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Curvature-induced cell rearrangements in biological tissues

Yuting Lou,![f| Jean-Francois Rupprecht,2:[f] Tetsuya Hiraiwa,"[[] and Timothy E Saunders [
! Mechanobiology Institute, National University of Singapore
2 Aiz Marseille Université, Université de Toulon, CNRS,
Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
3 Warwick Medical School, University of Warwick, Coventry, United Kingdom

On a curved surface, epithelial cells can adapt to geometric constraints by tilting and by exchang-
ing their neighbors from apical to basal sides, known as an apicobasal T1 (AB-T1) transition. The
relationship between cell tilt, AB-T1 transitions, and tissue curvature still lacks a unified under-
standing. Here, we propose a general framework for cell packing in curved environments and explain
the formation of AB-T1 transitions under different conditions. We find that steep curvature gradi-
ents can lead to cell tilting and induce AB-T1 transitions. Conversely, large curvature anisotropy
can drive AB-T1 transitions by hydrostatic pressure. The two mechanisms compete to determine
the impact of tissue geometry and mechanics on optimized cell rearrangements in 3D.

As the external surfaces and barriers of many organs, s
epithelial tissues have to mechanically adapt to their en- s
vironment [T, [2]. Extensive research into cell shape in s3
2D [3H10] and 3D [IIHI4] has revealed insights into how s
cells pack and undergo rearrangement during epithelial ss
tissue formation [fHIO, [I5]. Cellular dynamic processes, ss
like division and apoptosis, can rearrange cell neighbors. s
T1-transitions - the exchange of neighbors without alter- s
ing the cell number - is another ubiquitous mechanism of so
cell rearrangements [I6 [T7]. T1 transitions are important o
in mediating planar tissue dynamics. For example, ori- &
ented T1 transitions can lead to tissue elongation or flow e
[15, [18-20], and the energetic barriers for T1 transitions e
to occur can dictate tissue fluidity/solidity [9, 2IH23]. e

For a cell monolayer under 3D geometric constraint, es
cells can undergo apical-basal T1 (AB-T1) transitions es
(Fig. 1A, top). Different from the planar and dynamic e
T1-transitions described above, AB-T1 transitions are a es
static exchange of neighbors from the apical to basal lay- e
ers of the cell. Such a 3D cellular arrangement, termed 7
as a scutoid in the context of epithelial tissues [24H26] »
(Fig. [T]A), has been observed in foams [27, 28] and bio- -
logical systems with curved surfaces [29H33]. 73

Tissue curvature is proposed to be pivotal in in- 7
ducing AB-T1 transitions. In the ellipsoidal early s
Drosophila embryo, AB-T1 transitions appear most fre- 7
quently around 20-50pm from the embryo head, a region 7
with low curvature anisotropy but large tilt of cell lateral +
membranes [29] (Fig. []A). During salivary gland forma- 7
tion in the Drosophila embryo, AB-T1 transitions occur s
at maximal curvature anisotropy [24]. Models have been &
proposed for cell packing in these specific cases [24] 29], e
but there is currently no consensus on how curvature in- s
duces AB-T1 transitions. 8

Here, we provide a framework for describing curvature- s
induced cell deformation, which can be generalized to an s
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array of geometries, and discuss the interplay between
cell mechanics and tissue geometry in inducing AB-T1
transitions. We demonstrate that in 3D environments
with steep curvature gradient, cells can tilt in order to
pack efficiently. These tilted lateral membranes can exert
tensions that contribute to in-plane stresses of opposite
sign on the apical and basal plane stresses, thereby lead-
ing to AB-T1 transitions. Conversely, when hydrostatic
pressure dominates, we find that AB-T1 transitions oc-
cur in regions with high curvature anisotropy. Overall, we
find that the combination of tissue curvature, pressure,
and lateral tensions determines the location of AB-T1
transition events.

Framework: We treat the epithelia as a material com-
posed of two connected thin shells, representing the api-
cal and basal surfaces of the tissue. Assuming the radius
of curvature to be significantly larger than the cell size,
we can use a continuum mechanics model based on mem-
brane theory for elastic thin shells, neglecting bending
stresses. Lateral membranes are included as part of the
external load on the shell. Motivated by the Drosophila
embryo, salivary gland and oocyte geometries, we focus
on axisymmetric geometries, which have rotational sym-
metry about a polar axis (Fig. ) For any infinitesimal
surface element dA on the 3D curved shell, it has a nor-
mal direction dA, and two tangential directions along the
meridian de and latitudinal radii d¢ (Fig. [IB).

The in-plane stresses in the apical or basal layer are de-
scribed as a stress tensor 6 bearing two principal stresses
0, 0gp and a shear stress component oy, with the basis
7 = (dp,df)T. This stress tensor & can be decomposed
into a hydrostatic part Gstat = %Tr(&)[ , corresponding to
isotropic forces that induce local expansion or shrinkage
of cell areas, and a deviatoric part dqey = & — Fggay COI-
responding to the anisotropic forces that induce shearing
or anisotropic bulk compression/stretching (Fig. [I[C).

The above stresses are balanced by the external loads
from the lateral and apical/basal membrane generated
by cell deformation or cellular active forces [34] [35]. For
simplicity, we only consider axisymmetric external load,
which can be decomposed into a normal part on (pos-
itive pointing outward) and a tangential part along the
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FIG. 1. The effect of curvature on cell packing and cellular forces. (A) Top: Scutoid geometry in epithelial tissues; point Q
is the additional point shared by two columnar cells. The AB-T1 transition occurs at the edges highlighted in thick brown,
leading to the exchange of neighbor pair from 1-4 (apical) to 2-3 (basal). Bottom: Tilt angle of lateral membrane (yellow)
and percentage of scutoids (pink) peak near the head of a wild type Drosophila embryo, adapted from [29] under a Creative
Commons License. (B) Two-layered model for curved epithelia on an axisymmetric object and the coordinates for a any local
surface dA; (C) Graphical representation of the stress tensor decomposition, Eq. (1). (D) Force balance of a curved layer
under axisymmetric loads: (left) at the meridional cut (red dashed ring) and (right) along the normal direction of the element
surface dA(¢,0). (E) A meridional cross section view of a two-layered prolate ellipse. The black tilted line is the tilted lateral
membrane, with the basal end at s and the apical end at s’, with the tilt angle ¢ and apical-basal distance e at s. The orange
curves are the accumulated cell number from the head to s at the basal side; the skyblue curve is the accumulated cell number

from the head to s at the apical side.

meridian o7 (positive pointing to the head) and henceus
the in-plane shear oy, ~ 0. The meridional stress o, at
any local cut (red ring in Fig. ) is balanced in the po-
lar direction by the accumulated force over the revolved!
surface as:

s(#) 0
Opp2mrising = /0 [aNcosgo + UTSingp] 2rrds,  (1)=

122

123
where § is the thickness of cell membrane, r is the dis-,

tance to the polar axis from the local surface dA (Fig. [1D),,,
and ds is the meridional arc length (for derivation, see,,
Supp. Mat. . The circumferential stress ogg is derived,,,
from force balance along the normal direction of the sur-,,,
face: 120

130
(21

132
where C, and Cyg are the principal curvatures along theiss
meridional and circumferential direction, respectively. 1.

AB-T1 transitions: The stresses in apical or basaliss
layers can induce cell shape changes and cell intercala-i3s
tions. Here, we assume that prior to any applied exter-is
nal load, cells are relaxed to isotropic shapes without anyuss
deviatoric strain. AB-T'1 transitions will take place mostis
frequently when the apical and basal sides of a cell haveo
oppositely directed deviatoric stresses [36] under exter-in
nal loading. In the absence of shear components o4, Wew
can define a measure for AB-T1 transitions, -y, as propor-is
tional to the difference of the deviatoric strain betweenis

ON
Cgagao-tptp + 099099 = T)

the apical and basal sides:

a a b b
y = T9p 906  Tpp ~ 900
- b
Ha 122

3)

where 1,5 represent the effective elastic moduli at the
apical and basal surfaces; v > 0 corresponds to cells that
are stretched along the meridional direction at the api-
cal side while compressed along the circumferential di-
rection at the basal side. The parameter-dependence of
tqp depends on the underlying material properties. As
demonstrated in Supp. Mat. [B] taking different forms
for j14,5 does not alter our key conclusions. Here, we con-
sider p = |Tr(6)|, which avoids introducing an intrinsic
elastic modulus for the cells. Under typical physiologi-
cal regimes for epithelial cells, we expect |Tr(6%?)| to be
non-zero, so y behaves well.

We first consider the case when external loads are hy-
drostatic (or = 0 and oy = P). With large curvature
anisotropy, |Cgg — Cyy|, the magniture of y is large, lead-
ing to AB-T1 transitions. In contrast, isotropic curva-
tures (Cog = Cyy) lead to v = 0 (derivations in Supp.
Mat. [C]). This conclusion is consistent with the experi-
mental observations in tubular epithelia [24].

Cell tilting: The results for hydrostatic systems
above are not consistent with the AB-T'1 transitions ob-
served in the head of the early Drosophila embryo [29],
where the curvature is nearly isotropic. However, in this
system, the cells are observed to tilt (Fig. ) The pro-
file of external load op,oyN is affected by tilt of lateral
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FIG. 2. The lateral tilt angle in the zero-lateral-tension limit,,g
Eq. @, as a function of the distance to the head along the polar,
direction d = z/a (Fig. 1E) (A) under varying inverse aspect
ratio b/a at €/a = 0.05,8 = 0; (B) under varying thickness
modulation 8 at €/a = 0.01,b/a = 0.4. Experimental data is™”
shown for the cell tilt angle in the early Drosophila embryo'®
(b/a ~ 04,5 ~ 0.5), with s.d., by grey dots (data from [29])."*

195

1

196
membranes. We next investigated cell tilting within our
model and explain its role in inducing AB-T1 transitions.ier

The tilted lateral membrane leans to the head by a
small angle ¢ away from the normal direction (illustrated,,

in Fig. ) as 199

D5 N~ N -
S R et oy v T S

where As is the distance between the apical projection®
of s and the apical end of the tilted lateral membrane s’;*
e(s) is the distance between the apical and basal layer;*®
p®b(s) is the cell density; 7%?(s) is the distance from®®
s to the polar axis; N**(s) = [ p®*dA*? are the ac-*”
cumulated number of cells from the head apex to the®®
coordinate s on the apical and basal sides, respectively.
Although Fig. [IE is illustrated for an prolate ellipsoid,™
Eq. M) works for any arbitrary axisymmetric shape. 2“

The distribution of p®?(s) and e(s) are interdepen->?
dent, as a consequence of minimizing the system free™”
energy including the contributions from cell lateral mem-***
branes (Supp. Mat. . If the lateral membrane tensions™®
are weak compared with the apical and basal cell layers,”*
the apico-to-basal density ratio p®(s)/p’(s) converges to*”
a space-independent constant (Supp. Mat. @ In this®®
limit, the tilt angle 29

tang(s) ~

209

220

(5)221

¢(s) = ¢"(s)(1 = k),

where k < 1 is the ratio of tension strength between the
lateral and apical/basal layers; ¢* is the tilt in the limit
of zero lateral tension, depending on the curvature as:

NO(5)(Niotal — N°(s) [H(sl) — H{(s2)
7r9(s)p°(8) Niotal

tang*(s) ~ , (6)

where H(s1) and H(s2) are the mean curvature weightedaz
by cell numbers in a range of 0 < 57 < s and s < sg < 50,223
respectively (sg is the half meridian). For a convex ob-2
ject, a large gradient of H(s) corresponds to a large mag-»s
nitude of ¢* at s, with the corresponding tilt directionzes
towards the region of higher positive curvature (Supp.zr

Mat. . 228

Conversely, if lateral membranes are extremely rigid,
the lateral membrane tends to stand perpendicular to the
surfaces, and p?(s)/p’(s) equals inverse apico-to-basal
area ratio dA®(s)/dA%(s), hence the tilt vanishes (Supp.
Mat. . To further simply the model, we show that
the effect of any cell density inhomogeneity on cell tilt is
negligible if cell density changes along the surface more
slowly than the curvature does (Supp. Mat. . We
henceforth set a homogeneous density p°(s) = pg’b.

Ellipsoid case: We now apply this formalism to a pro-
late ellipsoidal geometry as shown in Fig. [IE. It has a ma-
jor half axis a and minor half axis b (see Supp. Mat. for
parameterization and the calculation of the curvature).
Tissue height is determined mainly by the intrinsic cell
volume control [37]. To leading order in the arc length s
to the head, the height profile reads

e(s) ~ 8[1 + (s - 1)] for s€(0,514], (7)
81/4 2

where s/, is the 1/4 perimeter of the meridian ellipse
and ¢ is the average cell height across the surface and 3
is a coefficient modulating the surface height with g =0
representing homogeneous cell height. As we assume cell
size is much smaller than the radius of curvature, the
average height of the tissue € has negligible impact on
the tilt profile (see discussions in Supp. Mat. .

We calculate the cell tilt angle ¢* in the zero-lateral-
tension limit as a function of the relative distance to the
head of a prolate ellipsoid, d(s) = z(s)/a, where z(s) is
the distance to the head along the polar direction; d = 0
corresponds to the head and d = 1 to the trunk. The tilt
angle increases with elongation of the ellipsoid (smaller
b/a), Fig. . For a typical value observed experimen-
tally in Drosophila (b/a ~ 0.4 [29]), the tilt angle peaks
around 30°. The impact of height inhomogeneity on the
tilt angle is shown by Fig. 2B: a large, positive 3 (tis-
sue height larger at the trunk) makes the peak of the
tilt angle profile more pronounced. The calculated tilt
profile is consistent with the data observed in the early
Drosophila embryo (8 ~ 0.5), with the predicted mag-
nitude of ¢* (red curve) slightly larger than the experi-
mental measurements (black dots, from [29]) as expected
by Eq.

External loads along the tilted lateral membranes can
qualitatively change the stress distribution. We show in
Fig. —B a comparison of the stress components o,
and ogy between a hydrostatic case: 0% = 0% =0, 0% =
—08 =T and a case with the external stresses T along
tilted lateral membranes:

0% = Tsing, 0% = Tcos¢, o = —Tsing, o% = —Tcoso.

The magnitude of ogy and oy, grows from the head to
the trunk in different manners, depending on whether T'
is perpendicular to the shells (hydrostatic) or 7" along
the tilted lateral membranes. The resultant AB-T1 tran-
sition rate, calculated through Eq.[3] flips its sign with or
without the tilt (Fig. ) However, this qualitative dif-
ference will vanish when the surface approaches a sphere
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FIG. 3. AB-T1 transition rate « calculated for a prolate,,

ellipsoid with b/a = 0.4. (A) A schematic illustration of the,
system under tensile lateral stress 7" with a constant tissue266
height € = 0.05a for panel B and C; (B) In plane, apical and
basal stress components normalized by T'a/d as a function of "
the distance to the head. Left: T perpendicular to the layer”®
(hydrostatic); right: T along tilted lateral membranes. The*®
cyan and magenta curves stand for a sphere (a = b). The ten-270
sile stresses have a positive sign (apical,blue) and contractilezn
stress has a negative sign (basal, yellow). (C) The correspon-27
dent AB-T1 rate « for the prolate ellipsoid. (D) A schematicors
tissue setting under the external loads with pressures and in-,;,
homogeneous tissue height (Eq. [7). (E) Profile of the AB-,,
T1 measure, 7, with varying apical pressure difference AH“m
and with basal pressure difference AII” = 0. Left: the tissue
height modulation rate 8 = 0; right: 8 = 0.4. Black dots indi-""
cate the peak, where the absolute AB-T1 measure || reaches™®
the maximum. (F) The phase diagram for the peakiness of ~,>
which is calculated as sign(vpeak) X ||[Ypeak| — |Verunk]||. Left:?8
B8 = 0; right: AII’ = 0. The size of the scattered square is?
o (1 —dpear)?, so positions closer to the head (d = 0) are rep-2e
resented by larger squares. The grey contours separate theass
trunk (dpeak > 0.5) and the head (dpeax < 0.5) regions. -
285
286
(a/b=1) (Fig. ; cyan and magenta lines), leading toz
no AB-T1 transition at all locations (Fig. ; black line).zss
Next, we discuss results with pressure differenceszss
across the cell along the apical-basal axis (Fig. ) Thezso
tissue height follows Eq. [7] The apical and basal mem-xn
branes are subject to pressure from: the outside P,;;20
from the internal cavity (e.g. yolk or luminal pres-zs
sure) P;,; and inside the tissue Pr. The pressure dif-ae
ferences at the apical and basal surfaces are given byus
AIl* = Pr — P,,; and AII® = P;,, — P respectively,zss
with positive AIl pointing towards the outside. Beforesr

applying external load, we assume cells have relaxed to
their preferred cell shape with no internal strain. The
external normal and tangential loads on the apical and
basal side are JE\?) = AIl 4 T'cosg, J(Ta) = AIl + T'sing,
Ug\l;) = AIl + T'cos¢ and Ué?) = AIl — T’sing.

The system dominated by pressure (AIl/T — o) cor-
responds to a hydrostatic limit, Fig. (left). In this
limit, the profiles of stresses and the consequent spatial
distribution of AB-T1 transition frequency do not qual-
itatively depend on the pressure differences or the cell
height profile (Supp. Mat. . In contrast, strikingly,
when the pressure difference is comparable with lateral
stress (AIl ~ T'), ~ is sensitive to the two pressure dif-
ferences and S, Fig. . ATl can be negative (pointing
inwards), thus the normal component of lateral tension
T can be partly balanced by this pressure and o1 /o N be-
comes much larger as if the cells tilt more significantly.
When AII®/T shifts sign from negative to positive, at
the trunk (d = 1) v becomes negative, altering the ori-
entation of AB-T1 transitions.

To capture the key features of the distribution of ~,
we define the peak of v as where Ypeak is the maximal
value of || (Fig. BE) and its value at peak (referred here
as the peakiness) as sign(Ypeak) X || Vpeak| — | Verunk||- Ac-
cordingly, we can construct a phase diagram of AB-T1
transitions, using the position of the peak and peakiness
as the order parameters, Fig. [JF. We show the diagram
in the AII*-AII® space for 8 = 0 (left) and in the space
of B-All*/T with AT’ = 0 (right). The peak in the ten-
dency of AB-T1 transition switches from trunk to head
beyond a critical line 3(AIl) (Fig. [BF). From these phase
diagrams, we can estimate mechanical properties (e.g.
pressure, lateral tension, or possible external loads) from
the geometric cell profiles (e.g. cell tilt, cell height and
AB-T1 locations/orientations).

Conclusions: We have proposed a model for the on-
set of cellular tilt within a curved monolayer. We find
that the interplay between the lateral cell-cell tension
and the cellular tilt leads to a shift in the location at
which we expect the number of neighbor rearrangements
to be maximal. Our formalism provides predictions for
the location of AB-T1 transitions in several geometries
that are echoed by experimental observations in various
geometries [24] [29].

The lateral membranes play an essential role in balanc-
ing stress across the cell, thereby regulating cell shape.
In particular, lateral membranes with low contractility
lead to cell tilting, which cooperates with pressure and
tissue thickness to result in a rich phase diagram for the
tendency of AB-T1 transitions to occur. If the lateral
membranes are sufficiently stiff, then the tilt of lateral
membranes is suppressed and AB-T1 transitions occur
at regions with large curvature anisotropy, following the
model prediction in the hydrostatic limit.

Though we have focused on a prolate geometry with
simple external loads, our formalism can be generalized
to a diverse range of tissue geometries observed in vivo.
We expect tilt to occur at the steepest curvature gra-
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dient, even for non-axisymmetric and non-closed surfaceso
geometries; e.g. the brain and gut. We can also exploresos
the role of in-plane shear and bending within this theo-so
retical framework. Internal cell strain, which is likely sig-sio
nificant during cellular process such as cell division[38],su
can also be considered as a source of external loading.s:
Finally, transient and reversible AB-T1 transitions havess
been observed [39, [40]; the dynamic aspect of AB-T1su
transitions may be relevant to the mechanism of T'1 tran-ss

316

sitions [23] [36] and their contributions to processes like
tissue folding or buckling [41H46] remains to be investi-
gated.
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SUPPLEMENTARY MATERIAL 554
A. Force balance in axisymmetric systems 555

For a general elastic material, the force balance insse
terms of the stress tensor & is 557

558
(8)559

560
where ' = (Fp, Fy, Fy)T is the external body force ex-ss:
erted on a element of a small volume. For a thin elasticse
shell revolved around a polar axis with distance 7(s, 6),sss
this body element = dA - §, where dA = rdsdf and §ses
represents the thickness. ds is an infinitesimal lengthses
along the meridional direction and rd# is an infinitesimalses
length along the circumferential direction. The radius ofser
curvature along ds and rdf are denoted as R, and Rgg,ses
respectively. Hence ds = R,,dy and Rgg = r/sineg.

For a thin shell (i.e. § is much smaller than the typi-
cal curvature radius of the system), these quantities cans
be taken as uniform along the thickness direction, so the
transverse shear can be neglected. Therefore, only the in-sr
plane stresses 0, 0gg and o9 are considered in the forcesn
balance and their derivatives along the normal directionssr
are neglected. Furthermore, we do not consider possi-s:
ble bending stresses at the discontinuity of displacementsza
(usually at the apex of the object) due to the in-planess
stresses [47H49]. With these assumptions, Eq. |8| leads tosrs
a set of force balance equations along the meridional d:p,m
circumferential df and normal directions to the surface

V.-6+F=0,

dAZ 578
O(ropy) | 0ogy

S ) s C = _F 579

as 80 J9eCOSY wr .
0(rogy) 004

U\T00p) _ ) 9581

bs T op T owecose =l ©F

Opp 066 583

Zep U0 _ p
R(pgp RG@ N 584

585

For an axisymmetric system r(p,0) = r(p), we dropss
all the terms with derivatives with 90 and obtain these
axisymmetric resultant for the top and bottom equationsss

in Eq. [9] as 589
590
d(ro
drog,) d‘W) — ogpcosp = —F,r .
S (10)592
Opp 099 — Fy 503
Rapap R09 ’ 594

595
which are independent of shear. The torsion around the,,

polar axis from shear force is exclusively determined by,
the second equation in Eq.[9] For our case, Fy = 0 so they,
shear component must also be zero throughout the space
considering the boundary condition og,(¢ = 0,7) = 0. s
From Eq. we obtain a differential equation for o,

600

601

d
—(ropesing) = Rgg(Fncosp — Fsing)sing.  (11),,

ds

Integrating and multiplying Eq. [L1] by a factor 274:
2010 5 psinp = 2m0 /(FNcosgp—Fwsingo)rds+Fc, (12)

where the left hand-side is the total force parallel to the
polar axis found at a latitudinal cross-section of the shell
positioned with arc length s. This force is balanced by
the distributed load across the surface along with a con-
centrated force F,. at the apex s = 0. The indefinite
integral could be alternatively expressed by a definite in-
tegral from s = 0 to s = s(ip).

Here, there is no reason to consider a concentrated
force at the head apex, so we set F. = 0. We define the
loading from the two external stresses o y per unit area
such that 0F, = —op (with a minus sign so that o > 0
points towards the head) and dFy = on. With these
notations, Eq. [12]is equivalent to Eq.[I]in the main text.

B. Measure for AB-T1 transition likelihood

We define a measure ~ for the tendency of finding a
AB-T1 transition as the difference in the deviatoric strain
between apical and basal layers (Eq. . The magnitude
of ~ relates to the probability of finding an AB-T1 tran-
sition, and the sign of ~ indicates the orientation of the
corresponding AB-T1 transition, as described in the text.

The deviatoric strain is the deviatoric stress [36, (0],
divided by an effective tissue shear modulus p as:

Odev
€dev = . (13)
o

Here, we ignore shear and torsion so ogey = 0y —0gg. A
positive sign indicates a tensile strain along the meridian
direction with a compressive strain along the circumfer-
ential direction.

The effective shear modulus p is related to the strength
of the tissue in resisting deformation in exchanging neigh-
bors along the AB direction. This modulus depends on
how the cell cortex biopolymers connect, bend, and in-
teract in the material. Some empirical and theoretical
literature has shown that the shear modulus of tissues is
stiffened by pre-compression or pre-expansion of the tis-
sue [5IH53]. Tension stiffening originates from a bending-
to-stretching mode transition, while the mechanism of
compression stiffening originates from jamming [53] 54].
In some particular cases, a tissue can even display tension
strain-softening due to connections breaking between ad-
herent regions [54].

Supposing that the pre-stress in plane is small, we have
a phenomenological linear relationship for the effective
shear modulus

[ = po +Z(6)Tr(5), (14)
where po is the intrinsic shear modulus of the mate-
rial and the trace of in plane stress tensor indicates the
isotropic tensile or compressive stresses in the layer. The
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FIG. S1. Comparison among different models for effective shear modulus for a prolate ellipsoid b/a = 0.4. (A-C) Distribution
of 7y for varying apical pressure differences AII*/T from top to bottom: -0.3 (skyblue), 0 (orange), 0.3 (green), 0.6 (red), 0.9
(purple), 1.2 (brown), 1.5 (pink), 1.8 (grey), 2.1 (golden), with different values of the basal pressure difference AII® and tissue
height inhomogeneity 8. Horizontal axis d is the relative distance; d = 0 indicates the head of a prolate ellipsoid and d = 1 the
trunk. Black dots indicate the peak of |y|. (D) Diagrams of peakiness, which is defined as sign(vpeak) X ||Vpeak| — | Ytrunk||. From
top to bottom: Model 1, Model 2, Model 3, Model 4. White regions indicate peak of |y| at trunk, whereas coloured squares
indicate peak of |y| at near the head. The corresponding diagrams for Model 0 are presented in the main text Fig .

dimensionless coefficient = can have various dependen-es
cies on the stresses ¢ for a broad range of hyperelastices
materials. Here, we discuss several simple forms for =.
First of all, we consider a linear prestress-stiffening,®
modeled by a positive constant £ for tensile stresses (trace
of stress tensor > 0) and a negative constant —¢ for com-""
pressive stresses (trace of stress tensor < 0); hence Eq.
becomes 627

= po +&|Tr(0)]. (15)

628
By tuning the value of £, one can explore varying effects
of prestress-stiffening in the model.

If £|Tr(o)| > po (a strong prestress-stiffening), the
intrinsic shear modulus can be ignored such that

630

w~ETr(6)] (Model 0), (16)6s

which, normalized by &, is used for the results shown in®*

the main text. . o

Oppositely, if &|Tr(o)| < po (negligible prestress-""
stiffening), the effective shear modulus is dominated by*®
the intrinsic shear modulus such that

(Model 1).

636
637

o~ Ho (17)638

There are other simple forms for pu:
stiffening while compression-softening:

(i) tension-

p~ exp(Tr(6))  (Model 2); (18)
(ii) only tension-stiffening;
po for Tr(6) <0
~ Model 3); (19
s {uo+§Tr([7) for Te() > 0 (Model 3 (19)
or (iil) only compression-stiffening:
po — ETr(6) for Tr(6) <0
~ Model 4). (20
a { o for Tr(6) >0 (Model 4). (20)

The comparison of v under these five types of effective
shear modulus are shown in Fig[S1] External load acts
through pressures differences AII* and AII® at apical and
basal sides, along with the lateral tension T', as demon-
strated in the main text (Fig. ) In Models 2, 3, 4,
we set pg = & and all the v shown here are normalized
by a/6¢. In Figl[SID, we show the diagrams of peakiness
as defined in the main text in the parameter space of
ATI® /T — ATI®/T and 8 — AII*/T for Models 2-4.
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We can see for different models of the effective mod-
ulus u, the phase diagrams of peakiness have different
boundaries between the trunk region (white) and the
head region (colored) in the parameter space. Both the
material properties and the tissue geometry play impor-
tant roles in the occurrence and positioning of the AB-T'1
transitions. To distinguish the models, we refer back to
the experimental observations. In the early Drosophila
embryo, AB-T1 transitions are very infrequent at the
anterior head of the embryo and also in the trunk re-
gion. Comparing the ~ distribution between the different
models, we see that a distribution with peak in ~ near
(but not at) the head with near zero value in the trunk
(7(d = 1) /vpeak ~ 0) has a very narrow parameter space
in all the models. This is because v ~ 0 at the trunk re-
quires pressure and stresses along the lateral membrane
to be closely balanced.

C. Deviatoric strain under hydrostatic load

In this section, we show the analysis of the devia-
toric strain profile and the correspondent AB-T1 likeli-
hood under the hydrostatic external loads. Substituting
or = 0,0y = P into the force balance equations Eqs[I}j2]
we arrive at:

P
ULprCGO = %a
(21)
P 682
090Co0 + O'chpcgaap = g 683
684
Solving Eq. [21] yields the following relations:
P C 685
090 + Opp = 77— 3 —¥¢ R
20Cyg Coo (22)5
P oo — L 1_ % 687
29 00 T 95C, Coo ) -

689
Substituting Eq. into a general expression of the de-p0
viatoric strain, with the u defined as in Eq. in Supp.sa
Mat. [B] we obtain the following analytical expression ofs

the deviatoric strain for a layer: 693
694

P = sign(P) 1- C@SD/CGG (23)695

dev § 2§c/€ + |3 - Osmp/cw‘ ’ 696

697

where fc = 5C99u0/|P|. 698

Note that for an axisymmetric system, Cpyg is alwayseoo
positive, i.e. the small arc along the circumference isrwo
always convex to the polar axis, while Cy, can eitherm
be positive for a convex meridian or negative for a con-ro
cave one, with respect to the polar axis. Figure [S2}os
is a graphical representation of a normalized deviatoricro
strain €gev = €.,&/sign(P) against Cyy,/Cpo. Whenios
Coyp/Chg = 1, the two prime curvatures of a local sur-7e
face are the same and under hydrostatic external loading,or
éh., = 0, independent of &. 708

£=014¢Z.

FIG. S2. The normalized deviatoric strain €q4ev in relation to
the ratio of prime curvatures Cyy/Coo. All €4ev With various
& at isotropic curvature condition Cy,, = Cgs (magenta line).
There are three typical examples of different curvature ratio
below: brown (left) for Cy,/Co9 < 0; yellow (middle) for
0 < Cyyp/Cho < 1; pink (right) for Cp,/Cos > 1. The arrow
indicates the polar axis. The radius of curvature Rgg = 1/Cpo
and Ry, = 1/C,, are highlighted by the red and blue lines
respectively.

When £ > £, (strong stress-stiffening, blue curves
in Fig. , the largest magnitude of €, occurs at
Cyy/Chg = 3 with its value

1 P

b =——=_ . 24
6dev,peak gc 6/10 090 ( )

For a shape elongated along the polar axis without
bumps, [Cy,, — Cog| = 3 is not feasible. In this case, the
magnitude of e increases with Cy,/Cg9 — —o0, where
the curvature anisotropy |Cy, — Cgg| becomes large.

When ¢ < £, (weak stress-stiffening, green curves in
Fig. , the magnitude of €, always increases with the
growth anisotropy of curvature. The largest magnitude
of deviatoric strain occurs with value €., = +1/¢ when
CWP/CQQ — Fo0.

When & ~ & = 6119Cpg/|P| (orange curve in Fig. [S2)),
the largest magnitude of €, occurs where C.,,/Cgg > 3.
Large Cl,,/Cyg corresponds to geometries such as bumps,
see the right bottom panel in Fig. [S2}

Although the strength of prestress-stiffening (value of
€) affects the magnitude of deviatoric strain in different
ways for C,,/Cpo > 1, the behaviors of deviatoric strain
are robust against ¢ for the region Cy,/Cyy < 1, which
is typically the curvature ratio for a regular elongated
axisymmetric shape, such as an ellipsoid and cylindrical
tube. In these systems, the largest magnitude of devia-
toric strain occurs at the smallest value of C,,/Cyg. If
we narrow the cases to only convex surfaces, i.e. Cypp, > 0
(see the middle bottom panel in Fig. 7 then the largest
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magnitude of deviatoric strain occurs at C,, = 0. This
corresponds to the trunk region of a prolate ellipsoid.
This conclusion also holds when considering the other
forms of the effective shear modulus u*® (e.g. those dis-
cussed in Supp. Mat. .

Let ¢ denote the ratio between two principal curva-
tures Cy,/Cog. Under hydrostatic situation, the AB-T1
tendency profile v, which is the difference of deviatoric
strain between apical and basal side, becomes

1
£

for £/&. > 1 and

1—c%(s 1-—

P(g) ~ — % sien(P?
(s) T —sien(P)

(s) }
3= ()
(35)

{sign(P“)

P(s) ~ 1 [ pPe1—c%s) P*  1—cP(s) }
! 2010 [ Chg(s) [3= ()] Chy(s) [3 = ()]
(26)
for £/¢. < 1.

Since the cell height e is much smaller than the ra-
dius of curvature (our model assumption), c® ~ ¢’ +
e[Chy — CL ], Cgy ~ Chy/(1 4 eChy), then the pro-
file of «P(s) is approximately proportional to the nor-
malized hydrodtatic deviatoric strain at the basal side

ehgev(s) = [1— c(s)]/[3 — c(s)| as
AP (5) o b gey(s) + O (e(s)(cw(s) + 099(5)> 27"

with a linear coefficients determined by the hydrostatic
loading P*® and a negligibly small correction from the;s
cell height. Hence, the AB-T1 tendency under hy-,;
drostatic conditions, vP, is near zero at locations with
isotropic curvature and increases with the curvature

anisotropy.
759

D. Calculation of tilt angle of the lateral
membrane on an arbitrary axisymmetric object

760
761
762

Fig. illustrates a meridional cross section for an ar-re
bitrary axisymmetic shell. A surface element dA(p, 6)se
located at s on the basal side (golden in Fig. , can besgs
mapped to another surface element dA%(¢’,0") locatedyss
at s’ in such a way that the accumulated number of cellsy
from the head of the object to s on the basal side is thee
same as the cell number accumulated from the head to s+
at the apical side. Hence, the angle ¢ between the nor-;7

mal direction of the surface and ss’ is the tilt angle of the
cells at dA. The surface element dA = r(s)dfds, where
7(s) is the distance to the polar axis, and rdf and ds are_
the two orthogonal vectors along the circumferential and
meridional directions, respectively.

Given our assumption of an axisymmetric surface, the
2D integral of surface element dA over the whole shell
surface can be reduced to a 1D integral with only thers
meridional variable from 0 to s. The accumulated num-
ber of cells N from the head to s on the basal side isws

10

polar

FIG. S3. A meridional cross section of an arbitrary axisym-
metric shell with apical (navy) and basal (golden) layers. The
apical layer is an outward projection of the basal layer along
the normal direction at each local surface element with a dis-
tance e. The position s’ on the apical side corresponds to
position s on the basal side in such a way that the cell num-
ber accumulated on the apical surface from the head to s’
equals the basal one accumulated from head to s; therefore,
the angle between the vector from s to s’ (black bold line) and
the the surface normal direction (red dashed arrow) is the
cell tilt angle ¢ describing the degree of cell tilt at the local
surface.

given by

s 27 s
bS: bsrbs S = bS 7T7"b55
NY(s) // P(s)r(s)d6d /Op<>2 (s)d

(28)
and it is equal to the accumulated number of cells N on
the apical side:

’

NP(s) = No(s') = /S p(s*)2mr(s*)ds?, (29)
0

where p®(s) or p(s) is the cell density on the basal or
apical surface, r®(s) or r%(s) is the circumferential radius
at s. The density p®®(s) is determined by minimizing
the membrane tensions on apical, basal and lateral sides.
Here, we do not consider any other cues guiding cell lo-
cation within the tissue environment.

The cell density at the apical side is related to that
at the basal side at s as p®(s) = a(s)p’(s). Since the
total number of cells are the same at the two sides, the
distribution of apico-to-basal ratio of density «(s) must
follow:

Ntotal =27T/ p’(s)r’(s)ds (basal),
; (30)

56
:27r/ p(sM)r*(s*)ds® (apical),
0

where the integration of ds® (apical) or ds (basal) is over
the whole meridional range ¢ € [0, 7] and s or sg repre-
sents the half meridian and Nioiq is the total cell number
covering the shell. When the apical element dA® is only
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a normal projection of the basal element dA with a dis-sos
tance e(s), then one can obtain: 406

807

~—

r(s

=14¢e(s)Cyy(s 808

rb(s) ( ) 90( ) (31)809
ds® 810
> =1+ B(S)CWP(S) 811

ds
Inserting Eq. [31]into Eq. 29] leads to

812

’ 813

[ oo = [ a6 s)ds =
where k(s) = 1+ 2e(s)H(s) + €2(s)G(s), with
H(s) = (Con(s) + Cps(5)) /2 (33)
the mean curvature and
G(s) = Con()Cl (). (34)

the Gaussian curvature. o1s

Equation [32| now only depends on quantities with su-g;
perscript b, so for neatness we omit this superscript fromy,,
here and write p®(s) = p(s), N%(s) = N(s). Reorganizing,,,
the integration on the right hand side, we can transformg,,
Eq. 32 into 820

821

//S a(s)k(s)p(s)r(s)ds
= /OS (a(s)r(s) — 1)p(s)r(s)ds  (35)

1 823

7(Na(s) - N(S)) 824

:277

822

For s’ —s — 0,

the left hand side of Eq. is approxi-
mated as o8

(36)826

827

/ a(s)r(s)p(s)r(s)ds ~ a(s)p(s)r®(s)As(s),

where As is the arc length difference from s to s’ at the
apical side. Accordingly, Eq. [35] becomes 828

a(s)rt(s)p(s)As(s) = /0S (a(s)/{(s) - l)p(s)r(s)ds 829

830

(37)san

We then derive the tilt angle ¢ as: 2
s 833

tang(s) ~ E _ fo (a(s)n(s) - l)p(s)r(s)ds’ (38)™
e(s) re(s)e(s)a(s)p(s) 635

836

or in a more compact form -
a _ b 838

tang(s) ~ N (S) N (S) (39)s2

2mre(s)e(s)a(s)p(s)

as shown in Eq. [4 in the main text.
Now we consider two extreme cases. If the the lat-sa
eral membrane tension overwhelms the apical/basal layerss

840

11

tension, the lateral membranes tend to stand perpendic-
ularly to the basal side. In this case, we have a(s) =
1/k(s), so that ¢(s) is zero across the space. By contrast,
if the lateral membranes have low contractility compared
with the apical/basal membranes, the cells tend to ad-
just the area sizes in both layers into homogeneous dis-
tributions, so that a becomes independent of the local
curvature. We can derive a form for « as:

a_ _Jo'r

o= fo%(s)p( Eee 10

Inserting Eq. [A0] into Eq. [38] gives
tang*(s) ~
Jy ds J" dsz | (s(s1) = (s2)) p(s1)r(s1)p(s2)r (s2)]
7 (5)e(3)p(5) (Niotat/27)
g dsy [ dsa | (k(s1) = w(s2)p(s1)r(s1)p(s2)r(s2)|
r(5)e(5)p(5) (Neogan /27) |
(41)

As the cell size is much smaller than the radius of cur-
vature, k(s1) — k(s2) ~ 2[e(s1)H (s1) — e(s2)H(s2)] with
the second order term neglected. To clearly see the de-
pendency of ¢* on curvature, we transform the integra-
tion of ds in Eq. [41]into integration by local cell number
dN(s) = 2mp(s)r(s)ds as

Jo dN(s1) [ dN(s2)[K(s1) — K(s2)]
2712 (s)e(s)p(s) Niotal '

The integral [”r(s)dN(s) could be alternatively ex-
pressed as £(s) X [N(y) — N(z)], where

[V K(s)dN (s

N(y) — N(y)

is the weighted average of k(s) in the range of x < s < y.
Hence, Eq. 2] be expressed as

N(5)(Neotal — N (5))[k(s1) — £(s2)]
27ra(s)e(s)p(s) Niotal '

As long as the change of cell height e(s) with s is less
radical than the change of curvature, we can approxi-
mate the difference of x mainly by the change of mean
curvature as k(s1) — k(s2) ~ e(s)[H(s1) — H(s2)], and
finally we arrives at Eq. [6] in the main text.

We can relate the difference between the weighted av-
erage of the mean curvature to the mean curvature gra-
dient. For H averaged from z < s < g, according to
the integral mean value theorem, we can always find an

€ (x,y) such that H(3) = H(s). Hence, the difference
of H could be re-expressed as

tang*(s) ~

(42)

k(s) = (43)

tang*(s) ~

(44)

H(s1) — H(s2) = H(s) — H(3), (45)

where 0 < 5 < s and s < § < s59. Since l_fI is the average
weighted by the cell number at s, s and § should be close
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to where the local cell number dN(s) is large, i.e., wheresso
p(s)r(s) is large. If the cell density does not radicallyse
change with s, 7(s) will dominate where 5 and 5 locates.

When s — 0 or s — sg, ¢* is close to zero because
N(s) (Ntotal - N(s)) — 0 and the contribution from the™
curvature becomes trivial. When s is neither close to the
head (s = 0) nor the tail (s = sg), if the surface is convex,
r(s) is large and 5 and 5 will be in a vicinity of s, where
the distance r(3) and r(3) is relatively large. According
to the mean value theorem, we could find another s* €
(5,3) such that

(46)

where H’ is the gradient of curvature and s* is even
more close to s than 5 and 5. If the gradient of curva-
ture is also continuous and differentiable (as seen in the
ellipsoidal or tubular structures in biological systems),
H'(s*) ~ H'(s) 4+ (s* — s)H"(s); therefore, given a steep®?
mean curvature gradient at s, we predict a large tilt an-%°
gle ¢* at s in the zero-lateral-tension limit, as long as s%*
is not at the head or the tail. Meanwhile, since 5—35 < 0,%%
a negative gradient of curvature along s corresponds to8®
the positive tilt angle towards the head. In other words,”
the tilt will lean to the vicinity of s with a higher positives
curvature. 899

For more general cases, where the cells are subject toso
both the lateral and apical/basal layers, the distributions
of a(s) is between 1/k(s) and «o*. Without other ac-
tive sources, density projection rate a(s) together with
the cell basal density p(s), and cell thickness e(s) are
the mechanical consequence of cells minimizing their freeso
energy as discussed further in Supp. Mat. [G]

E. Further simplifying the model for tilt

903
904
Using the mean value theorem to eliminate the integraleos

Eq. we obtain: -
teno(s) ~ 5(s0 = 5) [ (5(5) = £(3) ()7 (5)p(3)r(3)] -
s P Ty
(47)910

We can further simplify the model by setting a homo-°"*
geneous density p(s) ~ pg and e(s) ~ ¢ to arrive at a tilt™?

profile purely depending on the geometry of the surface:*"
914

s(so =) [(HE) — HE)r(r(3)] o
. (48)
(1 + 8090)7"(3)(Atota1/2ﬁ) 917

We can now evaluate the contributions from height’*®
modulation and basal density modulation separately. We®**
define § such that the total cell number at the apical side
Niotal = p(8)Atotal, where p(§) is a weighted average of*®
density from s = 0 to s = sg. According to Eq. the tilt**
profile with modulated inhomogeneous density becomes **

tang'(s) ~

920

p(3)(5)
o(5)p(3) 49

)925

tang(s) ~ tang™ (s)

12

If p(s) is nearly homogeneous as |dp/ds| < 1, we assume
p(s) ~ polL +1(s)(s — §)/s0] with [n(s)] < 1. Then,

7(AN1+77[§+§—3—§]/50+O(772)~ (50)

p(s)p(3)

Recall that § is the averaged position weighted by
p(s)r(s) while 5 and 35 is the averaged position weighted
by k(s)p(s)r(s). With a radius of surface curvature much
larger than the typical cell size - « is only slightly larger
than 1 (an assumption of our model) - we approximately
have 5 < § < 5. In this case, the first order term in 7 is
negligible. In particular,

is valid when p(s) is a monotonic function. Therefore, the
tilt angle under mild inhomogeneity of density is always
slightly smaller the scenario with homogeneous density.

The tilt profile with modulated inhomogeneous cell
height e(s) can be evaluated similarly, supposing e(s) =
e(1 + n'(s)(s — §)/so) with |/(s)] < 1. Clearly, the
value of € has negligible effect on the result as long as
eH(s) < 1 (our basic model assumption) is valid.

Then, the tilt profile corrected by inhomogeneous cell
height is

tang(s) ~ tang'(s) (1
+f[(5= ) H(5) = (5 - 5)H()| /50

+00r?)),

(51)

which has a more significant first order correction term
in H(5) than Eq. Therefore, inhomogeneity in cell
height causes greater deviation of the tilt angle from the
homogeneous limit ¢ than inhomogeneity in cell density.

In Fig. [S4 we show the tilt profile and corresponding
phase diagram for the AB-T1 transition measure for a
prolate ellipsoidal system with b/a = 0.4 and /a = 0.05.
The horizontal axis is the relative distance to the head
and d = 1 represents the trunk. Tissue height and basal
density are modulated linearly with s, with coeflicients
8 and A respectively. Modulation of density slightly sup-
presses the final tilt angle (the straight curves slightly
lower than the dashed curves). Meanwhile, modulation
of height affects the tilt more significantly, not only af-
fecting the magnitude but also the shape of the distri-
bution profile (as compared with the yellow lines, which
corresponds to a homogeneous or zero modulation limit).

In conclusion, assuming the change of cell shape is rela-
tively small to the change of curvature along the surface,
we can simplify the model by ignoring the interdepen-
dency between the cell height and density. We just con-
sider the inhomogeneity of cell height modulation, while
keeping the density in either apical or basal side in a
homogeneous setting.
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FIG. S4. Results with an inhomogeneous basal density distribution modulated as p(s) = po[1 + A(s/s1/4 — 1/2)] and inho-
mogeneous cell height distribution e(s) = 8[1 + B(s/s1/a — 1/2)}7 where s is the arc length along the prime meridian surface
and s1,4 is the 1/4 arc length. The system is a prolate with b/a = 0.4 and tissue height ¢/a = 0.05. (A) A comparison of tilt
angle profile between A\ = 8 (straight) and A = 0 (dashed) for varying 8 from —0.4 to 0.4. (B) A comparison of phase diagrams
for the peak of the AB-T1 transition measure v (main text Eq. ' The color indicates the peak prominence, calculated as

sign(Ypeak) X || Vpeak| —

F. Tissue geometry on the surface of a prolate o

ellipsoid

Prolate spheroids were generated from revolving an el-
lipse around its the long axis as shown in Fig. [SHA. An
arbitrary point (x,y, z) on the surface of a prolate ellip-
soid in 3D obeys

953

954

(52)955

956

where 2 axis is the polar axis and y/x2 +y2 = r is the
radial distance from the point to the polar axis z. Con-

ventionally, r and z can be parameterized as o7

958

(53>959

960

r=bsint, z=acost,
where 7/2 — t is the reduced latitude of a spheroid.961
Considering elliptical symmetry, we discuss just the first
quadrant (0 < ¢t < 7/2) in the following equations. These
angle ¢ between the normal direction of a surface element

and the polar axis is a function of ¢ as o

964
(54)965

966

(p = arctan (%tan t) .

We assume the basal side of tissue is a surface of thc e
prolate, while the apical side of the tissue is a pI‘OJeCthH o
on the normal direction with a distance

ety =z 148 (/510 5)

where s(t) is the arc length at ¢, s1,4 is 1/4 the ellipseq;,
perimeter and S is the rate of modulation of the tissuey,
height. Note that ds(t) = Ry, (t)de(t).

The two principal curvatures of the surface elementors

970

971

(55)972

973

977

|¥trunk||, and the size of the data square scales as o (1 —dpear)? for a demonstration of the peak position.
The closer the peak to the trunk, the smaller the data squares.

If dpear = 1 (peak at the trunk), the square is not visible.

dA®(t) at the basal side are

Cho(t) = 1 sinp(t) a
O R, ) r(t) b(a2sin®t + b2cos?t)1/2’
1 ab
b
Csw(t) = -

RY,(t)  (a2sin’t + b2cos2t)3/2’
(56)
The curvature at the apical side depends on the tissue

height e(t) as

1 o 1

1/Ch, () +e(t) %%~ TJCE (0 +e(d)

The projected area element at the apical side dA®%(t)
is larger than the area at the basal side dA®(¢) by a ratio
that decreases from the head of the prolate to the trunk
due to the varying local principal curvatures. This area
ratio can be expressed as:

dA*(t)

_ r(t)ds*(t)do
dAb(t)  rb(t)dsb(t))dd

Cho = (57)

(58)

The horizontal axis d =1 — cos(t) € [0, 1] quantifies how
close the point is to the head of the spheroid along the po-
lar axis. For a smaller inverse aspect ratio b/a, the apico-
to-basal area ratio is much larger at the head so that it
decreases more sharply (straight curves for b/a = 0.3 and
dashed curves for b/a = 0.4, Fig.|S5). For b = a, the pro-
late ellipsoid is reduced to a sphere and the two principal
curvatures become identical at any ¢, so that the apico-
to-basal area ratio remains constant everywhere (inset in
Fig. [SEB). Meanwhile, a larger thickness of tissue causes
a larger difference between the head and the trunk (dif-
ferent colors in Fig. ) The two stars in Fig.
indicate the area ratio measured from cells in the ex-
periments (~ 1.35 near the head and ~ 1.23 near the
trunk) for a relative thickness of tissue about 0.05 and
an inverse aspect ratio b/a ~ 0.4. Comparing these two
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FIG. S5. Apical to basal surface area on a prolate ellipsoidios
(A) Hlustration of the prolate ellipsoid. (B-D) Ratio of apicalos
to basal area with different distance between the apical andg,,
the basal sides (¢) as a function of the arc length as e(s) =,
e[l + (Bs/s1/a —1/2)], where so is the 1/4 of the perimeter of
the meridian ellipse. (B) $=0; (C) 8 < 0; (D) 8 > 0. Different
colors indicate different tissue heights . All the insets in (B-
D) are for a spherical system (a = b). As a comparison, thé
two stars are the measured area ratios in the experimental
data from [29] for wild type embryos; the ratio at the head iso
about 1.35 for the anterior side (d < 0.15) and the ratio atoss
the trunk is about 1.23 for the trunk side (d > 0.7).

023

1026
1027

1028

points with the green dashed curve in Fig. [SBB, we see,,,
that the cells at the apical surface, as measured in [29)],
are not perfectly normal projections of the basal layer.
See Fig. [S5[C-D for the area ratios under inhomogeneous
tissue height.

1030

G. Cell geometry control

1031
The cell packing - which determines the cell areas onos:
apical, basal and lateral sides - reaches a stable configzos
uration when the system finds its minimal free energy.
Here, we derive several analytical expressions for the tiltos
angle based on a mechanical model of cell geometry reg-
ulation. Following the established literature of vertesoss
models [35] [43] [44], we describe the forces regulating theoss
cell shape tissue as a derivative of the following free enos
ergy function: 1038

1039

B =Sik(Af — Af)® + kP (A} = A o)” + KAl oo
(59

1041
where AZ(OOT Y is the preferred cell area at the apical (or,,,
basal) layer for each cell i. k%" ®) is the apical (or basal)os
elasticity coefficient and k! is the lateral tension strengthioss
A% Ab and Al are the areas of cell i at apical, basal andus

14

lateral surfaces respectively.

EZA;,I = EZ"A(Z'I,O = Agotah EZA? = E1"'4?,0 = Agc)otal' (60)
The packing equilibrium corresponds to the minimum of
the free energy (Eq. under the surface constraints
given by Eq.

If the lateral membrane is far less contractile than the
apical and basal membranes, i.e., k! < k:“’bA?”g, the min-
imization of this free energy will cause the cell to opti-
mize its area towards A?’é’ in the apical and basal sides
and the lateral membrane will tilt when the local curva-
tures of the shell change along the surface. By contrast, if
k> k“’bA?’é’, the minimization of the free energy leads
to the lateral membrane orientating perpendicular to the
apical and basal sides, with the cell apical area becoming
a normal projection of the basal area, depending on the
local curvatures. This can be seen from calculating the
functional derivatives of Eq. 59

For a demonstrative purpose, we show a derivation in
a 2D equivalent and assume the preferred area of cells is
homogeneous along the surface such that A?’é’ = Ag’b.
We first discuss a case without the single—céll volume
constraint and then extend to a case with the volume
constraint. The free energy in a 2D system is

Eap = %[k (s§ — s3)? + kb(s? — s§)® + k'sl],  (61)
where s?’b are the arc lengths of the cell at the apical or
basal sides and s! is the length of the cell lateral mem-
brane. Note that cell height e; = slcosp;, where ¢; is
the tilt of lateral membrane of cell ¢. Minimizing this
free energy constrains the cell side lengths so that the
functional derivatives of the free energy become zero:

(5E2D 1 5Sl
= 2k%(s% — g2) + Kt 2L =
537 (sf —s5) + 55 0,
6E2D 5Sl (62)
— brb b 1%23
osb 2k°(s; — sg) + k b5t 0,

where st = /AZs; +€? as depicted by the line ss’ in
Fig. The surface constraint (Eq. accordingly
turns into a 1D form as

Eis? = Eisg = s;;lotalv Elsg = 2188 = Sfotal‘ (63)

For simplicity, we assume k® — oo (due to the symme-
try of the energy function, this assumption is equivalent
to the case with a finite k® but k% — 00), meaning that
the basal layer is solid and thus the second equation in
Eq. [62| can be ignored with s? = sb.

Note that As; is also the difference between the X s’ ?,
which is the accumulated normal projection length from
the basal arc, and 3} s%, which is the accumulated apical
arc length at cell i. Let k;(C;,e;) be the normal projec-
tion rate merely depending on the curvature C; and cell
height e; of cell i, and a; = s?/s¢ be the ratio of basal


https://doi.org/10.1101/2022.05.18.492428

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.18.492428; this version posted May 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

length over apical length of cell i (in the large cell numsoss
ber limit, this quantity is equivalently defined before as
the apico-to-basal ratio of cell density), then

1069

As; = S (ko — 1)8?/043' = As;_1 +Kis) — st (64)
1070
Eq. [62] then becomes 1071
5A2s; de?
2k (S;l - 88) + k‘l 1 % l6 =0. (65)072
5057 087

Without the volume constraint, the cell height distril®”
bution e; is a consequence of multiple regulators, hencé®*
we take de? /ds¢ = 0. Eq. 65| reduces to: 107

1076

2As;6As;
2% (5% — 58) + kl# —0. (66)7,
08T
Inserting Eq. [64] into Eq. [66] we get 1078
1079
k(s — s8)y/AZs; + €2 = k' As;. (67)

1080

Let k be k!/k%;. For an extreme limit & > 1 (rigido
lateral membrane) we get

1082
1 1 1
58~ rysh |1+ -1)=|+0| = |,
R k k2

and for another extreme limit & < 1 (less contractild™
lateral membrane) we get 1068

(68)

1083

1086

5% ~ 58 [1 + (23(@@ —1) - As) } +0(k?), (69),,

56

where a = sj/s&, depending purely on the geometrigos
information of the surfaces, and A5 = SN "1 As¥ /N is thaos
average tilted angle in a zero limit of lateral membraneoswo

contractility. 1001

15

For a rigid membrane (l;: > 1, Eq. , the tilt angle is

L.

Gi ~ e

(70)

For a membrane with small contractility, (k < 1,
Eq. , substituting Eq. |69 into Eq. [64]leads to

6~ 07 [1 - Kik], (71)
where 0 < K; ~ 1.

We next consider the effects of cell volume constraints.
Now, the cell height, in relation to the basal and apical
lengths, becomes

ei(s¢ +sY) = A. (72)
Inserting Eq. [72] into Eq. |65| and also assuming s? = s},
we obtain:

As; Ae;

ka( a—SS)*kl Tls+(e97<i) (73)
For a low contractility membrane, let k %e k' /k%e; > 1,
then

A2 .
S5 oz)]?’] + (),
(74)

which has a correction term from the volume constraint
A in the first order term of k as compared with Eq.
The tilt angle becomes

st ~50+k{2 (kjo—1)s§ +

¢i ~ &7 (1 - f(sz) ; (75)
where K also has a correction ~ 1 term from the volume
constraint. Similarly, one can get the results under vol-
ume constraint for a rigid lateral membrane limit (not
shown here).
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