multicharacter Hidden State Speciation and Extinction (Mu-HiSSE; Nakov et al., 2018),

Quantitative State Speciation and Extinction (QuaSSE; FitzJohn, 2010; Verboom et al., 2020),

Several examined and concealed states-dependent speciation and extinction (SecSSE Herrera-Alsina

et al., 2019). Each box shows the name of the model and the associated citation. Models that

share similar attributes (e.g. those with hidden states) are colour coded and grouped with boxes.

This is not an exhaustive list of SSE models and does not include, for example, models used in

epidemiology that allow tips to be sampled at various points in time (Scire et al., 2020).
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Figure 2: Stacked barplots showing how often particularly trait types were tested with

state-dependent speciation and extinction (SSE) models. Bars are coloured to depict how often

trait-dependent diversification was detected per trait type. If multiple SSE models were used in a

single study they were considered separately i.e. each model contributed one result to the totals for

each trait category. Two plots are shown, (a) one with relatively broad trait categories (level 2) and

(b) one with narrower categories (level 4). An ontology depicting how different trait classification

levels are connected can be found in Table S1.
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Figure 3: A stacked barplot showing the change in state-dependent speciation and extinction (SSE)

models used on angiosperm clades over time. Each bar indicates the number of unique SSE model

types per study totaled over the publication year. Bars are coloured according to the proportion of

each SSE model type published in that year (see legend on the right of the plot). If the same SSE

model was used multiple times in a single study it is only counted once (e.g. if BiSSE was used

four times in a study published in 2012 this contributes an increase of one to the BiSSE portion of

the 2012 bar). The black line shows the total number of studies using SSE models on angiosperms

per year. Note that studies published after May 2021 were not included, so this year is incomplete.
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Figure 4: A set of densities depicting the distribution of values for five dataset properties in SSE

models that infer trait dependent diversification (coloured densities) and those that do not (grey

densities). The dataset properties shown are (a) number of tips in the phylogenetic tree used with

the SSE model (data taken from n = 621 models), (b) the age of the tree used with the SSE model

(n = 523), (c) the total number of genetic markers (nuclear + plastid + mitochondrial) used to

infer the phylogenetic tree used with the SSE model (n = 615), (d) the global sampling fraction (n

= 616) and (e) the tip bias, here calculated as the largest tip frequency divided by the smallest (n

= 429).
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Figure 5: A horizontal barplot showing the relative influence of the 20 most important features

included in the xgboost model used to predict the outcomes of SSE models, whether or not

trait-dependent diversification is inferred, using input data properties and other characteristics

of each study. Points are the mean gain values calculated from the 500 iterations that were run.

Error bars represent one standard deviation around the mean. Bars are coloured based on the

type of variable they represent. Variable are named using the column headers in the dataset (see

appendix S1). For example ’levelPoales’ indicates that the variable was the category ’Poales’ from

the ’level’ column.
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