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 5 

Selective pressures that trigger cancer formation and progression shape the mutational landscape 6 

of somatic mutations in cancer. Given the limits within which cells are regulated, a growing tumor 7 

has access to only a finite number of pathways that it can alter. As a result, tumors arising from 8 

different cells of origin often harbor identical genetic alterations. Recent expansive sequencing 9 

efforts have identified recurrent hotspot mutated residues in individual genes. Here, we introduce 10 

PhiDsc, a novel statistical method developed based on the hypothesis that, functional mutations in 11 

a recurrently aberrant gene family can guide the identification of mutated residues in the family’s 12 

individual genes, with potential functional relevance. PhiDsc combines 3D structural alignment of 13 

related proteins with recurrence data for their mutated residues, to calculate the probability of 14 

randomness of the proposed mutation. The application of this approach to the RAS and RHO 15 

protein families returned known mutational hotspots as well as previously unrecognized mutated 16 

residues with potentially altering effect on protein stability and function. These mutations were 17 

located in, or in proximity to, active domains and were indicated as protein-altering according to 18 

six in silico predictors. PhiDsc is freely available at https://github.com/hobzy987/PhiDSC-DALI. 19 

 20 

  21 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492407
http://creativecommons.org/licenses/by/4.0/


 2 

INTRODUCTION 22 

Cancer development starts with the acquisition of genomic alterations and chromosomal 23 

abnormalities that arise from uncorrected errors during DNA replication or repair or due to 24 

exposure to mutagens (1). Some alterations may further the accumulation of somatic mutations (2) 25 

and play a mechanistic role in malignant transformation. These “driver mutations” are postulated 26 

to provide advantage to and promote cancer hallmarks in the subpopulation of cells that harbor 27 

them (3). The number of driver mutations varies between cancer types, averaging four per tumor 28 

(4). Most remaining somatic alterations, termed “passenger mutations,” may confer little to no 29 

functional impact (5). However, distinguishing the handful of driver mutations from the vast 30 

background of passenger mutations in a tumor has remained a challenge in cancer genomics.  31 

Frequently altered nucleotides in the genes that are implicated in tumor development and 32 

progression are known as mutational hotspots (6). The number of candidate hotspot mutations of 33 

unknown functional significance has increased recently –especially due to the completion of large-34 

scale sequencing efforts such as The Cancer Genome Atlas (TCGA) (7), International Cancer 35 

Genome Consortium (ICGC) (8), and Project GENIE (9). Many platforms are used to visualize 36 

and organize these data like BioMuta (10) and cBioPortal(11, 12) allowing to download and 37 

analyze large-scale cancer genomics datasets. Most of these frequently detected mutations are 38 

within exons, or the coding regions of the proteins, and their function is ascertained by directly 39 

examining their impact on the encoded protein or predicted through application of in silico 40 

bioinformatic approaches (13, 14).  41 

The statistical reoccurrence of mutations in tumors has been used as an indicator of their functional 42 

impact, based on the assumption that infrequent alterations detected in tumors are likely non-43 

functional, passenger events (15). However, it has been shown that passenger mutations are not 44 
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randomly distributed along the cancer genomes (16). Rather, they are enriched in nucleotide 45 

sequence contexts that are shaped by specific active mutational processes in a tumor (17, 18). In 46 

contrast, driver mutations are postulated to occur in genomic positions whose distribution depends 47 

not only on the local nucleotide context, but also on the location of functionally relevant residues 48 

along the protein sequence (19, 20). Relying on recurrence alone to identify functional mutations, 49 

may also be confounded by underlying mutational processes that target specific genomic contexts, 50 

resulting in often-mutated residues that do not drive tumor progression (21). 51 

In this context, numerous methods are presently being used to identify hotspot and driver 52 

mutations, based on the frequency of mutations detected in a gene across a set of tumor samples 53 

(e.g., MutSig (22) and MuSiC (23)). Recognizing mutational hotspot in infrequently altered genes 54 

can also be refined by including protein-level annotation by local-positional clustering (24), or the 55 

inclusion of phosphorylation sites (25) and information from paralogous protein domains (26). 56 

Protein-level annotation, such as local-positional clustering, phosphorylation sites, and paralogous 57 

protein domain (27) as well as 3D protein structures are used to identify functional mutations in 58 

infrequently mutated genes. 59 

 Using a variety of approaches that take into account diverse aspects of protein structures and 60 

types, functional mutations can be predicted across protein sequences and structures. Some 61 

techniques, such as 3DHotspots (28), Hotspot3D (29), Mutation3D (30), and Signatures of 62 

Cancer Mutation Hotspots in Protein Kinases (31) use the 3D structure of protein, while others 63 

utilize 3D reconstruction of protein networks to provide a better understanding of genetic 64 

abnormalities (32). On the other hand, methods like PinSnps (33), StructMAn (34), Hot-MAPS 65 

(35) and SpacePAC (36), as well as SAAMBE-3D(37), use protein-protein interactions enriched 66 

with somatic cancer mutations (38) to understand the effect of a mutation not only on the 67 
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function of the same protein but also on the signal transduction and activating cascade proteins. 68 

Methods based on individual protein structures or the 3D reconstruction of protein networks 69 

have improved the identification of mutational clusters in tumors (39) and have elucidated 70 

functional consequences (folding free energy and stability of protein monomers (40)) of protein-71 

altering mutations, other methods take into consideration the local DNA sequence context for the 72 

analysis of cancer context-dependent mutations like MutaGene(41). Although it is difficult to 73 

categorize methods based on their input parameters (some require sequences while others may 74 

need structures as well), in all cases, the output determines whether a proposed mutation has 75 

occurred at a hotspot residue. However, a few limitations remain: First, focusing on the mutation 76 

frequency across tumor samples increases the risk of missing portions of rare hotspot mutations 77 

with low frequency; second, concentrating solely on driver genes fails to distinguish between 78 

individual driver mutations within altered genes and passenger mutations within the same gene; 79 

and third, analyzing protein sequences without a larger context misses the effect of mutations on 80 

the conformational structure and functional sites of the protein. 81 
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To address these issues, we introduce PhiDsc. Its development is based on the hypothesis that 82 

oncogenic mutations in a target protein can be identified by analyzing its three-dimensional 83 

structural similarity, protein folding information, and mutational recurrence within its gene family. 84 

We demonstrate that PhiDsc can identify candidate functional mutations, caused on altered protein 85 

position, by comparing the three-dimensional structures of related human wild-type proteins and 86 

assessing repeatedly altered residues in the protein family. PhiDsc combines the two approaches 87 

by relying on the concept of hotspot mutations in functional regions and classifying protein 88 

families based on their domains and active sites. Thus, by comparing the three-dimensional 89 

structures of similar domains within a protein family, PhiDsc maps known functional mutations in 90 

extensively studied proteins to those in the family that receive less interest. 91 

RESULTS  92 

PhiDsc is applied to HRAS from the RAS (59) subfamily and RhoA from the RHO (60) subfamily 93 

of proteins.  94 

 95 

HRAS 96 

The family group of HRAS was A(HRAS) = {DIRAS1, DIRAS2, GEM, KRAS, NRAS, RAP1A, 97 

RAP1B, RAP2A, RASL12, REM1, REM2, RERG, RRAD, RRAS, RRAS2}. Dali aligned 98% 98 

of HRAS residues to residues of each member of the family (Table 1) highlighting strong 99 

structural similarity between the target protein and its respective protein families. (Supplementary 100 

files HRAS alignment). As a result, PhiDsc scored 168 of 189 HRAS residues (89%) and predicted 101 

13 residues as functional mutation (Table 2) all of which passed cross-validation evaluation 102 
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(Figure 1) and were consistently projected to be effective and protein-modifying by six 103 

independent algorithms. 104 

Table 1 indicates the percentage of structural alignment between each protein (HRAS) and its protein family member. 105 

 106 

Table 2 Candidate functional mutations for HRAS proposed by PhiDsc. Residue positions sorted by their PhiDsc score p-value along 107 
with predicted interacting residues from the RIN analysis are shown. COSMIC mutation reference or dbSNP polymorphism ID are 108 

Protein RALA RALB RAP1A RAP1B RAP2A KRAS RASL12 NRAS RERG RIT1 RRAS2 RRAS Median
PDB ID 2BOV 2KWI 1C1Y 4DXA 1KAO 3GFT 3C5C 3CON 2ATV 4KLZ 2ERY 2FN4
Alignment 100 100 97.619 98.214 98.214 98.809 95.238 92.857 98.809 92.261 97.619 100 98.214

HRAS
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also shown when available.109 

 110 

 111 

Figure 1 shows the LOOCV for the two proteins HRAS, in all the iterations of the system the number of repeated times for each 112 
residue is shown, (>80%), which indicates that the results obtained by the system are robust since the original results are obtained 113 
in all the LOOCV iteration 114 

RIN is generated using the HRAS structure (RCSB database ID 4Q21, with 168 residues). Thirteen 115 

candidate functional mutations shared 58 neighboring residues located in the functional domains 116 

of the protein (G boxes, Switches I and II, GDI and GEF interaction sites, GTP/MG2+ binding 117 

domain). Moreover, 25 of these 58 residues were seen mutated in human tumors according to the 118 

cBioPortal(11, 12) database a distinct dataset form BioMuta.  119 

Residue Nu P-value mut ref Nu
12 2.66E-07 11 16 COSM483
74 1.72E-06 5 70 71 73 75 COSM5991570
13 2.57E-06 117 COSM486
93 6.18E-06 81 82 90 91 113 137 COSM9497546
91 8.72E-06 87 88 90 93 95 COSM6476473
22 1.38E-05 18 19 20 32 26 28 146 149 152 COSM6923245
96 1.54E-05 9 10 11 92 93 97 98 99 100 RS889495169
117 1.85E-05 13 14 83 84 116 119 120 144 CSOM304967
31 3.84E-05 30 33 COSM6915342
40 4.20E-05 20 24 32 38 39 54 55 57 RS763920334
155 5.08E-05 79 144 151 152 153 159 COSM9515051
148 5.23E-05 119 145 150 COSM6903495
38 5.93E-05 39 40 57 RS750680771

HRAS
Interacting Residue
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Top-four  PhiDsc predictions in HRAS were residues 12, 13, 74, and 93, which are known to be 120 

key functionals and often mutated in various cancer types (61). The domain comprising residues 121 

12 and 13 is involved in Guanine Nucleotide Dissociation Inhibitor (GDI) interaction as well as 122 

interaction with GTP/Mg2+ (62), and is mostly detected in tumors such as bladder cancer (63), 123 

thyroid cancer(64), and other diseases such as Costello syndrome (61) and Schimmelpenning-124 

Feuerstein-Mims syndrome (63, 65). Mutations in residue 74 are seen in endometrioid cancer and 125 

sebaceous carcinoma, while those in residue 93, have been discovered in only a small percentage 126 

of prostate cancer samples (66). According to Ensemble Learning Approach for Stability 127 

Prediction of Interface and Core mutations (ELSPIC) (67), residue 93 is localized in the protein's 128 

core, suggesting that it has a direct effect on the protein's shape and function. 129 

Although 3 of 13 candidate functional mutations in HRAS were not located in any protein domains, 130 

they were found near the intersection of exons 3 and 4 at residue 97. Finally, residue 96 has been 131 

identified as a phosphorylation site, the other residues as showen in (Figure 2) were located in 132 

functional protein domains. 133 
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 134 

Figure 2 depicts the inner circle's candidate functional mutations and the outer circle's interacting residues. According to 135 
thecanSAR BLACK system (60), The blue areas represent HRAS functional regions, while the lines linking the inner circle (candidate 136 
functio functional mutation) to the outer circle (interacting residues) represent residue interactions. This figure displays only the 137 
HRAS residues that are mutated in cBioPortal. 138 

RhoA 139 

RhoA, a member of the RHO (60) subfamily of proteins with A(RhoA) = {RHOB, RHOC, RHOD, 140 

RHOQ, RHOU, RND1, RND3, RAC1, RAC2, RAC3, CDC42}. 141 

The RCSB database is used to retrieve 3D structure files for each member (if found in PDB) 142 

of A(RhoA). The final list of PDB structures are shown in Table 3. The Dali server is then used 143 

to perform a pairwise structural comparison between the input protein and each member of its 144 

family. 97% of RhoA residues were aligned with the residues of each family member in the 145 

generated alignments. The existence of strong structural similarities between target proteins and 146 

their respective protein families supports these results (Supplementary file “RhoA alignment”). 147 
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As an outcome, 179 out of 193 residues were scored for RhoA. 148 

Table 3 shows the percentage of structural alignment of each protein (RhoA) with its corresponding protein family member. 149 

 150 

The P-value of PhiDsc statistics is generated for all target protein residues in the final phase.  Eight 151 

candidate functional mutations for RhoA were obtained. Table 4 illustrates the RhoA protein 152 

candidate functional mutations introduced by the PhiDsc procedure. The eight candidates passed 153 

cross validation (see Figure 3) and were consistently predicted to be effective and protein-154 

modifying by six separate algorithms. Despite the fact that no evidence of a mutation in residue 155 

29 of RhoA was detected in any cancer mutation databases, all six techniques predicted that this 156 

mutation would alter RhoA's functional activity. 157 

Table 4 lists all candidate functional mutations for RhoA proposed by the PhiDsc approach. The table shows the residue position 158 
number (P) in the first column, sorted by their P-value in the second column, the interacting residues of each candidate functional 159 
mutation in the third column, the “COSM” letters of the mutations indicate that these mutations were annotated in the cosmic 160 
database as tumor-related mutations, while the “rs” letters of the mutations indicate that these mutations were annotated in the 161 
Dpsnp database. 162 

 163 

Protein RAC1 RAC2 RAC3 RHOB RHOC RHOD RHOQ RHOU RND1 RND3 Median
PDB ID 1E96 1DS6 2C2H 2FV8 2GCN 2J1L 2ATX 2Q3H 3Q3J 2V55
Alignment 99.441 99.441 93.854 95.53 98.324 87.709 99.441 94.413 97.206 100 97.765

RHOA

Residue Number ꓑ-value mutation ref NU
111 3.07904E-05 78 79 80 109 110 177 COSM2849881
34 4.86819E-05 35 COSM2849895

139 9.956E-05 84 86 89 92 122 139 140 143 COSM2849897
168 0.000147858 170 171 172 COSM7114068
110 0.000209526 77 78 79 80 107 108 11 RS368767616
29 0.000224094 23 27 28 29 31 NO

172 0.000300752 46 48 168 169 172 174 175 176 COSM1309264
127 0.000484266 87 121 124 125 127 129 130 131 MU85445108

RHOA
interacting residue
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 164 

Figure 3 shows the LOOCV for the protein RhoA; the number of repeated times for each residue is presented in all iterations of the 165 
system, indicating that the system's results are resilient because the original results are obtained in all LOOCV iterations. 166 

The RIN for RhoA is constructed using 1OW3 obtained from the RCSB database. The 8 167 

potential functional mutations have 42 neighbors, 18 of which had previously been identified as 168 

occurring mutations in the cBioPortal database (11, 12) (see Table 3/interacting residues). The 169 

neighbors of potential functional mutations are related to PPI functionals, according to 170 

RINalyzer data. These neighbors are also located in RhoA protein domains associated to GAP, 171 

GEF, and GDI interaction and phosphorylation sites, including position 127—showing that this 172 

residue is significant in RhoA's functional activity (see Figure 4). 173 
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 174 

Figure 4 showes the inner circle's candidate functional mutations and the outer circle's interacting residues. According to 175 
thecanSAR BLACK system (60), The blue areas represent RhoA functional regions, while the lines linking the inner circle 176 
(candidate functional mutation) to the outer circle (interacting residues) represent residue interactions. This figure displays only 177 
the HRAS residues that are mutated in cBioPortal. 178 

In cancer samples, four high-scoring RhoA residues (34, 139, 111, and 168) were observed (see 179 

Table 4). Residue 34 is near the core area and the GAP interaction site, as per RhoA's 3D structure. 180 

A mutation at this location improves the affinity for ARHGAP;1, a GAP protein that plays a vital 181 

role in RhoA activation, according to data from ELASPIC (67) and COSMIC. According to 182 

COSMIC, mutation 139 of RhoA was observed in one sample of non-small cell lung carcinoma 183 

and as a silent mutation in two samples of cervix and stomach cancer— where it was not a 184 

functional mutation in the latter two samples. Meanwhile, residue 111 has been seen in one sample 185 

of stomach cancer patients (7). Mutation in residue 168 boosts the affinity for the CTRO protein, 186 

which regulates cytokinesis by generating a contractile ring. It was also found to interact with 187 

KAPCA, a gene associated with breast and ovarian cancer (68). The mutation of residue 168 also 188 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492407
http://creativecommons.org/licenses/by/4.0/


 13 

impacted PKN1 and PKN2 interaction with RhoA—two proteins that contribute to prostate cancer 189 

and play a crucial role in cell migration and proliferation (69, 70). 190 

DISCUSSION 191 

In this paper, we looked at proteins that are similar and have been classified into families in 192 

uniportkb. In terms of sequence, structure, and function, these proteins are very similar. As a result, 193 

we assume that the frequent mutations associated with the same cancer phenotype on the same 194 

domain share these domains and mutations within the family. As a result, the introduced algorithm 195 

employs scores to determine whether these mutations are statistically significant as functional 196 

alterations in areas common in families. To test and validate the approach, domains from two well-197 

known protein families (HRAS and RhoA) that are known to be involved in cancer are used.  198 

As a result, we present PhiDsc, a novel method for detecting functional mutations in proteins. To 199 

link mutation residues to specific biological functional domains of proteins, we took into account 200 

a mutation's position in the protein's 3D structure (71), as well as the frequency of its reoccurrence 201 

in human tumors (72). Finally, we combined these characteristics with known functional hotspot 202 

mutations aggregated among paralogous proteins in the same family or with similar domains (73), 203 

and we used Bonferroni restriction to further narrow the range of predictions in order to reduce 204 

false positives.. 205 

 206 

We evaluated PhiDsc using the HRAS and RhoA proteins (71, 72). HRAS is a GTPase protein in 207 

the RAS subfamily that controls many cellular mechanisms including 84 pathways  according to 208 

KEGG Pathway. The most mutated residues in HRAS are 12, 13, and 61, which are related to 209 

different subsets in cancer (73), and the tumorigenic effect of HRAS is related to the protein's 210 
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permanent activation. RhoA is a RHO subfamily signaling G protein that regulates numerous 211 

cellular mechanisms associated with 43 pathways related to cellular processes as seen in KEGG 212 

Pathway. The most frequently mutated residues in this protein, 17 and 42, have been observed in 213 

various types of cancer (74), and similarly, the oncogenic effect of RhoA is exerted by its constant 214 

activation of the protein. 215 

With the exception of one candidate residue in RhoA, all residues predicted by PhiDsc were found 216 

to be mutated in cancer samples, as well as in other diseases such as Costello syndrome, which is 217 

linked to germline HRAS mutations (75). Although certain candidate functional mutations were 218 

not previously identified as hotspot mutations and had a low mutated frequency in cancer mutation 219 

datasets (rare), using CanSar balck (60), we demonstrated that they were  located in active 220 

functional domains of proteins or had a wide network of interactions with functional residues. 221 

Noteworthy, the Biomuta database was initially used; however, by the final step, some of the 222 

candidate functional hotspots that were not found in Biomuta had been presented in tumor samples 223 

in other datasets such as COSMIC, cBioPortal, and Dbsnp. With the exception of RhoA residue 224 

29, all were identified as rare mutated residues, and, thus, they were not previously mentioned as 225 

a hotspots, indicating that PhiDsc improves and optimizes the detection of low frequency 226 

functional mutations. while, residue 29 of RhoA had no mutational recorde in COSMIC (46) or 227 

Dbsnp  (76) databases, mutation analysis software MutaGene (41) ranked RhoA residue 29 as a 228 

highly mutable position, and the projected effect by six different software packages at that position 229 

predicts a potential oncogenic effect. It is notable that the difference between COSMIC and Dbsnp 230 

lies in the curation method used to classify any given mutation as an SNP.  231 

Despite the fact that these methods use different concepts to infer the stabilizing effect of point 232 

mutations (as discussed in the results section), they all suggest that PhiDsc's predictions alter 233 
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protein structure and function. The precise impact of unknown mutations necessitates additional 234 

experimental verification. 235 

When DALI was used instead of TM-Align, better results were obtained in PhiDsc with known 236 

functional mutations. These findings suggest that different 3D alignment approaches may alter 237 

predicting hotspot mutations in different types of proteins. As a result, the PhiDsc package's 238 

predictions should improve as the mode of alignment used improves. 239 

Some previously designated hotspots of HRAS and RhoA in cancer, like for HRAS out of 12 240 

(residues 12, 13 and 117) and for RhoA out of 11 (residue 34) were returned by PhiDsc. When the 241 

results of the Dali and Tm-Align alignment (supplementary files (HRAS, RHOA) Tm-Align) 242 

methods were compared, the results of the Tm-Alignment method predicted fewer well-known 243 

driver mutations than the results of the Dali method. This suggests that a different alignment choice 244 

could result in some differences in predictions.  245 

Although the two example proteins selected for validation are oncogenic, PhiDsc is not restricted 246 

to oncogenes and can be utilized to identify functional mutations in tumor suppressor genes or any 247 

other type of Protein if the family has a sufficient number of members and the mutation profile 248 

data is adequate and consistent. 249 

The lack of a 3D structure of the protein and small protein families, which limit the number of 250 

members in the family, are two limitations of this method. A future update to the tool will 251 

include the ability to align functional domains of proteins rather than the entire protein, as well 252 

as the use of the protein's predicted 3D structure in the alignment comparison. 253 
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MATERIALS AND METHODS 254 

PhiDsc Algorithm 255 

PhiDsc uses a six-step method that is centered on a protein P with m amino acid residues and a 256 

known three-dimensional structure. Briefly, a list of proteins is defined, denoted by the set A(P), 257 

by identifying all members of P’s protein family from UniProtKB (42) and selecting all human 258 

proteins with 3D structures from the Protein Data Bank (PDB) (43). Next, the 3D structures of the 259 

proteins members in A(P) are aligned to the 3D structure of P. The results are presented by a 260 

matrix, E(P). Then, using the BIOMUTA V4 and 3Dhotspot database (44), the mutational 261 

information of each protein of A(P) is identified, in order to score each residue of P and calculate 262 

an associated probability. Finally, these are analyzed to identify potential candidate functional 263 

mutations in P. Each step is described in detail in what follows. 264 

Step 1: Define the protein list A(P). The UniProtKB database (42) is used to identify members of 265 

a given protein's protein family, while the RCSB Protein Data Bank (PDB) (43) is used to 266 

determine their three-dimensional structure. The PDB contains the structures of wild-type and 267 

mutated proteins. For the alignment step, either the full-length sequence of the wild-type protein 268 

or the least mutated form (maximum one mutation) of the same length is used; the final list is 269 

denoted by 𝐴(𝑃) = {𝑃!, 𝑃", 𝑃#…𝑃$}. 270 

Step 2: Align 3D structures. Dali, a pairwise comparison server for protein structures, is used to 271 

align protein structures (http://ekhidna2.biocenter.helsinki.fi/dali/)(45). TM-Align “another 272 

alignment method” is also included in PhiDsc with its default parameters. 273 

Step 3: Define matrix E(P).   E(P)= [𝑎%!"
& ] has n columns (number of proteins) and m rows (number 274 

of amino acids in protein P), in which 𝑎%!"
&  denotes the type of amino acid in the sequence of protein 275 
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j that is aligned to the 𝑖'(amino acid in protein P; kij denotes the position number of amino acid in 276 

the sequence Pj that is aligned to the 𝑖'(amino acid of protein P. 277 

Step 4: Identify mutational information of each protein in A(P). Residues for all protein family 278 

members are annotated with mutational and hotspot information using BioMuta (version 4, (10)) 279 

and 3Dhotspots (39). BioMuta is a database of curated cancer-associated single-nucleotide 280 

variations derived from COSMIC (46), ClinVar (47), CIVIC(48), and UniProtKB(42) and actively 281 

curated from publications and automated analysis of publicly available databases such as 282 

TCGA(7)and ICGC(8). 3Dhotspots is a dataset of statistically significant mutations clustered in 283 

three-dimensional protein structures found in cancer. The data set contains mutational positions 284 

referred to as hotspot mutations. 285 

Step 5: Score residues. A grade is assigned to each amino acid of A(P) members based on the 286 

mutational information for that amino acid (P). Let 𝑎%'  be the kth amino acids of protein	𝑃'. Define: 287 

𝑚(𝑎%' ) = .
1, 𝑖𝑓	𝑎%' 	𝑖𝑠	𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	𝑎𝑠	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑏𝑖𝑜𝑚𝑢𝑡𝑎	
2, 𝑖𝑓	𝑎%' 	𝑖𝑠	𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	𝑎𝑠	ℎ𝑜𝑡𝑠𝑝𝑜𝑡	𝑖𝑛	3𝐷ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠	𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑒𝑖𝑡ℎ𝑒𝑟	𝑛𝑜𝑛 − 𝑎𝑙𝑖𝑔𝑛𝑒𝑑	𝑜𝑟	𝑛𝑜𝑡	𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

 288 

 289 

 Let the 𝑖'( row of the matrix E(P) be [𝑎%!#
! , 𝑎%!$

" , … , 𝑎%!%
$ ], 1 ≤ 𝑖 ≤ 𝑚. The following score is 290 

assigned to 𝑖'( amino acids of P:  291 

𝑆(𝑖) = 	F𝑚G𝑎%!"
& H

$

&)!

 292 
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To calculate the statistical significance of the obtained scores 𝑆(𝑖) at each position (row in the 293 

matrix E(P)), we calculate the probability related to this score. Let protein 𝑃'	have mt amino acids 294 

of which lt are mutated in biomuta. Define: 295 

𝑃(𝑎%' ) =

⎩
⎨

⎧
𝑙'
𝑚'
								 , 𝑚(𝑎%' ) > 0

1 −
𝑙'
𝑚'

, 𝑚(𝑎%' ) = 0
 296 

To distinguish non-mutated from the non-aligned residues (both with score 𝑚(𝑎%' ) = 0), and 297 

because the event under investigation is the occurrence of functional mutations that are coded in 298 

the alignments. Then, if in 𝑎%!"
& 	(j) is a gap, we assume 𝑃 G𝑎%!"

& H = 1. 299 

Then: 300 

𝑃M𝑆(𝑖)N = 𝛱&)!$ 𝑃(𝑎%!"
& ) 301 

 302 

Step 6: Select candidates. The 𝑖'( amino acid of protein P is selected as a candidate functional 303 

mutation if 𝑃M𝑆(𝑖)N	is less than *.*!
$

, following the Bonferroni correction, and if 𝑆(𝑖) > 	 $
"
 . 304 

The method is schematically described in Figure 5305 
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Figure 5 The PhiDsc workflow. The system begins by obtaining family members; the algorithm then obtains the 3D structures from 307 
RCSB; the algorithm aligns members pairwise with the input protein; mutations are then enriched in the alignments; finally, scores 308 
and probabilities are calculated. 309 

 310 

Leave-one-out cross-validation 311 

In leave-one-out cross-validation (LOOCV), one data point from the training set remains excluded. 312 

For example, if there are n data points in the original sample, n-1 samples are used to train the 313 

model, and p points are used as the validation set. This is repeated for all combinations in which 314 

the original sample can be separated in this manner, and the error is averaged across all trials to 315 

calculate overall effectiveness. The number of possible combinations is equal to the original 316 

sample's number of data points, or n. 317 

𝐴,(𝑃) = {𝑃!, 𝑃", 𝑃#…𝑃$} − {𝑃,} is considered as an input set for protein P, and the PhiDsc 318 

predictions for P are obtained by considering 𝐴,(𝑃) as its protein family set. The set of predicted 319 

functional mutations is obtained for every 1 ≤ 𝑖 ≤ 𝑛.  A projected functional mutation is said to 320 

be robust if it is predicted across at least 80% of all rounds. 321 

Residue Interaction Network 322 

RIN (Residue Interaction Network) is used to quantify the physical effect of the mutation on 323 

protein structure and function. In summary, Chang et al. demonstrated that if a mutation in a 324 

protein's 3D structure is close to some hotspot mutations, the likelihood of this mutation being 325 

considered a hotspot mutation is high. The RINalyzer (49) module generates user-defined RINs 326 

from a 3D protein structure obtained from RCSB protein databank. RINerator considers different 327 

biochemical interaction types, such as contacts/clashes, hydrogen bonds, and hydrogen atoms and 328 

quantifies their individual strength as described in Chimera (50). RINalyzer is a Java plugin for 329 

Cytoscape(51), a free software platform for the analysis and visualization of molecular interaction 330 
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networks. The results of interacting residues from RIN are compared to cBioPortal (11, 12) a 331 

dataset of mutations that are curated across cancer samples. 332 

Functional effect of candidate mutations on proteins 333 

The effect of alterations in regions that were not identified as functional mutations experimentally 334 

can be calculated using a variety of methods. PhiDsc’s functional predictions are evaluated using 335 

six methods that, according to Stefl et al. (52), can be classified into three types: 336 

The first group includes machine learning approaches that are trained on protein stability features 337 

and account for experimental conditions such as temperature, salt concentration, and pH values. 338 

Incorporating such parameters is critical for assessing the free-energy changes caused by mutations 339 

under near physiological conditions. This group includes I-Mutant2.0 (53) which uses SVM to 340 

estimate ΔΔG upon mutation, and PoPMuSiC-2.0 (54) which uses a mix of statistical potential and 341 

neural networks to estimate ΔΔG upon mutation. 342 

The second group relies on evolutionary conservation data, with the assumption that changes at 343 

conserved positions in multiple sequence alignments are detrimental. Although these approaches 344 

do not directly predict the effect of mutations on protein stability, they are commonly used in 345 

conjunction with the methods mentioned above to achieve consensus predictions. This group 346 

includes SIFT (55), which uses sequence homology and site conservation to estimate the 347 

deleterious effect of mutations, and Provean (56), which predicts the functional impact of all types 348 

of protein sequence variations, including single amino acid substitutions, insertions, deletions, and 349 

multiple substitutions.  350 

The third group uses structural information, assuming that a protein's ability to function properly 351 

is determined by fundamental physicochemical properties that can only be derived from structures. 352 
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This group includes CUPSAT(57), which estimates ΔΔG upon mutation using mean force atom 353 

pair and torsion angle potentials, and MutPred(58), which estimates detrimental effect of mutation 354 

using SIFT and gain/loss of structural or functional features predicted from sequences.  355 

 356 

DATA AVAILABILITY 357 

This method is implemented in Python and the Source code and all tested data can be found on 358 

(https://github.com/hobzy987/PhiDSC-DALI). The software takes a UniProt Protein name as 359 

input and gives html file as output with aligned residues and probabilities, and a list of all residues 360 

sorted according to their score. 361 
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