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Summary paragraph  25 

The ovary is the first organ to age in the human body, affecting both 26 

fertility and overall health in women1-8. However, the biological 27 

mechanisms underlying human ovarian ageing remain poorly understood. 28 

Here we performed single-nuclei multi-omics analysis of young and 29 

reproductively aged human ovaries to understand the molecular and 30 

cellular basis of ovarian ageing in humans. Our analysis reveals 31 

coordinated changes in transcriptomic output and chromatin accessibility 32 

across cell types during ageing, including elevated mTOR and MAPK 33 

signaling, decreased activity of the oxidative phosphorylation and DNA 34 

damage repair pathways, and an increased signature of cellular senescence. 35 

By constructing cell type-specific regulatory networks, we uncover 36 

enhanced activity of the transcription factor CEBPD across cell types in 37 

the aged ovary, with a corresponding significant loss of activity of most 38 

cell identity-associated transcription factors. Moreover, by performing 39 

integrative analyses of our single-nuclei multi-omics data with common 40 

genetic variants associated with age at natural menopause (ANM) from 41 

genome-wide association studies, we demonstrate a global impact of 42 

functional variants on changes in gene regulatory networks across ovarian 43 

cell types. Finally, we nominate about a dozen of functional non-coding 44 

variants, their target genes and cell types and regulatory mechanisms that 45 

underlie genetic association with ANM. This work provides a 46 

comprehensive multimodal landscape of human ovarian ageing and 47 

mechanistic insights into inherited variation of ANM.  48 

Main 49 

The ovary is the primary female reproductive organ, and the first tissue to 50 

undergo profound age-associated loss of function in humans, characterized 51 
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by a progressive decline in follicle number and oocyte quality1. The rate of 52 

follicular depletion increases throughout reproductive life, but begins a 53 

more accelerated decline around age 379. This results in a higher risk of 54 

both infertility, and aneuploidy and congenital disabilities in offspring2. 55 

There is also overwhelming evidence that female reproductive ageing 56 

influences lifespan and diverse health outcomes3-8,10,11. Consequently, an 57 

in-depth understanding of ovarian ageing can benefit not only reproduction 58 

but also longevity and health in women. However, thus far very little is 59 

known about basic biological mechanisms that underlie human ovarian 60 

ageing.  61 

Menopause is the time marking the cessation of menstrual cycling and 62 

production of fertile oocytes, and age at natural menopause (ANM) has 63 

profound implications for health and disease risk in women3-8. Family and 64 

twin studies have demonstrated a strong relationship between genetics and 65 

ANM12-15, suggesting up to a ~6-fold increase in risk of early menopause 66 

for a woman with a family history of early menopause12,15. Identification 67 

of the genes contributing to ANM will provide mechanistic insights into 68 

the biological processes underlying ovarian ageing. Genome-wide 69 

association studies (GWAS) have identified hundreds of genetic loci 70 

associated with ANM16. However, the great majority (~94%) of the risk 71 

variants reside in non-coding regions of the genome, making it difficult to 72 

assign their functional role in ovarian ageing 73 

Many recent studies show that functional non-coding GWAS variants are 74 

significantly enriched in cell type-specific transcriptional regulatory 75 

elements such as enhancers17-25. Enhancers have emerged as major points 76 

of integration of intra- and extracellular signals associated with 77 

development, homeostasis, and disease, resulting in context-specific 78 

transcriptional outputs26. Cell-specific enhancer activation is driven by 79 
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combinatorial actions of lineage-determining and signal-dependent 80 

transcription factors (TFs)27. Genetic variation affecting enhancer selection 81 

and function is considered a major determinant of differences in cell-82 

specific gene expression and disease risk between individuals27. Therefore, 83 

the identification of functional ANM-associated non-coding regulatory 84 

variants, as well as the target genes and cell types through which they 85 

confer their effects on ANM, is a powerful way to understand the biological 86 

processes underlying ovarian ageing. However, we currently lack an atlas 87 

of the transcriptional regulatory elements that are active in every cell type 88 

in the ovary during ageing.  89 

In this study, we systematically characterize human ovarian ageing by 90 

performing single-nuclei multi-omics analysis and by superimposing these 91 

data with ANM-associated GWAS risk variants. Through these efforts,  we 92 

identify the functional transcriptional regulatory elements, and functional 93 

non-coding variants and their target genes associated with ANM, across all 94 

cell types in the ovary.  95 

 96 

Single nucleus multi-omics profiling ageing  97 

We performed single-nuclei RNA-seq (snRNA-seq) and single-nuclei 98 

assay for transposase-accessible chromatin using sequencing (snATAC-99 

seq) on the same flash-frozen human ovarian tissues, which were from 100 

young (n=4; ages 23-29 years) and reproductively old (n=4; ages 49-54 101 

years) autopsy samples of sudden death with normal ovarian histology (Fig. 102 

1a and Supplementary Table 1). After stringent quality control, we retained 103 

42,568 nuclei for snRNA-seq and 41,550 nuclei for snATAC-seq 104 

(Methods). Seurat-based unsupervised clustering28 and Harmony-based29 105 

batch correction on snRNA-seq revealed eight distinct clusters (Methods, 106 
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Fig. 1b, and Supplementary Fig. 1a). All major somatic cell types in the 107 

ovary, including stromal cells (SC), endothelial cells (blood vessel 108 

endothelial cells (BEC) and lymphatic endothelial cells (LEC)), granulosa 109 

cells (GC), smooth muscle cells (SMC), immune cells (IC), epithelial cells 110 

(EpiC), and theca cells (TC) were identified based on well-defined cell 111 

type-specific markers (Figs. 1b, c). For snATAC-seq, Signac-based 112 

unsupervised clustering30 and Harmony-based batch correction revealed 113 

seven distinct clusters (Methods, Fig. 1d, and Supplementary Fig. 1b). To 114 

annotate the clusters, we used canonical correlation analysis (CCA) and 115 

mutual nearest neighbors (MNNs)31 to transfer the cell type labels from 116 

snRNA-seq to snATAC-seq (Methods). Consistently, all major cell types 117 

were also present in snATAC-seq (Fig. 1d and Supplementary Fig. 1c). 118 

Additionally, we confirmed cell type identities by examining chromatin 119 

accessibility at the promoter regions of known markers and calculating a 120 

gene activity score that quantified chromatin accessibility within the gene 121 

body and promoter regions (Fig. 1e and Supplementary Fig. 1d). 122 

Furthermore, we identified cell type-specific differentially expressed genes 123 

(DEGs) and differentially accessible chromatin regions (DARs) for each 124 

cell type (Supplementary Table 2 and 3), and found that the cell types can 125 

be well-distinguished by those DEGs and DARs (Supplementary Figs. 126 

1e,f).  127 

 128 

Altered cell type composition with age 129 

To investigate the dynamic changes in cell type composition during human 130 

ovarian ageing, we compared the cell type proportions of aged and young 131 

ovaries in the snRNA-seq data. We found significant changes in the 132 

proportions of several cell types during ageing (Fig. 2a). For example, the 133 

abundance of granulosa and theca cells, two critical components of ovarian 134 
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follicles, were significantly decreased in aged compared to young ovaries 135 

(Fig. 2a), in line with the well-known phenomenon of decreasing follicle 136 

number with increasing age32. In addition, blood vessel and lymphatic 137 

endothelial cells, the cell layers lining the blood and lymph vessels, 138 

respectively, also markedly decreased in proportion in aged ovaries (Fig. 139 

2a), consistent with the observed negative correlation between ovarian 140 

vascularity and age33. Interestingly, epithelial cells were the only cell type 141 

that increased in proportion in aged ovaries (Fig. 2a), potentially reflecting 142 

the lifetime of ovulation-induced rupture and repair experienced by aged 143 

ovaries34. Consistently, aged epithelial cells exhibited signicantly elevated 144 

expression of cell cycle-associated genes, while aged granulosa cells, theca 145 

cells, and endothelial cells exhibited increased expression of apoptosis-146 

associated genes and/or decreased expression of cell cycle-associated 147 

genes compared to young couterparts in the ovary (Supplementary Fig. 2a). 148 

In agreement with the snRNA-seq results, we observed almost identical 149 

age-related changes in the cellular composition estimated from the 150 

snATAC-seq data (Fig. 2b). These results indicated that ageing 151 

significantly remodels the cellular architecture of the human ovary. 152 

 153 

Coordinated changes in ageing hallmarks 154 

To investigate the dynamic changes in gene expression during human 155 

ovarian ageing, we identified ageing-associated DEGs for each cell type 156 

(Methods). In total, we identified 3,341 ageing-associated DEGs 157 

(Supplementary Table 4), the number of which ranged from a few hundred 158 

to several thousand, depending on cell type (Supplementary Fig. 2b). 159 

Specifically, granulosa cells have the largest number of ageing-associated 160 

DEGs (n=2,255) (Supplementary Fig. 2b), suggesting that granulosa cells 161 

are more vulnerable to ageing than other cell types in the human ovary. 162 
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Interestingly, we found that most ageing-associated DEGs are shared 163 

among cell types (Supplementary Fig. 2c) and show congruent changes in 164 

expression (Fig. 2c). Among the “common DEGs” which were 165 

significantly differentially expressed in at least four cell types 166 

(Supplementary Fig. 2d), 218 genes were up-regulated and 182 were down-167 

regulated in the aged ovary (Supplementary Fig. 2d). Common DEGs 168 

include those reported in the GenAge database as human ageing-related 169 

genes, such as RICTOR, IGF1R, MAP3K5, and APOE (Supplementary 170 

Figs. 2e,f). Gene ontology (GO) analysis35 indicated that common DEGs 171 

were enriched in the “hallmarks of ageing”36, including pathways involved 172 

in nutrient sensing signaling, cellular senescence, proteostasis, cellular 173 

communication, and mitochondrial function (Supplementary Fig. 2g). We 174 

also found cell-type-specific ageing-associated DEGs (Supplementary Fig. 175 

2h), such as those enriched in cell type-relevant functions, including 176 

vasculogenesis for blood vessel endothelial cells, follicle development for 177 

granulosa cells, and smooth muscle contraction for smooth muscle cells 178 

(Supplementary Fig. 2i).  179 

To gain insight into the dynamic changes in biological pathways during 180 

human ovarian ageing, we used Gene Set Variation Analysis (GSVA)37 to 181 

estimate the pathway activity score for individual cells and compare the 182 

pathway activity between young and aged ovaries in each cell type 183 

(Methods). We found that half (92/186) of KEGG pathways were 184 

significantly up- or down-regulated in at least six cell types in aged ovaries 185 

(Supplementary Fig. 3a). Genes involved in these pathways showed 186 

congruent changes in expression direction across cell types 187 

(Supplementary Fig. 3a). Notably, expression of genes involved in the 188 

nutrient-sensing signaling pathways, including the mTOR, insulin, and 189 

MAPK pathways, increased in the aged ovaries across cell types, while 190 
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those involved in oxidative phosphorylation and base excision repair 191 

decreased (Fig. 2d and Supplementary Figs. 3b-e). To validate the age-192 

related changes in gene expression, we performed in situ hybridization 193 

assays and confirmed the increased expression of the mTOR signaling gene 194 

RICTOR, and decreased expression of the oxidative phosphorylation gene 195 

MT-ATP6 in aged ovaries in vivo (Figs. 2e-h). Together, these results 196 

indicate that the human ovary undergoes coordinated transcriptomic 197 

changes during ageing, resulting in profound alterations to processes 198 

central to the biology of ageing. 199 

 200 

Cellular senescence in the human ovary  201 

Senescent cell burden increases with age in various tissues in the context 202 

of physiological ageing and ageing-related disease38-41. To test if cellular 203 

senescence increases during human ovarian ageing, we examined the 204 

expression of the widely used senescence markers, CDKN1A (p21) and 205 

CDKN2A (p16), in the human ovary. On average, very few (~0.43%) 206 

ovarian cells expressed CDKN2A, while a considerable proportion of 207 

young ovarian cells expressed CDKN1A (~9.49%) and a significantly 208 

higher proportion of CDKN1A+ cells (~15.56%) was observed in aged 209 

ovaries (Supplementary Figs. 4a,b). We then calculated the proportion of 210 

CDKN1A+ cells for each cell type in young and aged ovaries. We found a 211 

significant increase in the proportion of CDKN1A+ cells with age in stromal, 212 

granulosa, theca, blood vessel endothelial, and smooth muscle cells (Fig. 213 

3a). Using in situ hybridization, we found a ~3-fold increase in both the 214 

proportion of cells expressing CDKN1A, and in the average expression of 215 

CDKN1A, in aged compared to young ovaries (Figs. 3b,c). In addition, a 216 

subset of senescence-associated secretory phenotype (SASP) genes were 217 

up-regulated in CDKN1A+ cells in the human ovary (Fig. 3d). To gain 218 
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insight into the transcriptional signatures of CDKN1A+ cells, we identified 219 

the DEGs in CDKN1A+ cells compared to CDKN1A- cells from both young 220 

and aged stromal cells (Supplementary Fig. 4c). GO analysis indicated that 221 

genes involved in “response to oxygen level” and “HIF-1 signaling 222 

pathway” are up-regulated in CDKN1A+ stromal cells (Supplementary Fig. 223 

4c). We then compared the transcriptomes of CDKN1A+ cells between 224 

young and aged stromal cells and found that genes involved in the HIF-1 225 

pathway as well as those in the nutrient-sensing signaling were up-226 

regulated in aged- compared to young CDKN1A+ stromal cells 227 

(Supplementary Fig. 4c). To test whether the up-regulation of the HIF-1 228 

pathway is a senescence signature in the ovary, we computed HIF-1 229 

pathway scores based on the HIF-1 pathway-related DEGs that were up-230 

regulated in CDKN1A+ cells (Supplementary Table 5), including the key 231 

HIF-1 target genes that regulate NAD+ metabolism (NAMPT)42, cellular 232 

respiration (PDK1)43, and apoptosis (DDIT4)44 in response to hypoxia 233 

(Supplementary Fig. 4d). We found that the HIF-1 pathway was 234 

significantly enhanced in CDKN1A+ cells and further elevated during 235 

ageing in most cell types (Fig. 3e). Given the reduced vasculature of aged 236 

ovaries33, our results suggested that the hypoxic environment might be a 237 

critical factor in driving cellular senescence in human ovaries, through 238 

upregulation of HIF-1 signaling. 239 

 240 

Ageing alters cellular communication 241 

Altered intercellular communication is a hallmark of ageing36. To explore 242 

potential age-related alterations to the ovarian cellular communication 243 

network, we used CellChat45, which models the probability of the cell-cell 244 

interaction network based on gene expression and prior knowledge of 245 

ligand-receptor interactions. To gain insight into the intercellular 246 
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communication between ovarian somatic cells and oocytes, we integrated 247 

our snRNA-seq with publicly available human oocyte single-cell 248 

transcriptomes from young and reproductively aged ovaries46. We found 249 

that ageing slightly reduced both the total number and overall strength of 250 

intercellular interactions (Supplementary Fig. 5a,b). Strikingly, aged 251 

granulosa and theca cells received far fewer signals from all other cell types, 252 

and the same trend was observed for blood/lymphatic endothelial cells and 253 

immune cells (Fig. 3f). Of particular relevance to fertility, the number of 254 

signals received by oocytes from granulosa and theca cells profoundly 255 

decreased with age (Fig. 3f ), consistent with evidence that the functions of 256 

granulosa and theca cells in supporting oocytes fail during ageing47. In 257 

contrast, the interaction number and strength from all cell types to 258 

epithelial cells increased (Fig. 3f and Supplementary Fig. 5c). We further 259 

identified the incoming and outgoing signaling pathways that exhibited a 260 

significant difference in communication probability between young and 261 

aged ovaries for each cell type (Fig. 3g). In total, we identified 46 pathways 262 

with significant differential communication probability with age (Fig. 3g). 263 

Notably, the COLLAGEN and FN1 (Fibronectin) pathways, core 264 

components of extracellular matrix (ECM) biology, exhibited a 265 

significantly higher communication probability in most cell types in the 266 

young ovary, suggesting an essential role of the ECM in maintaining ovary 267 

function. Interestingly, epithelial cells were the only cell type that exhibited 268 

a significantly higher communication probability of COLLAGEN and FN1 269 

signaling in the aged ovary (Fig. 3g). COLLAGEN and FN1 signaling is 270 

known to promote the proliferation of epithelial cells48,49, suggesting that 271 

activation of these pathways may explain the increased proportion of 272 

epithelial cells we observed in the aged ovary (Figs. 2a,b). In contrast, the 273 

JAM (Junction adhesion molecule), PARs (Protease-activated receptors), 274 

and NCAM (Neural cell adhesion molecule) pathways, which mediate cell-275 
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cell adhesion processes, exhibited a significantly higher communication 276 

probability in most cell types in the aged ovary (Fig. 3g). The PDGF 277 

pathway, which has known roles in fibroinflammatory processes, was 278 

significantly enriched in all the cell types in the aged ovary (Fig. 3g), 279 

consistent with the finding of elevated fibroinflammatory cytokines in aged 280 

human ovarian follicular fluid50. In contrast to the age-related loss of 281 

interactions between granulosa and theca cells and oocytes (Fig. 3f), 282 

several known signaling pathways that are critical to maintaining the 283 

function of oocytes and granulosa cells were specifically enriched in young 284 

oocytes and granulosa cells, including the FSH and GDF pathways that 285 

maintain follicle growth and function51 (Fig. 3g). Our results demonstrate 286 

that human ovarian ageing is characterized by significant changes in 287 

cellular communications among oocytes and somatic cell types, potentially 288 

contributing to an age-related loss of follicular function, tissue fibrosis, and 289 

epithelial hyperplasia.  290 

 291 

Ageing alters cell identity TF networks 292 

Master transcription factors (TFs) largely determine cell identity52. As loss 293 

of cell identity with age has been implicated in age-related tissue 294 

dysfunction, we next identified cell identity-associated TFs, and 295 

investigated for age-related changes in their activity (Methods) in the 296 

snATAC-seq data. As expected, individual cell types can be distinguished 297 

by predicted motif activity (Fig. 4a and Supplementary Table 6). The 298 

motifs of folliculogenesis-related TFs, mainly AP-1 and RUNX 299 

transcription factors53, were predominantly enriched in granulosa cells (Fig. 300 

4b and Supplementary Fig. 6a). Steroidogenesis-related TFs54,55 were 301 

mainly enriched in granulosa cells and theca cells (Supplementary Fig. 6b). 302 

The TF footprinting analysis highlighted cell type-specific enrichment of 303 
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those TFs in granulosa cells and theca cells (Supplementary Fig. 6c). ETS 304 

TFs are central regulators of endothelial and immune cells56,57, both of 305 

which originate from the hemogenic endothelium during embryogenesis58. 306 

Consistently, a family of ETS TFs were enriched in endothelial and 307 

immune cells (Fig. 4b and Supplementary Fig. 6d). Additionally, we 308 

identified the TFs enriched in epithelial cells and stromal cells, respectively 309 

(Fig. 4b and Supplementary Fig. 6e).  310 

To reveal the TFs that govern human ovarian ageing, we compared the 311 

predicted motif activity between young and aged cells in each cell type 312 

(Supplementary Table 7). Surprisingly, CCAAT/enhancer binding proteins 313 

(C/EBPs) motif activities significantly increased in most cell types except 314 

immune cells and epithelial cells (Fig. 4c). Among the members of this TF 315 

family, CEBPD was highly expressed across cell types, and its age-related 316 

changes in expression were in line with the changes in motif activity during 317 

ovarian ageing (Fig. 4d). In addition, most cell identity-associated TFs 318 

exhibited significantly decreased motif activity, while epithelial cell 319 

identity-associated TFs exhibited significantly enhanced motif activity 320 

during ovarian ageing (Fig. 4c). We further calculated cell identity scores 321 

in each cell type by examining the expression level of the top 100 cell type-322 

specific genes (Methods). We found that cells in young ovaries exhibited 323 

high expression of their corresponding cell type-specific genes and 324 

minimal expression of other cell type-specific genes (Supplementary Fig. 325 

6f). Surprisingly, granulosa cells, immune cells, and theca cells in aged 326 

ovaries expressed deficient levels of their corresponding cell type-specific 327 

genes, and instead expressed high levels of stromal cell-specific genes 328 

(Supplementary Fig. 6f). These results suggest a prevalent loss of cell 329 

identity in aged ovaries.  330 

We next sought to build cell type-specific TF regulatory networks for 331 
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human ovarian ageing, and first constructed the cis co-accessibility 332 

networks (CCANs) in each cell type using Cicero59. Next, we defined the 333 

putative enhancers and promoters by overlaying the CCAN peaks with 334 

human ovary tissue enhancer and promoter annotations from the ENCODE 335 

database60. Finally, we defined a gene as a CCAN-linked gene if one of the 336 

CCAN peaks lies in its putative promoter (Supplementary Fig. 7a). In this 337 

way, we identified varying numbers of CCANs and CCAN-linked genes 338 

for each cell type (Supplementary Fig. 7b). Most cell type-associated 339 

DEGs and ageing-associated DEGs significantly overlapped with CCAN-340 

linked genes in all cell types (Supplementary Fig. 7c), suggesting that 341 

CCANs play essential roles in determining cell identity and the regulation 342 

of ovarian ageing. For each cell type, we built the ageing-associated TF 343 

regulatory networks governed by the top TFs (n=3~4) that change with age, 344 

as defined by the predicted motif activity. Those ageing-associated DEGs 345 

whose promoters or putative enhancers contained both accessible peaks 346 

and motifs of the top ageing-associated TFs within the peaks were defined 347 

as candidate targets of the selected TFs (Supplementary Fig. 7a). We 348 

generated the ovarian ageing-associated TF regulatory network for each 349 

cell type and found a critical role for CEBPD in human ovarian ageing 350 

(Figs. 4e-k). We found that CEBPD target genes are enriched in processes 351 

of known importance to the basic biology of ageing, including mTOR 352 

signaling, MAPK signaling, and cellular senescence, in multiple cell types 353 

(Supplementary Fig. 7d). 354 

 355 

Cellular targets of ANM genetic risk  356 

The most comprehensive recent ANM GWAS identified 290 ANM-357 

associated genetic risk loci16. Using gene expression data from several 358 

publicly-available datasets, the Ruth et al. study implicated hematopoietic 359 
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stem and progenitor cells as the major cellular targets of ANM-associated 360 

risk variants16. Since the Ruth et al. analysis did not include single-cell data 361 

from the human ovary, we next investigated whether any specific cell types 362 

in the human ovary were enriched for ANM-associated variants, by 363 

performing MAGMA61,62 analysis using our snRNA-seq dataset. For 364 

comparison, we also included GWAS data from 2 other ovarian 365 

phenotypes, ovarian epithelial cancer (OEC) and polycystic ovary 366 

syndrome (PCOS). We found that ANM-associated variants were 367 

significantly enriched in almost all cell types (Fig. 5a), indicating a 368 

systemic effect of ageing on the ovary. In contrast, OEC- and PCOS-369 

associated variants were enriched in epithelial cells and granulosa cells, 370 

respectively (Fig. 5a). To investigate if any cell type-specific regions of 371 

chromatin accessibility were enriched for ANM-associated variants, we 372 

also performed cell type-specific linkage disequilibrium (LD) score 373 

regression63 using our snATAC-seq dataset. Consistently, ANM-374 

associated variants showed a significant enrichment in multiple cell types 375 

(Fig. 5b). Together with the coordinated changes in transcriptomes and 376 

chromatin accessibility we observed across cell types, the results from our 377 

analyses of ANM genetic signal suggest that all ovarian cell types 378 

contribute to ovarian ageing. 379 

 380 

Functional  ANM variants and genes nominated 381 

To gain insights into how ANM-associated variants contribute to ovarian 382 

ageing, we performed post-GWAS analyses to identify functional 383 

regulatory variants and affected target genes. Using 290 ANM-associated 384 

GWAS lead variants from Ruth et al.16, we first compiled a comprehensive 385 

set of coinherited variants based on LD (R2 value ≥0.8) calculated from 386 

phase 1 genotypes of individuals of European ancestry in the 1000 387 
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Genomes dataset (Methods). In total, we identified 5,555 ANM-associated 388 

variants (Supplementary Table 8). To identify the functional variants that 389 

may affect transcriptional regulatory activity in each cell type, we first 390 

overlapped ANM-associated variants with the putative enhancers and 391 

promoters we identified in each cell type. In this way, we identified 101 392 

candidate functional variants (Supplementary Fig. 8 and Supplementary 393 

Table 9) and found that a substantial number of these variants were shared 394 

across several cell types (Fig. 5c). Next, we focused on the putative 395 

functional variants that were shared in at least four cell types, among which 396 

6 variants occured in DNA damage response (DDR)-related gene loci (Fig. 397 

5d and Supplementary Figs. 9a-e). The DDR is the major pathway linked 398 

to ovarian ageing as detected by GWAS of ANM16 and our results highlight 399 

the functional role of ANM-associated variants on the regulation of DDR 400 

across major ovarian cell types. For example, the rs3741605 (T>C)  allele, 401 

associated with delayed ANM (BETA>0; Supplementary Table 10), occurs 402 

in the putative promoter of the HELB gene, encoding DNA helicase B64, 403 

that is active in most cell types in the ovary, including stromal, endothelial, 404 

theca, granulosa, and immune cells  (Fig. 5d). Previously, multiple 405 

missense variants predicted to be deleterious have been identified in HELB 406 

that are associated with early ANM16. Remarkably, expression quantitative 407 

trait loci (eQTL) analysis from the GTEx database65 indicated that the C 408 

allele of rs3741605 was significantly correlated with increased expression 409 

of HELB in the human ovary (Fig. 5f). This result suggest that the 410 

functional non-coding variant rs3741605 may contribute to delayed ANM 411 

by upregulating the expression of a critical DNA repair gene, thereby 412 

conferring improved genome maintenance.  413 

To explore the potential mechanisms underlying the influence of variants 414 

on gene expression, we predicted the effect of candidate functional variants 415 
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on TF binding activity by applying gapped k-mer support vector machine-416 

based methods (LS-GKM66 and deltaSVM67) (Methods). We found that the 417 

delayed ANM-associated C allele of rs3741605 could enhance TF binding 418 

activity (Fig. 5e), showing a high concordance of predicted beneficial 419 

allelic effect on the increased expression of HELB and delayed ANM 420 

through enhanced genome maintenance.  421 

We also identified functional regulatory variants with predicted deleterious 422 

effects on ANM. The variant rs13263296 is located in the DEPTOR locus, 423 

a key gene involved in mTOR signaling (Fig. 5g and Supplementary Fig. 424 

10a), and the T allele of rs13263296 is associated with early ANM 425 

(BETA<0; Supplementary Table 10) and occurs in the putative 426 

transcription start site (TSS)-proximal enhancer of the DEPTOR gene in 427 

most cell types (Fig. 5g). We observed significant up-regulation of 428 

DEPTOR expression in aged granulosa cells and epithelial cells 429 

(Supplementary Fig. 10b). Of note, rs13263296 (C>T) was not 430 

significantly associated with increased DEPTOR expression in the human 431 

ovary (Fig. 5i), perhaps due to the use of bulk tissue in the eQTL analysis. 432 

Mechanistically, the deltaSVM analysis suggested that rs13263296 (C>T) 433 

may affect DEPTOR expression by enhancing TF binding activity (Fig. 5h). 434 

In addition to these loci, we identified several functional regulatory 435 

variants located in oxidative phosphorylation and MAPK signaling-related 436 

gene loci (Supplementary Figs. 10c,d). Taken together, our integrated 437 

analyses revealed the global effects of ANM-associated non-coding 438 

variants on gene expression across ovarian cell types and nominated 439 

functional regulatory ANM risk variants that may dysregulate genes 440 

involved in pathways of relevance to the canonical hallmarks of ageing, 441 

such as mTOR and genome maintenance. 442 

In summary, our single nuclei multi-omic analysis of young and 443 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492547
http://creativecommons.org/licenses/by-nc-nd/4.0/


reproductively aged ovaries provides high-resolution characterization of 444 

the transcriptional regulatory landscape at the single-cell level, uncovering 445 

conserved mechanisms of ageing biology in action, such as the 446 

hyperactivity of mTOR observed across all ovarian somatic cell types with 447 

age. Our results raise the hope that geroprotectors targeting the basic 448 

biology of ageing, such as mTOR signaling, may be used to delay 449 

reproductive ageing in women. Furthermore, our integrative post-GWAS 450 

analyses of ANM provides biological insights into the role of inherited 451 

non-coding variants in ovarian ageing in humans, nominating new 452 

functional variants for follow-up interrogation. These findings expand our 453 

understanding of inherited variation in ANM and provide a roadmap for 454 

the functional  dissection of the non-coding genetic variation influencing 455 

ANM, pointing towards the nomination of new therapeutic targets for 456 

reproductive health in women.   457 
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Methods 634 

Sample procurement 635 

Fresh-frozen healthy human ovary samples were purchased from BioIVT 636 

(Baltimore, MD) and Cureline (Brisbane, CA). All samples were de-637 

identified and the tissue source was anonymous to the researcher. 638 

Nuclear dissociation and library preparation 639 

For snATAC-seq, nuclei isolation was performed according to the 10× 640 

Genomics protocol CG000212 (Rev B) with ~100 mg frozen human ovary 641 

sample. Libraries were generated by using 10x Chromium Single Cell 642 

ATAC Reagent Kits (v1) and sequenced using the Illumina NextSeq 550 643 

platform with 150-bp paired-end sequencing. 644 

For snRNA-seq, the nuclei isolation was performed according to 10× 645 

Genomics protocol CG000393 (Rev A) with ~100 mg frozen human ovary 646 

sample. Libraries were generated using 10x Chromium Single Cell 3' 647 

Reagent Kits (v3) and sequenced using the Illumina NextSeq 550 platform 648 

with 150-bp paired-end sequencing. 649 

Processing of snRNA-seq data 650 

Reads were aligned to a pre-mRNA GTF built on the GRCh38 genome 651 

using Cellranger (v3.1.0) to account for unspliced nuclear transcripts. The 652 

Cellranger function aggr was used to aggregate all snRNA-seq libraries 653 

without depth normalization to generate a gene by nucleus matrix. Nuclei 654 

with fewer than 200 genes, nuclei with more than 6000 genes, or nuclei 655 

with more than 15% of unique molecular identifiers stemming from 656 

mitochondrial genes were removed. In total, we obtained 42,568 nuclei for 657 

downstream analysis. Expression levels were normalized with the 658 

LogNormalize method in Seurat28 (v4.0.4), and the top 2100 highly 659 
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variable genes (HVGs) were used for principal component analysis (PCA). 660 

To remove batch effects, the first 15 PCs were batch corrected using 661 

Harmony29 (v0.1). Clustering was performed by constructing a K-nearest 662 

neighbor (KNN) graph with corrected PCs and applying the Louvain 663 

algorithm. Dimensional reduction was performed with Uniform Manifold 664 

Approximation and Projection (UMAP) and individual clusters were 665 

annotated based on expression of cell type-specific markers. Differentially 666 

expressed genes (DEGs) were identified with the Seurat FindMarkers 667 

function for genes detected in at least 25% of cells, using the MAST test 668 

and a log-fold-change threshold of 0.25. Bonferroni-adjusted p-values 669 

were used to determine significance at Padj < 0.05. Gene ontology analysis 670 

was performed using Metascape35. Cell cycle score, apoptosis score, HIF 671 

pathway score, and cell identity score were evaluated by AddModuleScore 672 

function in Seurat with corresponding gene lists, respectively. 673 

Processing of snATAC-seq data 674 

Reads were aligned to the GRCh38 genome using cellranger-atac (v2.0.0) 675 

Libraries were aggregated with cellranger-atac without depth 676 

normalization to generate a peak by nucleus matrix. Low-quality nuclei 677 

(peak region fragments < 200, peak region fragments > 10000, percentage 678 

of reads in peaks > 8, blacklist ratio < 0.01, TSS enrichment > 1.5 & 679 

nucleosome signal < 1.5) were removed using Signac30 (v1.5.0). In total, 680 

we obtained 41,550 nuclei for downstream analysis.  The peak by cell 681 

matrix was transformed using the term frequency-inverse document 682 

frequency (TF-IDF). Dimensional reduction was performed via singular 683 

value decomposition (SVD) of the TF-IDF matrix. The first 40 latent 684 

semantic indexing (LSI) components were batch corrected using Harmony 685 

(v0.1). Clustering was performed by constructing a K-nearest neighbor 686 

(KNN) graph with corrected LSI components and applying the Louvain 687 
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algorithm. Peak calling was performed with the CallPeaks function in 688 

MACS268 (v2.2.7.1) in each cluster. Gene activity was estimated by 689 

counting ATAC peaks within the gene body and 2 kb upstream of the TSS 690 

using protein-coding genes annotated in the Ensembl database. Canonical 691 

correlation analysis31 (CCA) was used to capture the shared feature 692 

correlation structure between snATAC-seq gene activity and snRNA-seq 693 

gene expression. Mutual nearest neighbors31 (MNNs) were then identified 694 

the pairs of corresponding cells that anchor the two datasets together. We 695 

assigned the cell types to the snATAC-seq clusters if the majority (>80%) 696 

of cells were aligned to the corresponding cell type. Differentially 697 

accessible chromatin regions (DARs) between cell types were assessed 698 

with the FindMarkers function for peaks detected in at least 5% of cells, 699 

using the MASTtest and a log-fold-change threshold of 0.25. Bonferroni-700 

adjusted p-values were used to determine significance at Padj < 0.05. The 701 

single-nuclei motif activity for a set of 452 human TFs from the JASPAR 702 

202069 was computed by running chromVAR (v1.14.0) through the 703 

RunChromVAR function in Signac. Differential motif activity between 704 

young and old ovaries in each cell type was identified by using the 705 

FindMarker function for chromVAR motifs detected in at least 25% of 706 

cells, using the MAST test and a log-fold-change threshold of 0.50. 707 

Bonferroni-adjusted p-values were used to determine significance at 708 

Padj < 0.05. To further analyze specific TFs of interest, we used the 709 

Footprint function in Signac to perform TF footprinting analysis. 710 

Gene set variation analysis (GSVA) 711 

Pathway analyses were performed on the 186 Kyoto Encyclopedia of 712 

Genes and Genomes (KEGG) pathways in the MSigDB70 database (v7.4.1). 713 

GSVA37 (v1.40.1) was used to perform gene set variation analysis to 714 

estimate the pathway activity score for individual cells. To compare the 715 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492547
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathway activity scores between young and old ovaries in each cell type, 716 

we contrasted the activity scores using the limma71 package (v3.48.3). 717 

Bonferroni-adjusted p-values were used to determine significance at an 718 

Padj < 0.05. T-values of pathways that exhibited significance in at least 6 719 

cell types were visualized using heatmaps. 720 

Generation of cis-coaccessibility networks with Cicero 721 

We applied Cicero59 (v1.3.4.11) to generate cis-accessibility networks 722 

(CCANs) for each cell type. Briefly, the Signac object for each cell type 723 

was converted to the CellDataSet format and then made into a Cicero 724 

object. The algorithm assigned the cells into many groups, each group 725 

comprised of 50 cells similarly positioned in clustering space. Graphical 726 

LASSO was used to calculate the correlations in adjusted accessibilities 727 

between all pairs of ATAC peaks within 500 kb. Finally, CCANs were 728 

identified through community detection.  729 

Transcription factor regulatory network construction.  730 

For a given TF, the ovarian ageing-associated DEGs whose promoters or 731 

putative enhancers contained both accessible peaks and motifs of the 732 

certain ageing-associated TFs within the peaks were defined as candidate 733 

targets of the selected TFs. We used this information to construct a directed 734 

TF regulatory network using the Gephi (v0.9.2). 735 

Cell type enrichment analysis 736 

For the snRNA-seq data, to estimate the association of gene-level GWAS 737 

trait association statistics with gene expression specificity in a given cell 738 

type, we used EWCE72 (v1.0.0) to calculate gene expression specificity in 739 

each cell type. Then, MAGMA.Celltyping62 (v1.0.0) was used to calculate 740 

the quantile groups for each cell type with the prepare.quantile.groups 741 

function. The GWAS variants were then annotated onto their neighbouring 742 
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genes (Genes were extended 10 kb upstream and 1.5 kb downstream). 743 

Finally, MAGMA61 (v1.08) was used to test for a positive association (one-744 

sided test) between the cell type specificity and the gene-level associations.  745 

P-values were used to determine significance at P < 0.05. 746 

For the snATAC-seq data, we used ldsc63 (v1.0.1) to annotate each variant  747 

according to whether or not it overlapped ATAC peaks in each cell type 748 

for each GWAS summary statistics. We then estimated partitioned LD 749 

scores with the annotated files, HapMap SNPs, and PLINK data 750 

corresponding to 1000 genomes phase 3. The baseline model was 751 

downloaded from ldsc website. Finally, we used stratified LD score 752 

regression to assess the contribution of an annotation to each GWAS trait 753 

heritability. P-values were used to determine significance at P < 0.05. 754 

All GWAS summary statistics for age at menopause16,73,74, polycystic 755 

ovary syndrome (PCOS)75,76, and ovarian epithelial cancer (OEC)77-79 were 756 

downloaded from GWAS Catalog (https://www.ebi.ac.uk/gwas/) or 757 

ReproGen (https://www.reprogen.org/), and re-formatted with 758 

MungeSumstats (v1.3.5) or munge_sumstats.py in the ldsc package.  759 

The effect of variants on transcription factor binding activity 760 

To predict the TFs binding activity score, we overlapped our ovary ATAC 761 

peaks with human ovary tissue enhancer and promoter annotations from 762 

the ENCODE database. In this way, we obtained 71,470 putative enhancers 763 

and promoter regions, which were used as the positive set. We generated 764 

the random length and GC-matched genome sequences as the negative set. 765 

We then used the gkmtrain function from LS-GKM (v0.1.1)66, a new gkm-766 

SVM software for large-scale datasets, to train the TFs binding model for 767 

human ovary with positive set, negative set, and  “gkmrbf” kernel. For the 768 

variants of interest, we retrieved the ±25 bp reference DNA sequence 769 
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around the variant. To generate the corresponding alternative DNA 770 

sequence, we replaced the 25th position with the effect allele. To compute 771 

deltaSVM scores, we generated all possible non-redundant k-mers of size 772 

11 and scored each of them using the trained model. We then used 773 

deltaSVM to compute the deltaSVM scores with k-mer scores, reference 774 

sequences, and alternative sequences. For the GkmExplain scores, we used 775 

GkmExplain80 on the reference sequences or alternative sequences of 776 

variants of interest. The GkmExplain scores were visualized using 777 

logomaker (v0.8) (https://github.com/jbkinney/logomaker). 778 

Cellular communication  779 

To build cell-cell interactions between somatic cells and oocytes in young 780 

and old human ovaries, we used CellChat45 (v1.1.3) to infer the cell-cell 781 

interactions based on the expression of known ligand-receptor pairs in 782 

different cell types with a combination of our snRNA-seq datasets and 783 

publicly available human oocyte single-cell RNA-seq datasets46 from 784 

reproductive young and old females. Briefly, we inferred the cell-cell 785 

interactions for young and old ovaries, respectively. Next, we used 786 

“rankNet” function in CellChat to identify the significant outgoing or 787 

incoming signaling enriched in young or old ovaries.  788 

In situ hybridization assay 789 

Flash-frozen human ovary tissues were sectioned at 10 µm. RNA in situ 790 

hybridization was performed using RNAscope Multiplex Fluorescent v2 791 

kits (Advanced Cell Diagnostics) according to the manufacturer’s 792 

instructions, except fixed with 4% PFA 90 mins at RT and protease IV 793 

incubation was performed for 15 min. Probes used were MT-ATP6 794 

(532961), RICTOR (544841), and CDKN1A (311401). Fluorophores used 795 

were Opal 690 (1:1500 dilution, Perkin Elmer). Images were taken on a 796 
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Leica TCS SP8 MP at ×40 magnification. 4-10 regions per sample were 797 

analyzed using HALO (v3.2). The mRNA expression levels were evaluated 798 

according to the ACD scoring system 799 

(https://acdbio.com/dataanalysisguide) by counting number of dots per cell. 800 

The cells with at least 4 dots were recognized as CDKN1A+ cells. 801 

Reporting Summary 802 

Further information on research design is available in the Nature Research 803 

Reporting Summary linked to this article. 804 

Data availability 805 

The snRNA-seq and snATAC-seq data reported in this paper have been 806 

deposited in the Gene Expression Omnibus (GEO) under accession 807 

numbers: GSE202601. All other data supporting the findings of this study 808 

are available from the corresponding authors on reasonable request. 809 

Code availability 810 

The codes used to analyze the snRNA-seq and snATAC-seq data are 811 

available at https://github.com/ChenJin2020/The-regulatory-landscapes-812 
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 910 

Figure Legends 911 

Fig.1: Single-nuclei transcriptomic and chromatin accessibility 912 

profiling of the human ovary 913 

a, Schematic representation of experimental methodology. b, UMAP plots 914 

of human ovary snRNA-seq dataset. c, Dot plot representing relative 915 

mRNA expression of selected known markers for each cell type. Dot size 916 

indicates the proportion of cells in the cluster expressing a gene, the 917 

shading indicates the relative level of expression (low to high reflected as 918 

light to dark). d, UMAP plots of human ovary snATAC-seq dataset. e, Dot 919 

plot representing relative gene activity of selected known markers for each 920 

cell type. Dot size indicates the proportion of cells in the cluster expressing 921 

a gene, the shading indicates the relative level of expression (low to high 922 

reflected as light to dark). 923 

Fig.2: Ageing alters ovarian cellular composition and affects the 924 

transcriptional activity of pathways involved in the hallmarks of 925 

ageing across cell types 926 

a, Bar plots represent the proportion of each cell type in young and aged 927 

ovaries estimated from snRNA-seq data. (Permutation test; Asterisk (*) 928 

indicates FDR<0.05 and abs(log2FD)>1.5; Methods). b, Bar plots 929 

represent the proportion of each cell type in young and aged ovaries 930 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492547
http://creativecommons.org/licenses/by-nc-nd/4.0/


estimated from snATAC-seq data. (Permutation test; Asterisk (*) indicates 931 

FDR<0.05 and abs(log2FD)>1.5). c, Heat map displaying log2 fold 932 

changes in gene expression (aged vs. young) of human ovarian ageing-933 

associated DEGs in each cell type. d, Heat map showing selected up- and 934 

down-regulated pathways significantly altered in at least 6 cell types during 935 

human ovarian ageing. Asterisk (*) indicates a statistically significant 936 

difference (Padj <0.05). e, Representative in situ hybridization (RNAscope) 937 

images from fresh-frozen human ovary tissue for RICTOR staining. f, 938 

Quantification of RICTOR expression in human ovary (young versus old). 939 

n = 2; *P < 0.05. g, Representative in situ hybridization (RNAscope) 940 

images from fresh-frozen human ovary tissue for MT-ATP6 staining. h, 941 

Quantification of MT-ATP6 expression in human ovary (young versus old). 942 

n = 2; **P < 0.01. 943 

Fig.3: Ageing increases signatures of cellular senescence and alters 944 

cellular communication in the ovary 945 

a, Bar plots represent the proportion of CDKN1A+ for each cell type in 946 

young and aged ovaries. (Permutation test; Asterisk (*) indicates 947 

FDR<0.05 and abs(log2FD)>1.5). b, Representative in situ hybridization 948 

(RNAscope) images from fresh-frozen human ovary tissue for CDKN1A 949 

(p21) staining. c, Quantification of CDKN1A expression and the proportion 950 

of CDKN1A+ cells in the human ovary (young versus old). n = 2; *P < 0.05. 951 

d, Heat map displaying log2 fold changes in gene expression (CDKN1A+ 952 

vs. CDKN1A- cells) of selected SASP genes in each cell type. e, Violin 953 

plots showing the module score of HIF-1 pathway genes in CDKN1A+ cells 954 

and CDKN1A- cells from each type. (Two-sided Wilcoxon test; NS: Not 955 

significant, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). f, Heat map 956 

of the differential number of interactions between cell types in young and 957 

aged ovaries. The top bar plots represent the sum of each column of values 958 
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displayed in the heatmap (incoming signaling). The right bar plots 959 

represent the sum of each row of values (outgoing signaling). g, Heat map 960 

showing the outgoing and incoming signaling pathways that were 961 

significantly enriched in young or aged ovaries for each cell type.  962 

 963 

Fig.4: Cell type-specific TF regulatory networks implicate CEBPD as 964 

an important regulator of ageing-associated gene expression in the 965 

human ovary 966 

a, Heat map showing the average chromVAR motif activity for each cell 967 

type. b, UMAP plots displaying the chromVAR motif activity of selected 968 

cell type-specific TFs. c, Heat map showing the TFs with significant 969 

changes in chromVAR motif activity in each cell type during ovarian 970 

ageing. d, Split violin plots showing the expression levels of CEBPD in 971 

each cell type from young and aged ovaries. (MAST test; *Padj<0.05). e-j, 972 

TF regulatory network plots showing the top regulators of ageing-973 

associated DEGs in each cell type. 974 

Fig.5: Integration of ANM GWAS, single-nuclei multi-omics, and 975 

machine-learning nominates causal variants and gene targets 976 

associated with human ovarian ageing 977 

a, Heat map of enrichment significance of ovary-relevant trait GWAS 978 

variants in ovary cell type gene expression signatures. b, Heat map of 979 

enrichment significance of ovary-relevant trait GWAS variants in ovary 980 

cell type-specific chromatin accessibility. c, Upset plot showing the 981 

intersection size between sets of ANM-associated variants that overlap 982 

with transcriptional regulatory elements found in each cell type. The bar 983 

plot on the left shows the set size of variants for each cell type, and the bar 984 

plot on the top shows the number of overlapping variants shared by two or 985 
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more sets, or the number of unique variants in one set. d, Cis-regulatory 986 

architecture at the HELB gene in each cell type. The snATAC-seq tracks 987 

represent the aggregate signals of all cells from a given cell type. The co-988 

accessible peaks inferred by Cicero for each cell type are shown. e, The 989 

gkm-SVM importance score for each base within the ±25-base pair (bp) 990 

region surrounding rs3741605. f, The eQTL effect of rs3741605 on HELB 991 

expression in human ovary tissue from the GTEx database. g, Cis-992 

regulatory architecture at the DEPTOR gene in each cell type. The 993 

snATAC-seq tracks represent the aggregate signals of all cells from a given 994 

cell type. The co-accessible peaks inferred by Cicero for each cell type are 995 

shown. h, The gkm-SVM importance score for each base within the ±25-996 

base pair (bp) region surrounding rs13263296. i, The eQTL effect of 997 

rs13263296 on DEPTOR expression in human ovary tissue from the GTEx 998 

database. 999 

 1000 

 1001 
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Fig.1 

 

Fig.1: Single-nuclei transcriptomic and chromatin accessibility 
profiling of the human ovary 

a, Schematic representation of experimental methodology. b, UMAP plots 

of human ovary snRNA-seq dataset. c, Dot plot representing relative 

mRNA expression of selected known markers for each cell type. Dot size 

indicates the proportion of cells in the cluster expressing a gene, the 

shading indicates the relative level of expression (low to high reflected as 

light to dark). d, UMAP plots of human ovary snATAC-seq dataset. e, Dot 

plot representing relative gene activity of selected known markers for each 

cell type. Dot size indicates the proportion of cells in the cluster expressing 

a gene, the shading indicates the relative level of expression (low to high 

reflected as light to dark). 
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Fig.2 

 

Fig.2: Ageing alters ovarian cellular composition and affects the 
transcriptional activity of pathways involved in the hallmarks of 
ageing across cell types 

a, Bar plots represent the proportion of each cell type in young and aged 

ovaries estimated from snRNA-seq data. (Mean±SE; Permutation test; 

Asterisk (*) indicates FDR<0.05 and abs(log2FD)>1.5; Methods). b, Bar 

plots represent the proportion of each cell type in young and aged ovaries 

estimated from snATAC-seq data. (Mean±SE; Permutation test; Asterisk 

(*) indicates FDR<0.05 and abs(log2FD)>1.5). c, Heat map displaying 

log2 fold changes in gene expression (aged vs. young) of human ovarian 

ageing-associated DEGs in each cell type. d, Heat map showing selected 

up- and down-regulated pathways significantly altered in at least 6 cell 

types during human ovarian ageing. Asterisk (*) indicates a statistically 
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significant difference (Padj <0.05). e, Representative in situ hybridization 

(RNAscope) images from fresh-frozen human ovary tissue for RICTOR 

staining. f, Quantification of RICTOR expression in human ovary (young 

versus old). Mean±SE; n = 2; *P < 0.05. g, Representative in situ 

hybridization (RNAscope) images from fresh-frozen human ovary tissue 

for MT-ATP6 staining. h, Quantification of MT-ATP6 expression in human 

ovary (young versus old). Mean±SE; n = 2; **P < 0.01. 
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Fig.3 

 

Fig.3: Aging increases signatures of cellular senescence and alters 
cellular communication in the ovary 

a, Bar plots represent the proportion of CDKN1A+  cells for each cell type 

in young and aged ovaries. (Mean±SE; Permutation test; Asterisk (*) 

indicates FDR<0.05 and abs(log2FD)>1.5). b, Representative in situ 

hybridization (RNAscope) images from fresh-frozen human ovary tissue 

for CDKN1A (p21) staining. c, Quantification of CDKN1A expression and 

the proportion of CDKN1A+ cells in the human ovary (young versus old). 

Mean±SE; n = 2; *P < 0.05. d, Heat map displaying log2 fold changes in 

gene expression (CDKN1A+  vs. CDKN1A- cells) of selected SASP genes 

in each cell type. e, Violin plots showing the module score of HIF-1 

pathway genes in CDKN1A+ cells and CDKN1A- cells from each type. 

(Two-sided Wilcoxon test; NS: Not significant, *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001). f, Heat map of the differential number of 

interactions between cell types in young and aged ovaries. The top bar plots 
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represent the sum of each column of values displayed in the heatmap 

(incoming signaling). The right bar plots represent the sum of each row of 

values (outgoing signaling). g, Heat map showing the outgoing and 

incoming signaling pathways significantly enriched in young or aged 

ovaries for each cell type.    
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Fig.4 

 

 

Fig.4: Cell type-specific TF regulatory networks implicate CEBPD as 
an important regulator of ageing-associated gene expression in the 
human ovary 

a, Heat map showing the average chromVAR motif activity for each cell 
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type. b, UMAP plots displaying the chromVAR motif activity of selected 

cell type-specific TFs. c, Heat map showing the TFs with significant 

changes in chromVAR motif activity in each cell type during ovarian 

ageing. d, Split violin plots showing the expression levels of CEBPD in 

each cell type from young and aged ovaries. (MAST test; *Padj<0.05). e-j, 

TF regulatory network plots showing the top regulators of ageing-

associated DEGs in each cell type. 
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Fig.5 

 

Fig.5: Integration of ANM GWAS, single-nuclei multi-omics, and 
machine-learning nominates causal variants and gene targets 
associated with human ovarian aging 

a, Heat map of enrichment significance  of ovary-relevant trait GWAS 
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variants in ovary cell type gene expression signatures. b, Heat map of 

enrichment significance of ovary-relevant trait GWAS variants in ovary 

cell type-specific chromatin accessibility. c, Upset plot showing the 

intersection size between sets of ANM-associated SNPs that overlap with 

transcriptional regulatory elements found in each cell type. The bar plot on 

the left shows the set size of variants for each cell type, and the bar plot on 

the top shows the number of overlapping SNPs shared by two or more sets, 

or the number of unique variants in one set. d, Cis-regulatory architecture 

at the HELB gene in each cell type. The snATAC-seq tracks represent the 

aggregate signals of all cells from a given cell type. The co-accessible 

peaks inferred by Cicero for each cell type are shown. e,  The gkm-SVM 

importance score for each base within the ±25-base pair (bp) region 

surrounding rs3741605. f, The eQTL effect of rs3741605 on HELB 

expression in human ovary tissue from the GTEx database. g, Cis-

regulatory architecture at the DEPTOR gene in each cell type. The 

snATAC-seq tracks represent the aggregate signals of all cells from a given 

cell type. The co-accessible peaks inferred by Cicero for each cell type are 

shown. h, The gkm-SVM importance score for each base within the ±25-

base pair (bp) region surrounding rs13263296. i, The eQTL effect of 

rs13263296 on DEPTOR expression in human ovary tissue from the GTEx 

database. 
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