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Abstract 20 

 21 

The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous 22 

system, and it is important to understand the emergent activity in these regions as refinement of 23 

a motor skill occurs. One fundamental projection of the motor cortex is to the cerebellum. 24 

However, the emergent activity in the motor cortex and the cerebellum that appears as a 25 

dexterous motor skill is consolidated is incompletely understood. Here, we report on low-26 

frequency oscillatory (LFO) activity that emerges in cortico-cerebellar networks with learning the 27 

reach-to-grasp motor skill. We chronically recorded the motor and the cerebellar cortices in rats 28 

which revealed the emergence of coordinated movement-related activity in the local-field 29 

potentials (LFPs) as the reaching skill consolidated. We found that the local and cross-area 30 

spiking activity was coordinated with LFOs. Finally, we also found that these neural dynamics 31 

were more prominently expressed during accurate behavior. This work furthers our understanding 32 

on emergent dynamics in the cortico-cerebellar loop that underlie learning and execution of 33 

precise skilled movement.  34 

 35 

 36 

Keywords: Motor cortex, cerebellum, oscillations, skill learning.  37 
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Introduction  38 

 39 

The primary motor cortex (M1) is viewed as a driver for movement and an emerging view posits 40 

transient oscillatory dynamics- both at the level of spiking and local field potentials (LFPs) as the 41 

neural substrate for it1–7. There has been a particular interest in low-frequency quasi-oscillatory 42 

activity (LFOs) in M1, which can be brief (1-2 cycles) for rapid movements or longer for sustained 43 

movements, and it has been shown to be phase-locked to sub-movement timing2,3,8,9. Recent 44 

work showed that such oscillatory dynamics are coordinated in the M1 and dorsolateral striatum 45 

in the rodents as they learned a reach-to-grasp task3. One of M1’s principal projections is to the 46 

cerebellum via the pons10–13, but similar oscillatory dynamics have not been studied in cortico-47 

cerebellar networks.  48 

 49 

M1 is a key brain hub involved in voluntary forelimb movement: experimental lesions of M1 in 50 

animal models or neurological injury to M1 (such as stroke) impair dexterity2,14–16, stimulation of 51 

M1 neurons evokes movement17–19, spiking activity in M1 is closely linked to movement 52 

parameters3,11,20–23 and optogenetic perturbation of M1 affects forelimb behaviors18,20,24,25. The 53 

cerebellum’s role in the coordination of arm movements has also been extensively studied. 54 

Investigation of prehension/reaching tasks in animals have shown that cerebellar neurons – both 55 

in the cerebellar cortex and its deep nuclei are tuned to several movement-related events such 56 

as movement onset, cues leading to movement and its duration, limb position, velocity and muscle 57 

activity26–31. Besides coding for the above-listed features of limbs and associated movement 58 

parameters, other evidence indicates that the cerebellum participates in the formation of 59 

procedural memories, learning and retention of skills, habits, and conditioned responses32,33. 60 

Cerebellar lesions impair acquisition of skilled behaviors and patients with cerebellar disease 61 

show impaired reaching34–36. Furthermore, optogenetic perturbation of cerebellar nuclei or pontine 62 

inputs can cause a loss of endpoint precision in mice during reach-to-grasp behavior13,37. 63 
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Additionally, electric stimulation over the cerebellum facilitates adaptive control of reaching38,39. 64 

Recent rodent work using two-photon imaging showed the emergence of shared neuronal-65 

dynamics in M1-cerebellar ensembles as animals learned to expertly control a manipulandum11.  66 

 67 

In this study, we have focused on transient oscillatory dynamics that emerge in M1 and the 68 

cerebellum as a reaching skill is learned. We recorded neural activity in the M1 and contralateral 69 

cerebellum (the primary M1 target through pons nuclei) throughout the learning of a reach-to-70 

grasp skill in rats. We observed emergent coordinated low-frequency oscillatory activity (1-4 Hz) 71 

across M1 and cerebellum LFPs that was linked to increased success rates. We also found that 72 

LFPs modulated spiking in both regions and that the spiking dynamics were conserved for 73 

successful, accurate movements.   74 
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Results 75 

 76 

We trained 13 rats on the Whishaw forelimb reach-to-grasp task40,41 in our in-house built 77 

automated training box that is compatible with electrophysiology (Fig. 1A)2,4142. We chose this 78 

task due to its similarity to skilled learning tasks in humans43,44 as well as extensive evidence that 79 

this task is associated with multiple levels of neural plasticity in the M1 and the cerebellum. 80 

Examples of this include changes in Long-Term Potentiation (LTP)45, dendritic spine growth46 81 

motor map plasticity in the M147, as well as patterned spiking in the cerebellar cortex29 and more 82 

recently, it has also been demonstrated that cerebellar associative learning underlies reach 83 

adaptation48. Importantly, patients with neurologic injury in either region show impairment in this 84 

skilled reaching behavior36,49. In a subset of rats (n = 5) that were monitored during reach-to-grasp 85 

motor skill consolidation, we also recorded neural signals, including single-unit activity and local 86 

field potentials (LFPs) in M1 and cerebellum (Fig. 2A). For the electrophysiology experiments, 87 

microelectrodes were implanted (microwire arrays in M1 and tetrodes/ polytrodes in cerebellum, 88 

see Materials and Methods; and Supplementary Table 1). In the animals that were recorded, 89 

training began five days after electrode placement surgery. 90 

 91 

Measurement of Skilled Motor Performance  92 

As in other studies that employ the Whishaw forelimb reach-to-grasp task, we assessed motor 93 

skill learning across two dimensions: speed and accuracy (Fig. 1B-E)3,50. Accuracy was measured 94 

as percent success in retrieving the pellet and speed was assessed using the time the animal 95 

took to perform the full reach-grasp-retract motor sequence. Training lasted for 5 days in 96 

automated behavioral boxes2,41, and animals performed 100–160 trials each day. Consistent with 97 

past results3,50 over 5 days of learning, the success rate increased and movements became faster 98 

as measured through reach-grasp task completion duration or reach duration (see Fig. 1). On 99 

average, success rates increased from 23.9 ± 4.7% to 49.8 ± 3.2% from early to late days (mean 100 
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± s.e.m., mixed-effects model: P = 1.87 × 10−17) and reach duration came down from : 406 ± 57 101 

ms on early days to 367 ± 48 ms on late days (mean ± s.e.m., mixed-effects model: P = 2.15 × 102 

10−5). 103 

 104 

Figure 1 105 

 106 
 107 
Figure 1. Behavioral evaluation of the skilled reach -to-grasp task. A, The behavioral setup for 108 
the skilled forelimb reaching task with simultaneous neurophysiological recording. B, Top: 109 
Illustration of the reach-to-grasp task showing the three major parts of the reach movement: reach 110 
onset, pellet contact, and retract onset. Bottom: Comparison of a failed trial and a successful trial. 111 
C, Success rate and reach event timing from a sample animal. D,E, Difference in success rate 112 
and reach duration from early training days to late training days (n = 13 animals). Gray lines 113 
represent individual animals, and the black line is mean and s.e.m. across animals. P-values are 114 
from mixed-effects models. 115 
 116 
 117 
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Coordinated movement-related activity emerges across M1 and cerebellum during skill 118 

learning.  119 

We next evaluated the cerebellum in search of transient low-frequency oscillatory (LFO) dynamics 120 

similar to those that were recently shown to emerge in the M12,3 while learning this skill. We 121 

observed that coordinated LFO (1–4 Hz) activity appeared during movement across M1 and 122 

cerebellum as performance improved (Fig. 2). This low-frequency activity was clearly observed 123 

in movement-related LFP signals (Fig 2B, C). The movement-related LFP power in the LFO-band 124 

increased from early to late days in both M1 and cerebellum (Fig. 2C; M1 baseline-normalized 125 

power: 0.51 ± 0.15 on early days to 0.65 ± 0.16 on late days, mixed-effects model: t(406) = 4.3, 126 

P = 2.3 × 10–5; cerebellum power: 0.43 ± 0.12 to 0.86 ± 0.25, mixed-effects model: t(650) = 8.6, 127 

P = 8.4 × 10–17).  128 

 129 

We also analyzed movement-related low-frequency LFP coherence between M1 and cerebellum 130 

LFPs and we found that this also increased with increased task proficiency (Fig. 2D; 0.18 ± 0.02 131 

coherence on early days to 0.21 ± 0.01 on late days, mixed-effects model: t(5158) = 13.4, P = 4.5 132 

× 10–40). These increases in LFP power and coherence were not solely a by-product of faster and 133 

more consistent movements, since these high LFP power and coherence were not present for 134 

fast trials early in training, which we checked in a subset of animals. 135 

 136 

With training, reaching sub-movements also became precisely phase-locked to 1–4 Hz LFP 137 

signals in both M1 and cerebellum, consistent with what we would expect if this activity was 138 

involved in generating sub-movements within this task (Fig. 2E; significant increase in inter-trial 139 

coherence (ITC) of the M1 LFP locked to movement onset (MO): mixed-effects model: t(406) = 140 

4.4, P = 1.5 × 10–5; pellet contact (PC, right at the time of grasp initiation): mixed-effects model: 141 

t(406) = 7.0, P = 9.2 × 10–12; and retract onset (RO): mixed-effects model: t(406) = 10.1, P = 1.5 142 

× 10–21; cerebellum LFP locked to movement onset: mixed-effects model: t(650) = 4.5, P = 8 × 143 
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10–6, pellet touch: mixed-effects model: t(650) = 9.8, P = 1 × 10–19, retract onset: mixed-effects 144 

model: t(650) = 9.1, P = 9.1 × 10–19). 145 

 146 
 147 
 148 

Figure 2 149 

 150 
 151 
Figure 2. Coordinated movement-related mesoscopic activity emerges across M1 and 152 
cerebellum during skill learning. A, Left: Schematic of recording electrode locations in M1 and 153 
contralateral cerebellum depicted from top; Right: Histological verification of recording location in 154 
cerebellum (three markers used: Iba1 (green, microglia), GFAP (pink, astrocytes), DAPI (blue, 155 
nuclei). Sagittal section shows cerebellar lobules and cortical layers. Scale bar: 1 mm. Electrode 156 
shank is marked by two arrows. B, Top: Example time course and illustration of recording scheme 157 
in M1 and the cerebellum from a frontal-side view. Bottom: neural and forearm muscle activity for 158 
representative successful trials from days 1 and 8.C, Left: Spectrograms of example M1 and 159 
cerebellar channels. Right: Difference in 1–4 Hz cerebellum and M1 power from early training to 160 
late training. The gray lines represent the mean power from individual animals (n = 4 animals) 161 
and the black lines represent the mean  s.e.m. P-values are from mixed-effects models. D, Left: 162 
Coherograms from an example M1 and cerebellum LFP channel pair. Right: difference in 1–4 Hz 163 
M1-cerebellum coherence from early to late training sessions. The gray lines represent the mean 164 
coherence from individual animals (n = 3 animals) and the black lines represent the mean and 165 
s.e.m. P-values are from mixed-effects models. E, 1–4 Hz filtered LFP from example M1 and 166 
cerebellum channels time-locked to reach events; individual trials with mean overlaid. Bar plots 167 
depict changes in ITC from early trials to late trials (upper row for M1 and lower row for 168 
cerebellum). The gray lines represent the mean ITC from individual animals (n = 4 animals) and 169 
the black lines represent the mean and s.e.m. P-values from mixed-effects models. 170 
 171 
 172 
 173 
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 174 

Coordinated spiking activity emerges across M1 and cerebellum during skill learning.  175 

The emergence of coordinated low-frequency activity across M1 and cerebellum was also clearly 176 

observed in movement-related spiking activity across M1 and cerebellum. We quantified phase-177 

locking of movement-related M1 and cerebellar spikes to 1–4 Hz LFP signals in each region by 178 

generating polar histograms of the LFP phase at which each spike occurred for a single unit and 179 

LFP channel (Fig. 3A). The non-uniformity of the distribution of phases (indicating phase-locking) 180 

was quantified using a Raleigh test of circular non-uniformity. We compared all task-related M1 181 

and cerebellar units on day 1 and 5 to a representative LFP channel in M1 and cerebellum and 182 

observed an increase in the percentage of M1 and cerebellum units phase-locked to both M1 and 183 

cerebellum LFP signals with training (Fig. 3B; the black vertical dashed lines correspond to the P 184 

= 0.05 significance threshold of the natural log of the Z statistic; M1 unit – M1 LFP pairs: 39.1% 185 

day 1 to 59.9% day 5, P = 8 × 10–6, Kolmogorov–Smirnov test; M1 unit – cerebellum LFP pairs: 186 

21.8–76.3%, P = 1.4 × 10–30, Kolmogorov–Smirnov test; cerebellum unit – M1 LFP pairs: 77.8–187 

88.1%, P = 0.3, Kolmogorov–Smirnov test; cerebellum unit – cerebellum LFP pairs: 40.9–86.0%, 188 

P = 2.3 × 10–10, Kolmogorov–Smirnov test). All the pairs showed a significantly increased phase-189 

locking, except cerebellum unit–cerebellum LFP pairs, although they also trended in same 190 

direction over days. These results further suggest that coordinated low-frequency activity 191 

emerges across M1 and cerebellum during skill learning.  192 

 193 

Next, we also explored these relations for successful and unsuccessful trials on day 5. We found 194 

that all four pairs showed significant M1 and cerebellar units’ phase-locking to 1–4 Hz M1 and 195 

cerebellum LFPs for successful trials (Fig. 3C; the black vertical dashed lines correspond to the 196 

P = 0.05 significance threshold of the natural log of the Z statistic; M1 unit – M1 LFP pairs: 34.6% 197 

for unsuccessful trials versus 44.1% for successful trials, P = 0.013, Kolmogorov–Smirnov test; 198 

M1 unit – cerebellum LFP pairs: 50.5–64.9%, P = 6 × 10–4, Kolmogorov–Smirnov test; cerebellum 199 
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unit – M1 LFP pairs: 61.0–86.4%, P = 1.6 × 10–4, Kolmogorov–Smirnov test; cerebellum unit – 200 

cerebellum LFP pairs: 80.7–84.2%, P = 2.3 × 10–10, Kolmogorov–Smirnov test). 201 

 202 
 203 

Figure 3 204 

 205 
 206 
Figure 3. Coordinated spiking activity emerges across M1 and cerebellum during skill 207 
learning. A, Illustration of spike locking to LFP phase for M1 unit-M1 LFP (left) and cerebellum 208 
unit- cerebellum LFP (right) pair examples. Top: raster plots of reach-centered spiking activity 209 
from example single units. Middle: 1–4 Hz filtered LFP overlayed with PETH from example unit. 210 
Below is the extracted phase from the filtered LFP. Bottom. Polar histograms of the spikes that 211 
occurred at various LFP phases. B, Cumulative density functions (CDFs) of the z-statistic for 212 
every LFP-unit pair across and within each region. The vertical dotted lines indicate the 213 
significance threshold (p = 0.05). The percentage of the pairs with significant p-values is 214 
displayed. Lighter colors indicate early trials and darker is later. n = 280 M1 unit-LFP pairs on day 215 
1, n = 298 M1 unit-LFP pairs on day 5, n = 46 cerebellum unit-LFP pairs on day 1, n = 73 216 
cerebellum unit-LFP pairs on day 5. P-values derived using a Kolmogorov-Smirnov test. C, 217 
Success/failure CDFs of the z-statistic for every LFP-unit pair within and across each region. The 218 
vertical dotted lines indicate the significance threshold (p = 0.05). The percentage of the pairs 219 
with significant p-values is displayed. Green indicate successful trials and gray is failures. P-220 
values derived using a Kolmogorov-Smirnov test. 221 
 222 
 223 
 224 
Reorganization of neural dynamics in M1 and cerebellum with skill learning 225 

We also investigated the consistency of single-trial population spiking activity by computing the 226 

correlations between single-trial neural activity and the trial-averaged template across all units in 227 

a session (Fig. 4). In early sessions, trial-to-trial neural firing was more inconsistent compared to 228 

later sessions, while later sessions were consistently associated with a stereotyped sequence of 229 

unit activations that also matched peri-event time histograms (PETH). This was observed in both 230 
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M1 (Fig. 4A) and cerebellar (Fig. 4C) activity. Across the sessions from all rats, we observed a 231 

significant increase in template correlation among trials (Fig. 4B, D; linear mixed-effects model. 232 

M1: t(770) = 8.2, P = 5 × 10–3), cerebellum: t(648) = 5.4, P = 8 × 10–8) indicating that trial-to-trial 233 

variability in M1 and cerebellum neural activity reduced with skill consolidation. 234 

 235 
 236 

Figure 4 237 

 238 
 239 
Figure 4. Changes in M1 and cerebellum neural dynamics with skill learning. A, M1 240 
successful trial averaged PETH from an example rat (left) and single trial PETH example (right) 241 
for early (top) and late (bottom) training sessions. B, M1 PETH template match over training. Bars 242 
indicate mean  s.e.m. over trials. Gray lines indicate average per animal (n = 4 animals). P-243 
values are from mixed-effects models. C, Cerebellum successful trial-averaged PETH from an 244 
example rat (left) and single trial PETH example (right) for early (top) and late (bottom) training 245 
sessions. D, Cerebellum PETH template match over training. Bars indicate mean  s.e.m. over 246 
trials. Gray lines indicate average per animal (n = 4 animals). 247 
 248 
 249 

Skilled movement representation in M1 and cerebellum 250 

Lastly, we explored the representation of successful and failed reaches in M1 and cerebellum. 251 

We used Gaussian-process factor analysis (GPFA) to find low-dimensional neural trajectory 252 
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representations of population spiking activity in M1 and cerebellum on individual trials3,51 (Fig. 5A) 253 

and then compared trajectories for successful and unsuccessful trials in early and late learning. 254 

We observed a difference between trajectories for successful and unsuccessful trials in M1 and 255 

cerebellum. To compare successful and unsuccessful trials we computed the correlation between 256 

the mean neural trajectory for successful trials, that is, the ‘successful template’, and each 257 

individual trial’s neural trajectory (Fig. 5B) during the period from 250 ms before movement onset 258 

until 250ms after retract onset (Fig. 5C). This period encompassed the movement onset and pellet 259 

contact for grasping and retraction of the forelimb. Since trials differed in the duration of this 260 

period, we interpolated trajectories such that they were all the same length. Neural trajectories for 261 

unsuccessful trials had significantly lower correlation than successful trials (Fig. 5C, Early M1: P 262 

= 8.5 × 10–12, Early cerebellum: P = 0.02, Late M1: P = 1.1 × 10–8, Late cerebellum: 6.6 × 10–3 263 

mixed-effects model with Bonferroni correction for multiple comparisons). Together with Figure 264 

3c, this provided further evidence that accurate reach-to-grasp task execution has M1 and 265 

cerebellar reliance.  266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 
 283 
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Figure 5 284 

 285 

 286 
 287 
Figure 5. Skilled movement representation in M1 and cerebellum. A, Example GPFA neural 288 
trajectories from late training sessions for M1 (top) and cerebellum (bottom) in a single animal. B, 289 
Illustration of the process of comparing factor trajectories from successful and unsuccessful trials 290 
to the template (mean successful trajectory). C, Deviation from the template for M1 (top) and 291 
cerebellum (bottom) factors. Gray lines represent individual animals (n = 4 animals), and the black 292 
line is mean  s.e.m. across animals. P-values are from mixed-effects models. 293 

 294 

  295 
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Discussion 296 

 297 

In summary, we found that coordinated low-frequency activity emerged across M1 and 298 

cerebellum, which was linked to the emergence of faster reaching movements. We further found 299 

that coordinated spiking activity in both these regions was linked to accurate reach-to-grasp 300 

movements. Our work details the mesoscopic transmission in cortico-cerebellar networks and 301 

how it evolves with skill learning as well as how skilled reaching has a motor cortical and cerebellar 302 

cortical reliance. 303 

 304 

Role of M1 and cerebellum in motor skill learning and execution 305 

M1 has a well-established role in motor learning as well as movement execution52. In particular, 306 

M1 is critical for generation of skilled dexterous movement3,20,43,52. Our work is consistent with this 307 

notion as we also see that M1 activity is different for successful reaches (Fig. 3C, 4A and 5). M1’s 308 

projection to the cerebellum is thought to mediate fine-tuning of the movement. Cerebellar 309 

neurons in the cortex and in the deep nuclei are known to be modulated around several movement 310 

events. Perturbation of M1 input to cerebellum or direct manipulation of cerebellum itself is shown 311 

to delay movement initiation and to increase movement variability and duration13,34,37,53. Our work 312 

is also consistent with these observations as we found that precise, accurate movements had 313 

more consistent spiking activity in the cerebellum, and its coordination with LFOs in LFPs differed 314 

for successful and unsuccessful reaches (Figs. 3C, 4B and 5). Besides this role in increasing 315 

movement precision, cerebellar cortex is also theorized to contribute to task relevant 316 

dimensionality expansion that can aid in flexible computation and enhance learning54–56. This 317 

notion of dimensionality expansion was confirmed experimentally with the observations of high 318 

correlations among granule cells activity when mice expertly exerted pushing control over a 319 

manipulandum in a forelimb movement task11. This work also showed increase in emergent 320 

shared variance in M1 and cerebellar cells. Our increased M1-cerebellum LFP coherence with 321 
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skill learning is similar to this observation. Neural network models of cortico-cerebellar networks 322 

show that cerebellar feedback improves rate of learning and cerebellar network also carries task 323 

representation57. Our experimental data supports this notion as well. We observed that M1-324 

cerebellum LFP coherence increased with learning, and we observed movement-modulated units 325 

in the cerebellum. One of our observations also showed that M1 LFP-cerebellar units showed 326 

strong coordination in low-frequency range early on in training (Fig. 3B). This might suggest that 327 

cerebellar activity was critical during reach-to-grasp skill acquisition and is consistent with the 328 

notions of M1 being input-driven, and is also consistent with the cerebellar contributions to 329 

acquisition of skilled volitional movements24,32. 330 

 331 

Coordinated oscillatory dynamics across motor networks 332 

One of our keys findings here is on low-frequency activity across M1 and cerebellum as an 333 

important marker of skilled motor control. We found evidence of such activity at the level of neural 334 

spiking and LFPs during the performance of dexterous task in rats. It is noteworthy that similar 335 

LFOs were recently shown to be disrupted in M1 post-stroke and tracked recovery2. This work 336 

also boosted M1 LFOs through electric stimulation to promote recovery. Recently, there has also 337 

been an interest in cerebellar stimulation for stroke recovery58–60, but a biomarker in cortico-338 

cerebellar networks that can be target for closed-loop electric stimulation for stroke recovery is 339 

lacking. Future work can test if the LFOs we found in cortico-cerebellar networks of healthy 340 

animals with skill consolidation here can also serve as a biomarker for motor function during 341 

recovery from stroke. Mesoscopic biomarkers such as LFPs present a lower translational barrier 342 

in clinical populations.  343 

 344 

Cortical LFOs can be used to decode reach-related activity and predict spiking phase across 345 

multiple behavioral states9,61. Such activity is also correlated with multiphasic muscle activations 346 

and timing of movements5,8,9,62. Recent work also suggest that oscillatory dynamics reflect an 347 
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underlying dynamical system5. This previous work argues that LFOs represent an intrinsic 348 

property of motor circuits associated with precise movement control. Our findings extend this body 349 

of work by showing LFO dynamics in both M1 and cerebellum (Fig. 2). The exact origin of LFOs 350 

and underlying generators remains unknown. While reach-related LFOs may have involved 351 

striatum3 or thalamocortical activity63 so far, our results here raise the possibility of cerebellar 352 

involvement. Further work can probe interactions between M1 and the broader motor network to 353 

pinpoint the drivers of the electrophysiologic changes seen during skill learning.   354 
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Materials and Methods 355 

 356 

Animal care and surgery 357 

All procedures were in accordance with protocols approved by the Institutional Animal Care and 358 

Use Committee at the Cedars-Sinai Medical Center. Adult male Long Evans rats (n = 13, 250–359 

400 g; Charles River Laboratories) were housed in a 14-h/10-h light–dark cycle. All experiments 360 

were done during the light cycle. We used 8 rats for behavior only (Fig. 1) and 5 rats for behavior 361 

and physiology (Figs. 2 to 5; see Supplementary Table 1 for details). No statistical methods 362 

were used to predetermine cohort size, but our sample sizes are similar to those reported in 363 

previous publications3,50,64–66 (3–9 animals per group). Animals were pair-housed prior to 364 

electrode implantation or behavioral training and then single-housed after to prevent damage to 365 

implants, or to implement food restriction, respectively. 366 

 367 

All surgical procedures were performed using sterile techniques under 1%–4% isoflurane. 368 

Surgery involved cleaning and exposure of the skull and preparation of the skull surface using 369 

cyanoacrylate and then implantation of the skull screws for referencing and overall head-stage 370 

stability. The analgesic regimen included the administration of 0.1 mg per kg body weight 371 

buprenorphine, and 5 mg per kg body weight carprofen. Neural implanted rats were also 372 

administered 2 mg per kg body weight dexamethasone and 33 mg per kg body weight sulfatrim 373 

for 5 days. All neural implanted animals were allowed to recover for 5 days prior to further 374 

behavioral training. Ground and reference screws were implanted posterior to lambda 375 

contralateral to the recorded cerebellum, contralateral to the neural recordings. For M1 376 

recordings, 32-channel arrays (33-μm polyamide-coated tungsten microwire arrays) were lowered 377 

to a depth of ~1,200–1,500 μm in either the left or right M1 depending on handedness. These 378 

were implanted centered at 0.5 mm anterior and 3 mm lateral to the bregma3,50. For cerebellar 379 

recordings we used 32-64 channel tetrodes (Neuronexus, MI) or shuttle-mounted polytrodes 380 
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(Cambridge Neurophysiology, UK). The probes were lowered into the cerebellar cortex through a 381 

craniotomy centered at 12.5 mm posterior and 2.5-3 mm lateral to bregma. Shuttle mounted 382 

probes were moved across days and recorded from depths of 1.5-4 mm. Our target regions were 383 

Simplex/ Crus I and Crus II areas of the cerebellum67–69. Activity in these areas has shown 384 

modulation during upper limb motor behaviors and in response to corticofugal fiber and forelimb 385 

stimulation . For the cerebellar recordings, we confirmed the location of electrode tips either 386 

through: (i) Staining with the orange/red fluorescence stain DiI (ThermoFisher Scientific) or (ii) 387 

three markers of Iba1 (microglia), GFAP (astrocytes), DAPI (nuclei) as shown in figure 2a (also 388 

see details below). 389 

 390 

Supplementary Table 1 391 
 392 

 393 
 394 
Supp. Table 1. Number of rats used for experiments. Tabulated list of animals and 395 
behavioral monitoring camera frame rates and electrode used (see columns). 396 
 397 
 398 
 399 
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Behavior 400 

Training 401 

Rats were acclimated to the behavioral box for at least 2 days and then exposed to a reach-to-402 

grasp task for 5-10 trials to establish hand-preference before neural probe implantation. Probe 403 

implantation was performed in the contralateral M1 and ipsilateral cerebellum to the preferred 404 

hand. Rats were allowed to recover for at least 5 days before the start of experimental sessions. 405 

During behavioral assessments, we monitored the animals and ensured that their body weights 406 

did not drop below 90% of their initial weight. We used an automated reach-box, controlled by 407 

custom MATLAB scripts and an Arduino microcontroller. This setup requires minimal user 408 

intervention, as described previously41. Each trial consisted of a pellet dispensed on the pellet 409 

tray, followed by an alerting beep indicating that the trial was beginning. They then had 15 s to 410 

reach their arms through the slot, grasp and retrieve the pellet. A real-time ‘pellet detector’ using 411 

an infrared detector centered over the pellet was used to determine when the pellet was moved, 412 

which indicated that the trial was over, and the door was closed. All trials were captured by video 413 

through a camera placed on the side of the behavioral box. The camera was synced with the 414 

electrophysiology data either using Arduino digital output or directly through TTL pulses to the 415 

TDT RZ2 system. In electrode implanted animals the video frame rate ranged from 75-87 Hz 416 

aside from 1 animal for which the framerate was 30 Hz (see Supp. Table 1). For behavior-only 417 

animals the framerate was 30Hz aside from two animals for which the framerate was 87 Hz. 418 

 419 

Behavioral Testing 420 

Rats began behavioral testing training 5 days after surgery by performing the same reach-to-421 

grasp task. Electrophysiology recordings were taken throughout the full extent of the testing which 422 

consisted of one to two sessions of 60-100 trials per day for 5 days. Typically, each day would 423 

consist of a session of 100 trials followed by a session of 60 trials. Sessions within a day were 424 

spaced by a 2-hour resting block. 425 
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 426 

Behavioral analysis 427 

Behavioral analysis was done based on video recorded during experimental sessions. Reach 428 

videos were viewed and manually scored to obtain trial success, hand position and time points 429 

for reach onset, pellet contact and retract onset. To characterize motor performance, we 430 

quantified pellet retrieval success rate (percentage of pellets successfully retrieved into the box) 431 

and reach duration (time from reach onset to retract onset). 432 

 433 

 434 

In vivo electrophysiology 435 

Units and LFP activity were recorded using a 128-channel TDT-RZ2 system (Tucker-Davis 436 

Technologies). Spike data were sampled at 24,414 Hz and LFP data at 1,017.3 Hz. ZIF (zero 437 

insertion force) clip-based digital head stages from TDT were used that interface the ZIF 438 

connector and the Intan RHD2000 chip that uses 192x gain. Behavior-related timestamps (that 439 

is, trial onset, trial completion) and video timestamps (that is, frame times) were sent to the RZ2 440 

analog input channel using an Arduino digital board and synchronized to the neural data. 441 

 442 

 443 

Neural data analysis 444 

Analyses were conducted using custom-written scripts and functions in MATLAB 2018a 445 

(MathWorks, MA). 446 

 447 

Local field potential (LFP) analyses 448 

Artifact rejection was first performed on LFP signals to remove broken channels and noisy trials. 449 

LFPs were then z-scored and median referenced separately for M1 and cerebellum. There was 450 

excessive noise detected in all cerebellum channels in 1 of the 4 animals with simultaneous M1 451 
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and cerebellum recordings. Hence, the cerebellar LFP activity from that animal was excluded 452 

from analysis. A fifth animal with only cerebellum implants was included in the cohort. LFP power 453 

was calculated on a trial-by-trial basis and then averaged across channels and animals, with 454 

wavelet decomposition using the EEGLAB70 function ‘newtimef’. To characterize coordination of 455 

activity across regions, we measured changes in movement-related spectral coherence between 456 

LFP channels in M1 and cerebellum. For learning comparisons, coherence was measured for the 457 

same channels on early and late days, and specifically for channels with an increase in power of 458 

0.5 baseline-normalized unit from early to late days. Strong coherence in a specific frequency 459 

band indicates a constant phase relationship in that frequency between two signals and is 460 

theorized to indicate increased communication between regions3,71,72. M1-cerebellum LFP 461 

coherence was calculated for each pair of channels using the EEGLAB function ‘newcrossf’ with 462 

0.1s windows moving by 0.01s. 463 

 464 

To determine whether the emergence of coordinated low-frequency activity during training was 465 

attributable solely to faster movements, we compared LFP power and coherence between ‘fast’ 466 

trials (trials with a movement duration less than 300 ms) on day 1 and 2 versus day 4 and 5. 467 

 468 

In several instances, we filtered the LFP signals to isolate and display the low-frequency (1–4 Hz) 469 

component of the signal (Figs. 2 and 3). Filtering was performed using the EEGLAB function 470 

‘eegfilt’70. In addition to display purposes, we also used filtered LFP to characterize the phase-471 

locking of spiking activity specifically to low-frequency LFP signals. For this we used the Hilbert 472 

transform linear operator (MATLAB) to extract the phase information from low- frequency filtered 473 

LFP signals (Fig. 3). 474 

 475 

To quantify phase-locking of LFP signals to specific sub-movements (movement onset, pellet 476 

contact and retract onset), we calculated the ITC of LFP signals across trials time-locked to these 477 
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sub-movements (Fig. 2d). ITC was measured and compared for the same channels on early and 478 

late days across all channels (except those removed due to noise). ITC was computed using the 479 

EEGLAB function ‘newtimef’70. 480 

 481 

Spiking analyses 482 

Spike data was sorted offline after local median subtraction. The threshold for spiking activity was 483 

set offline using the automated spike detection of Spyking Circus, and waveforms and timestamps 484 

were stored for any event that crossed that threshold. Sorting was performed using a principal 485 

component analysis (PCA)-based method followed by manual inspection and sorting. Clearly 486 

identified units were selected for this analysis. All units were analyzed and not sorted into cell 487 

type based on waveform shape. However, activity that was unambiguously multi-unit was 488 

removed. Behavior-related timestamps (trial onset and trial completion) were sent to the RZ2 489 

analog input channel using an Arduino digital board and synchronized to neural data. 490 

 491 

Unit modulation and spike-LFP phase analysis 492 

Spikes were binned at 25 ms and time locked to behavioral markers. For visualization purposes, 493 

the peri-event time histogram (PETH) was estimated by the MATLAB ‘fit’ function using smoothing 494 

spines. To determine if a unit was significantly modulated during movement, a baseline firing rate 495 

mean and standard deviation was taken within the period –4s to –2s from reach onset. If the mean 496 

firing rate in the period from –350ms to –850ms relative to reach onset differed from the baseline 497 

mean by more than 1.25 baseline standard deviations the unit was categorized as a reach-498 

modulated unit.  499 

 500 

To characterize low-frequency spiking activity, we generated histograms of the LFP phases at 501 

which each spike occurred for a single unit to a single LFP channel filtered in the 1–4 Hz band in 502 

a 1-s window around movement (–250 ms before to 750 ms after movement onset) across all 503 
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trials of a session (Fig. 3). For learning comparisons, all units were compared to the same 504 

selected M1 and DLS LFP channel on day 1 and 5. These histograms were generated for each 505 

unit–LFP channel pair both within and across regions. For every pair, we then calculated the 506 

Rayleigh’s z-statistic for circular non-uniformity. These z-statistics were then used to calculate the 507 

percentage of significantly non-uniform distributions across unit–LFP pairs with a significance 508 

threshold of P = 0.05 (Fig. 3). A significantly nonuniform distribution signifies phase preference 509 

for spikes of a unit to an LFP signal. This process was also performed to compare the successful 510 

and unsuccessful trials of day 5 (Fig. 3C). 511 

 512 

Single trial to template correlation 513 

Spikes from –4s to 4 s around pellet touch were binned at 20 ms, smoothed with a Gaussian 514 

kernel with a standard deviation of 60 ms and then z-scored. Binned, smoothed and standardized 515 

spike counts within the period of –1s to 1.25s for all units of a single trial were then concatenated 516 

into one long vector. The correlation (measured using Pearson’s r) between each concatenated 517 

single trial neural activity and the mean template (mean of all successful trials) was computed 518 

and the mean correlation for each session was reported (Fig. 4). 519 

 520 

GPFA neural trajectory analyses 521 

To characterize single-trial representations of population spiking activity we used GPFA3,51 to find 522 

low-dimensional neural trajectories, which consisted of the first two factors, for each trial. GPFA 523 

analyses were carried out using the MATLAB based graphical user interface DataHigh (version 524 

1.2)73, 10 ms time bins and a dimensionality of 5. We determined the magnitude of deviation for 525 

each individual trial trajectory from the mean trajectory across all successful trials by taking the 526 

absolute value of the difference between the trajectory of each trial and the mean trajectory across 527 

all trials (Fig. 5B, C; computed in each dimension independently). This was performed specifically 528 

for the period between 250 ms before movement onset and until 250 ms after retract onset. Since 529 
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this duration varied across trials, we interpolated each trial such that every epoch (reach onset to 530 

touch and touch to retract onset) of each trial was the same length and then calculated the 531 

average deviation. 532 

 533 

 534 

Immunohistochemistry 535 

After all experiments, rats were anesthetized and transcardially perfused with 1% phosphate-536 

buffered saline, followed by phosphate-buffered 4% formaldehyde (PFA). The harvested brains 537 

were post-fixed for 72 h in PFA and immersed in 30% sucrose. For immunofluorescence staining 538 

(Fig. 2A), sagittal cerebellar tissue cryostat sections (40 m) were washed 3x in 1x Tris Buffered 539 

Saline (TBS), followed by antigen retrieval with 0.1N hydrochloric acid (HCl). After 3 more washes 540 

in 1xTBS, sections were blocked with 5% Normal Donkey Serum (NDS) in 0.1% TBS-T(Triton) 541 

for 1 hour. Sections were then incubated in primary antibodies for astrocytes and microglia 542 

overnight. The next day sections were washed 3 times in 1xTBS and then incubated with 543 

fluorescent secondary antibodies for 2 hours. Sections were then washed 3 times in 1xTBS and 544 

incubated with 300nM DAPI in 1xTBS for 7 min, before coverslipping with mounting media 545 

(ProLongTM Glass Antifade Mountant, ThermoFisher cat# P36980). Primary antibodies used are 546 

1:1000 Rat-anti-GFAP(ThermoFisher cat #13-0300) and 1:1000 Rabbit-anti-IBA1(Wako cat 547 

#019-19741). Secondary antibodies used are 1:250 Alexa FluorTM 647 Donkey-anti Rat (Jackson 548 

cat# 712-605-153) and 1:1000 Alexa FluorTM 488 Donkey-anti Rabbit 488(ThermoFisher cat # 549 

A-21206). Fluorescent sections were imaged with a BZ-X700 Keyence microscope.  550 

 551 

 552 

Statistical analysis 553 

The linear mixed-effects model (implemented using MATLAB ‘fitlme’) was used in this study. 554 

Using these models accounts for the fact that units, channels or trials from the same animal are 555 
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more correlated than those from different animals; thus, it is more stringent than computing 556 

statistical significance over all units, channels or trials3,74. We fitted random intercepts for each rat 557 

and reported the p values for the regression coefficients associated with successful or 558 

unsuccessful outcome, early (that constituted days 1 and 2) or late (that constituted days 4 and 559 

5) learning, or training session. Linear mixed effects models was used for testing significance in 560 

Figs 1D,E; 2C-E; 4B,D; and 5C. Two-sample Kolmogorov–Smirnov tests were used to test 561 

whether spike-LFP phase-locking values on days 1 and 5 came from the same distribution (Fig. 562 

3C). All statistical analyses were implemented within MATLAB. We fitted random intercepts for 563 

each rat and reported the p values for the regression coefficients associated with successful or 564 

unsuccessful outcome, early or late learning, or training session.  565 
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