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 As people age, the risk of cardiovascular disease, diabetes, cancer and Alzheimer’s 
disease increases, making age itself the greatest risk factor many human diseases. Thus, 
understanding aging can have profound consequences for human health. One striking feature of 
the aging process is the accumulation of senescent cells with age. When cells become damaged, 
they can enter into a state of senescence, a permanent cell cycle exit associated with secretion of 
inflammatory cytokines. In mouse models of aging, the destruction of senescent cells with 
senolytic drugs delays age-associated decline and extends healthy lifespan. Yet, despite wealth of 
accumulated knowledge, we do not entirely understand the biology of senescent cells. Prior work 
has shown that senescence is associated with increased variation in gene expression, suggesting 
there may be distinct transcriptional signatures of senescence. Understanding the different 
transcriptional physiological states of senescent cells should allow us to better treat them with 
cell-type-specific senolytic drugs.  Here, we performed a large scale single cell RNA-sequencing  
time series of experiments to understand the how the transcriptional heterogeneity develops 
among senescent cell types. Our approach allowed us to observe and classify the different 
transcriptional signatures of senescent cells as they emerged through time. We found that upon 
entering oxidative stress-induced senescence, fractions of cells were reproducibly adopting two 
distinct transcriptional states. One transcriptional state is associated with stress response and the 
other is associated with tissue remodeling. Our data suggest that combinations of senolytic drugs 
may more effectively eliminate senescent cells by targeting physiologically distinct sub-
populations.  
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Introduction. 
 

Aging incurs a tremendous socioeconomic cost. Life expectancy has significantly 
increased since the 20th century. People spend a smaller portion of their life working, while 
concurrently requiring more resources for health care with increasing age. Age itself is the 
biggest risk factor for many diseases, including heart disease, cancer, and neurodegenerative 
diseases like Alzheimer’s Disease(Niccoli and Partridge, 2012). Thus, understanding the aging 
process and how to slow it, is a means of reducing the incidence of chronic diseases and 
decreasing the socioeconomic burden of aging.  

Recent advances in aging research have shown excessive accumulation of senescent cells 
with age is a major factor that precipitates age-related physiological decline and mortality(Baker 
et al., 2016; Lopez-Otin et al., 2013; Xu et al., 2018) Senescence is a physiological state cells can 
enter in response to severe molecular damage; it is one of an array of natural cellular stress 
responses (Childs et al., 2017). To this end, the cell fate decisions vary widely depending on the 
cell type, intensity and duration of the stress stimuli:  1) repair the damage and resume normal 
function, 2) undergo apoptotic or necrotic cell death, 3) enter senescence, a state of stable 
proliferative arrest. More detailed characterization of senescent cells will help to better 
understand their normal physiological role and to develop novel treatments for selective 
clearance of excessively accumulated senescent cells (Childs et al., 2017). In the present study, 
we designed experiments to understand the senescence at single-cell level.  

Senescent cell populations are heterogeneous. This is evidenced by senolytic compounds 
that work only on certain types of senescent cells (Zhu et al., 2015), and by transcriptionally 
distinct senescent cells produced by different types of molecular stress (Hernandez-Segura et al., 
2017). Existence of different types or ‘flavors’ of senescent cells necessitates better 
characterization and maybe even better definition of senescence itself. Understanding how 
senescence manifests, and what types of senescent cell are there is paramount for understanding 
how to more effectively target them to improve the aging process.  

The process of becoming a senescent cell itself may cause changes in physiological 
heterogeneity, in terms of cell-to-cell variation in gene expression. In some studies examining 
mouse and human cells, senescent cells had increased cell-to-cell variation in gene expression 
compared to their non-senescent counterparts (Bahar et al., 2006; Wiley et al., 2017). In non-
senescent cells, studies found aging is generally associated with increased cell-to-cell variation in 
gene expression (Cheung et al., 2018; Hernando-Herraez et al., 2019; Martinez-Jimenez et al., 
2017; Salzer et al., 2018). Alternatively, at least one other recent study found that cell-to-cell 
variation in gene expression can also decrease with age (Kimmel et al., 2019). In any case, 
abnormal changes to heterogeneity also occur during aging (Mendenhall et al., 2021), and it is 
not entirely clear how they originate.  Since, aging is accompanied by, and maybe even caused 
by, molecular damage, the cell-to-cell variation in gene expression among senescent and 
nonsenescent aged cells may have similar origins. It could be due to preexisting epigenetic 
differences, or due to random nature of molecular damage events. Understanding how and why 
cell-to-cell variation in gene expression changes with age may provide novel insights into the 
mechanisms of biological aging. 
 

Here, we used large scale single-cell RNA-sequencing (scRNA-seq) to understand the 
mechanisms of cell-to-cell variation in gene expression upon induction of senescence. Changes 
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in cell-to-cell variation in gene expression could be caused by subtypes of cells in distinct 
physiological states, or by purely stochastic noise in gene expression. In the first case, subgroups 
of cells would exhibit coordinated gene expression changes. In the latter case, individual genes 
would exhibit increased uncoordinated variance; there would be no coherent patterns. In order to 
distinguish between these possibilities, we performed transcriptome-wide analysis of gene 
expression at the single-cell level using the SPLITseq approach (Rosenberg et al., 2018). We 
performed time course experiments during senescence induction to generate whole-transcriptome 
data for thousands of individual cells across many individual experiments, finding reproducible 
patterns of gene expression variation. Our results indicate that cells after stress fall into distinct 
reproducible transcriptional clusters with different levels of metabolic signaling. This kind of 
reproducible, limited heterogeneity could be interpreted to be part of a functional bet-hedging 
mechanism in response to the same type of DNA damage or as a labor division between 
senescent cells, which may be required for complex processes involving senescent cells, such as 
wound healing.  
 
 
 
 
Results. 
 
Two distinct transcriptional states emerge after oxidative stress. 
 

To establish senescent cells with oxidative stress, we exposed human IMR-90 fibroblasts 
to hydrogen peroxide for two hours (Chen et al., 2007). To compare senescence to other non-
proliferative states, cells were cultured in low serum media (0.2% FBS) to induce quiescence or 
with nutlin-3a, an MDM-2 inhibitor (Figure 1a). Nutlin-3a was previously shown to induce 
either senescence or senescence-like arrest depending on conditions  (Wiley et al., 2018). After 
one week, cells were stained with X-gal to analyze senescence-associated (SA) ß-galactosidase 
activity. We confirmed that both oxidative stress and nutlin-3a treatment induced robust SA ß-
galactosidase staining (Figure 1b). In addition, cells after oxidative stress exhibited enlarged 
morphology, another classical marker of senescence (not shown). We collected cells from 
parallel plates (not used for X-gal staining) and processed them for single-cell RNA-sequencing 
(scRNA-seq) with SPLITseq 3’-tag protocol (Rosenberg et al., 2018). To determine the gene 
expression changes of stress induced senescence, we first compared average expression profiles 
of untreated cells and cells after oxidative stress. We found strong overlap with previously 
published signature of senescent fibroblasts (Hernandez-Segura et al., 2017): out of 1311 genes 
in the universal signature of senescent fibroblasts, 1072 were present in our dataset, and when 
adjusted for multiple comparison 205 of them had statistically significant change of expression 
in the same direction as in the universal signature (Tables S1). 
 

To proceed to single-cell analysis, we performed dimensionality reduction and 
embedding with Universal Manifold Approximation (UMAP) (Becht et al., 2019). The results 
are shown in Figure 1c. Upon examining the UMAP space, we found that cells induced into 
senescence with oxidative stress fall into two distinct transcriptional clusters (Figure 1c, 
OxStress cells). This transcriptional heterogeneity was specific to post-oxidative stress cells, as 
both quiescent cells and nutlin-treated cells formed singular clusters (Figure 1c, ‘LowSerum’ and 
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‘Nutlin’ cells respectively). Louvain community detection analysis also indicated that two 
fractions of OxStress fall into distinct Louvain clusters, further underscoring their transcriptional 
heterogeneity (Figure 1d, e). Interestingly, one of the OxStress clusters localized closer to 
‘Nutlin’ cells in the UMAP space, indicating stronger transcriptional similarity to nutlin-treated 
cells. The only other sample in our experiment that formed two clusters was the control sample 
with untreated cells which segregated based on their cell cycle phase (Figure 1c, f). We 
examined markers that differentiate two OxStress clusters from each other (Figure 1g, h, Table 
S2). Fraction of OxStress cells that was transcriptionally closer to nutlin-treated cells and 
quiescent cells was marked by expression of genes associated with cell 
motility/adhesion/organization: UACA, FN1, TRIO, SERPINE1, ROBO2. Hence, we labeled 
this fraction as ‘OxStress-TR’ (tissue remodeling) for further discussion (Figure 1e). Fraction of 
OxStress cells that was transcriptionally more distinct from quiescent and nutlin-treated cells was 
marked by expression of genes associated with cellular homeostasis (Figure 1g): FTL and FTH1 
are subunits of ferritin, which stores intracellular iron, SQSTM1 is a regulator of autophagy, 
thioredoxin reductase TXRND1 and cystine/glutamate transporter SLC7A11 both help maintain 
cellular redox balance. Hence, this fraction of OxStress cells was labeled as ‘OxStress-CP’ 
(cytoprotective) (Figure 1e). As shown in Figure 1j, identified markers exhibit antagonistic 
expression pattern in ‘cytoprotective’ and ‘tissue remodeling. Thus, upon oxidative stress, 
senescent fibroblasts exhibited two distinct transcriptional signatures: cytoprotective response 
and response associated with tissue organization/remodeling.  
 

It was important for us to distinguish technical noise associated with scRNAseq from 
genuine biological variation of gene expression (Mendelevich et al., 2021). Therefore, we 
performed independent repetitions of the experiment (Figure S1a-g). Most of the cells after 
oxidative stress were again positive for SA ß-galactosidase activity (Figure S1a). Consistent with 
the first experiment, we found that after oxidative stress, cells separated into two transcriptional 
fractions, while low serum- and nutlin-treated cells formed singular transcriptional communities 
(Figure S1b). Analysis of the two OxStress fractions confirmed that they are distinguished by the 
same reproducible markers (Figure S1e-g, Tables S3). Thus, the uncovered transcriptional 
heterogeneity was not a result of technical noise but was a reproducible biological heterogeneity. 
 

We considered a possibility, that one of the OxStress fractions corresponds to cells that 
resumed proliferation after stress. However, proliferating cells in S and G2/M phases were 
clearly distinct from other clusters in transcriptional space (see Figures 1c, f) and only small 
number of cells from OxStress, LowSerum and Nutlin samples co-localized with untreated cells 
in S/G2/M phases in transcriptional space (see Figures 1c, f). Consistently, we observed large 
number of mitotic cells on untreated plates, but not on LowSerum-, OxStress-, or nutlin-treated 
plates (not shown). Hence, neither of the large transcriptional fractions of OxStress cells 
represent cells that resumed proliferation. 
 

Next, we examined the possibility that either of the OxStress fractions may be 
representing cells that were somehow not strongly affected by oxidative stress. Two lines of 
evidence argue against this possibility. First, oxidative stress rendered a vast majority of cells SA 
ß-galactosidase-positive in the initial experiment, inconsistent with a possibility that a large 
fraction of OxStress cells were not strongly affected by oxidative damage (see Figure 1b).  Next, 
we performed another independent experiment with few modifications: cells were treated with 
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higher concentration of hydrogen peroxide and were treated with it twice (Figure S1 h-n). 
Almost 100% of cells were SA ß-galactosidase-positive after the treatment (Figure S1h), but the 
OxStress cells were still split into two transcriptional fractions (Figure S1i-k) distinguished by a 
similar set of marker genes as seen earlier (Figure S1i-n, Table S4). Thus, both fractions of 
OxStress cells represent SA ß-galactosidase-positive cells that were induced into senescence or 
senescence-like state by oxidative stress. In summary, our results show that, upon oxidative 
stress, most cells subsequently exhibit signs of senescence, and they fall into two distinct 
transcriptional states. The observed transcriptional heterogeneity is in line with recent studies 
showing changes in transcriptional heterogeneity in vivo and in vitro with aged cells (Bahar et 
al., 2006; Cheung et al., 2018; Hernando-Herraez et al., 2019; Martinez-Jimenez et al., 2017; 
Salzer et al., 2018; Wiley et al., 2017). Our results highlight that the term ‘senescent cells’ needs 
better, more precise or, on the opposite, a broader definition. 
 
 
Subgroups of oxidative stress-induced senescent cells exhibit distinct functional and metabolic 
signatures. 
 

To better characterize the observed fractions of senescent cells, we performed gene set 
enrichment analysis (GSEA) and compared these two fractions to each other and to cells from 
other conditions. We chose ‘Hallmarks’ gene sets that represent well-defined biological states or 
processes and reduce redundancy and noise (Liberzon et al., 2015). First, we compared 
OxStress-CP and OxStress-TR to quiescent (LowSerum-treated) cells and we noted that both 
fractions exhibited signs of stress. OxStress-CP cells expressed hallmarks ‘Unfolded Protein 
Response’, ‘Reactive Oxygen Species Pathway’, ‘p53 Pathway’ and ‘DNA Repair’, while 
OxStress-TR cells were enriched for a hallmark ‘Unfolded Protein Response’, but not others 
(Figure 2a, b). In a repetition experiment, both fractions were more enriched for hallmarks of 
stress when compared to quiescent cells, but OxStress-CP group was again enriched more 
(Figures S2a, b). Another, distinction between the two fractions was in the area of metabolism. 
OxStress-CP cells were again more distinct from quiescent cells and exhibited hallmarks of 
MTORC1 pathway (‘MTORC1 Signaling’, PI3K/AKT/MTOR Signaling’), ‘E2F Targets’, and 
‘Oxidative Phosphorylation’. Hence, between the two fractions, OxStress-CP mounted broader 
stress response and seemed to be in a more active metabolic state compared to OxStress-TR 
cells. 
 

Next, we directly compared OxStress-CP and OxStress-TR fractions to each other 
(Figure 2c). Consistent with an earlier analysis, OxStress-CP cells were more metabolically 
active (hallmarks ‘Myc Targets V1’, ‘Myc Targets V2’, ‘E2F Targets’, ‘mTORC1 Signaling’, 
‘Oxidative Phosphorylation’) and exhibited stronger activation of stress-related pathways 
(‘Reactive Oxygen Species’, ‘UV Response Up’, ‘p53 Pathway’, ‘Interferon Alpha Response’, 
‘Unfolded Protein Response’, ‘DNA Repair’) than OxStress-TR cells. Also consistent with an 
earlier notion, OxStress-TR cells were more enriched for cell- and tissue-organization activities 
(‘Apical Surface’, ‘Apical Junction’, ‘Epithelial Mesenchymal Transition’ Hallmarks). Our 
analysis showed a similar difference between OxStress-CP and OxStress-TR fractions in a 
repetition experiment (Figure S2c). Hence oxidative stress induced senescence comprised two 
signaling states with distinct functional specializations. 
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We performed a more detailed analysis of the two OxStress fractions to understand how 
the transcriptional changes may relate to differences in cell physiology, focusing on 
mitochondrial and glycolytic metabolism. We found that two fractions differ in abundance of 
mitochondrial genes, with OxStress-CP cells being more enriched in mitochondrial transcripts 
(Figures 2d-e, S2d-e). However, when we compared OxStress cells to the untreated control, we 
found that the difference was not due to elevated expression of mitochondrial genes in OxStress-
CP cells compared to non-stressed cells, but rather due to strongly decreased expression of 
mitochondrial genes in OxStress-TR cells compared to both OxStress-CP and untreated cells 
(Figure 2e, S2e). Importantly, abundance of mitochondrial transcripts was regressed out from 
gene expression datasets prior to initial analysis, so the appearance of the two post-stress cell 
fractions is not a technical artifact due to variable abundance of mitochondrial transcripts. We 
then examined expression of glycolytic enzymes as another measure of metabolic activity. 
OxStress-CP cells were again enriched in glycolytic transcripts, underscoring higher metabolic 
activity of this cell subset (Figures 2f-g, S2f-g). Interestingly, mitochondrial enrichment did not 
overlap with glycolytic enrichment within OxStress-CP subset in one experiment. Smaller size of 
OxStress-CP fraction in a repetition experiment did not allow such a detailed examination 
(Figure S2f). Thus, two fractions of post-stress cells differ in metabolic signaling, and both 
glycolytic and mitochondrial activity promote this difference.  
 
 
Transcriptional heterogeneity emerges early during stress response. 
 

We did further examination of the gene sets of the senescent cells fractions. We noticed 
that OxStress-TR fraction exhibited signatures of TGF-beta Pathway and Notch Signaling 
(Figures 2c, S2c). Remarkably, recent studies identified two senescence fates upon oncogene-
induced senescence (OIS), one of which was characterized by inflammatory cytokines and the 
other one by Notch signaling (Hoare et al., 2016; Teo et al., 2019). Hence, we uncovered that 
these distinct fates arise not only upon OIS, but also upon stress induced senescence.  

In the OIS model, TGF-beta-associated senescence (‘secondary senescence’) appeared to 
be a response to signals secreted by ‘primary’ senescent cells, where Notch was mediating a 
switch from ‘inflammatory’ fate to TGF-beta fate. We wanted to get better understanding of the 
senescence fate determination, and how it emerges. It is possible that all cells exhibit the same 
response to oxidative stress at early stages and the fate split happens later during stress response. 
Alternatively, heterogeneity may establish immediately after stress response. Discriminating 
between these possibilities will help better understand the mechanisms behind the distinct 
senescence states. To this end, we performed time course experiments in which cells were 
analyzed before stress (untreated control) as well as four hours, one day, two days, three days, 
four days, and seven days after stress (Figure 3a). Consistent with earlier experiments, cells at 
the final time point clustered into two transcriptional groups (Figure 3a). To better analyze 
emergence of distinct post-stress fates, we combined genes that reproducibly distinguish 
OxStress-CP and OxStress-TR fractions in all experiments into two gene sets (‘CP’ signature 
and ‘TR’ signature). We then scored all cells in a time course experiment to determine when 
‘CP’ and ‘TR’ signatures emerge. Both signatures were the most pronounced at the final time 
point and were developing gradually over the course of time (Figure 3b, c). We then examined 
each time point more closely. Figure 3d shows cells and enrichment of the two signatures at the 
different time points. By following time course from the last time point to the first, we noticed 
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that clear separation of the two fractions was not apparent until Day 7 (Figure 3d). At the earlier 
time points cells were mostly in a single transcriptional cluster starting from Day 1 (Figure 3d). 
Analysis was complicated at earlier time points because of the differences in cell cycle phases 
(Figure 3a, d). Notably, at all the time points between Day 1 and Day 7 there was clear 
antagonism between ‘CP’ and ‘TR’ signatures where cells were leaning toward one or another 
fate. Hence, we propose that although strong transcriptional separation establishes only at later 
time points, post-stress fate might be biased if not determined early after stress.  

This bias we observed could have resulted from cell-to-cell differences existing before 
stress, from different levels of damage experienced by individual cells, or from interaction of 
these factors. In one repetition experiment cells separated into two transcriptional groups earlier 
during time course (Figures S3a-d), and another independent trial gave similar results to the first 
one (Figures S3f-j). In all independent trials, bias toward a particular post-stress fate was 
observed early during stress response. We then examined if metabolic difference between cell 
fractions also establishes early during stress response. We found that similarly to late time points, 
‘TR’high at Day 1 (cells in which ‘TR’ signature scored higher than ‘CP’ signature) exhibited 
lower abundance of mitochondrial transcripts compared to ‘CP’high cells (Figure 3e, S3e,k), 
indicating metabolically less active state. Interestingly, abundance of glycolytic transcripts did 
not show such consistent difference between ‘CP’high and ‘TR’high cells at Day 1(Figure 3e, 
S3e,k). Thus, cell-to-cell difference in mitochondrial activity is among early signs of post-stress 
heterogeneity, while intercellular differences in glycolytic activity develops later. Overall, we 
observe early emergence of bias toward a particular senescence fate, CP or TR, suggesting that 
senescence fate is at least partially determined early during stress response. 
 

Senescence is an alternate fate to apoptosis, which tends to occur when cells are severely 
damaged and retain the apoptosis capacity. Accordingly, we also determined if either of the 
OxStress fractions represented dying cells, e.g. apoptotic cells. We analyzed number of cells 
collected at each time point. Consistent with visual examination, the number of cells dropped 
between the untreated control and the four-hour time point (Figure S4). At the four-hour time 
point, we observed a large number of rounded, presumably dying cells (not shown). At later time 
points we observed neither ‘apoptotic’-like nor mitotic cells. Consistent with that, number of 
cells remain approximately the same at subsequent time points (Figure S4). While we cannot rule 
out that one of the fractions is destined for eventual cell death or on the opposite for eventual 
recovery and cell cycle re-entry, we found at least for a while, cells entering oxidative stress 
induced senescence represent a mix of at least two signaling states. This finding prompts further 
careful examination of senescent cells at single cell level for better understanding of senescence 
and identification of reliable markers of senescent cells. 
 
Increased stochastic noise is not a universal feature of senescence. 
 

After establishing that oxidative stress induced senescence is associated with variability 
of signaling states (signaling noise), we asked if senescence also increased stochastic noise, that 
is uncoordinated cell-to-cell variation of gene expression. Observable stochastic noise of gene 
expression strongly depends on expression level with lower expression being associated with 
increased noise due to both technical and biological factors (Elowitz et al., 2002; Mendelevich et 
al., 2021; Raser and O’Shea, 2004). Normalizing read counts across cells to the same value, 
which is a typical step in scRNAseq data analysis, can therefore give exaggerated noise estimates 
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for samples with lower read counts. Hence, for this analysis we used non-normalized data. We 
calculated coefficients of variation (CV) as well as mean expression for each gene in OxStress 
(OxStress-CP and OxStress-TR combined) and untreated cells. Scatterplot at Figure 4a shows 
that expression variation for most genes is decreased in OxStress cells. The decrease is likely 
explained by increased mean expression level (Figure 4b). Indeed, we noticed that CV of some 
genes increased in OxStress cells relative to majority of other genes (shown in red in Figure 4a), 
and that coincided with decreased mean expression of these genes after oxidative stress (Figure 
4b). To further examine the changes in intrinsic expression noise, we selected genes with similar 
average expression level in both post-stress and untreated conditions (Figure 4c). We found that 
CV of those genes changed little between two conditions (Figure 4d). To exclude effect of cell 
cycle, we also compared OxStress cells to quiescent (low serum-treated) cells and we got similar 
results (Figure 4e-h). Independent repetition produced the same results (Figure S5). Hence, we 
did not find evidence for increased stochastic noise upon oxidative stress induced senescence.  
 
 
Expression of senescence markers in different fractions of post-stress cells. 
 

Identification of reliable markers of senescent cells for research and clinical use is an area 
of intense investigation. We used our single-cell data to examine expression of previously 
reported universal markers of senescent fibroblasts (Hernandez-Segura et al., 2017). When we 
cross-referenced fibroblasts’ universal senescence markers with our list of genes that distinguish 
OxStress-CP and OxStress-TR fractions (Tables X and X), we found genes that change 
expression stronger in one or another fraction. For some genes, average change of expression in 
OxStress cells was mostly driven by only one OxStress fraction (Figure 5). Some genes were 
mostly upregulated in OxStress-CP (Figure 5a) or in OxStress-TR cells (Figure 5b), and some 
were mostly downregulated in OxStress-CP (Figure 5c) or in OxStress-TR (Figure 5d). Hence, 
single cell analysis allows better characterization of senescence markers, since expression of 
certain markers may be mostly affected by a subset and not by all senescent cells.  
 
Discussion. 
 

Recent studies highlighted growing variability of gene expression with age both in vivo 
and in vitro (Bahar et al., 2006; Cheung et al., 2018; Hernando-Herraez et al., 2019; Martinez-
Jimenez et al., 2017; Salzer et al., 2018; Wiley et al., 2017). Given stochastic nature of molecular 
damage events, such as DNA damage, associated with stress and aging, such variability is to be 
expected and may give better insight into proximal causes of aging. Here, we used advances in 
genomic technologies which allowed scalable and multiplexed single-cell RNA-sequencing. We 
were able to perform multiple independent experiments which allowed us to verify 
reproducibility of the observed gene expression variation and perform its extensive 
characterization.  
 

We examined cells induced into senescence with oxidative stress, since senescence was 
previously associated with increased gene expression variation as measured with single cell 
qPCR (Wiley et al., 2017). We extended prior findings with whole transcriptome analysis. We 
indeed found that induction of senescence through molecular damage is associated with 
increased cellular heterogeneity, as cells split into two transcriptional clusters. This was unlike 
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cells induced into quiescence by low serum treatment or into senescence/senescence-like arrest 
with nutlin, which formed singular transcriptional clusters. Our data indicates that distinct cell 
fates start emerging early during stress response, potentially reflecting either pre-existing 
heterogeneity among untreated cells or stochastic differences in molecular damage during 
treatment. Metabolic difference emerged as a prominent feature that differentiate two post-stress 
fractions cells and it was supported by abundance of both mitochondrial and glycolytic 
transcripts. Given a central role of metabolic pathways in aging and stress adaptation (Fontana et 
al., 2010), it is tempting to speculate that difference in metabolic signaling may be a driving 
force for two distinct cells fates. Further investigations will allow to test this hypothesis and 
better understand the relationship between metabolism and senescence and potentially different 
subtypes of senescence.  

 
Our results are consistent with the recent reports of two distinct senescent fates in the 

oncogene-induced senescence model (Hoare et al., 2016; Teo et al., 2019). Similarly, to those 
results we also observe two senescence fates, one of which is characterized by TGF-beta and 
Notch signaling. Here, we extended prior studies and performed a more detailed time course 
analysis of the emergence of senescence fates, and we found that bias toward a particular 
senescence fate emerges early during response. Prior reports labeled the observed fates as 
primary and secondary senescence with the idea that Notch signaling of primary senescent cells 
gives rise to secondary senescent cells. We are yet to see if similar hierarchy is applicable in our 
system, however, early emergence of fate bias suggest that other mechanisms also come into 
play. It is interesting to notice that nutlin-3a treatment didn’t give rise to the inflammatory fate, 
but only to the fate that was transcriptionally close to OxStressTR (see Figure 1). This is 
consistent with the previous report that nutlin-3a attenuates inflammatory phenotype of senescent 
cells (Wiley et al., 2018). It also suggests, that intensity and duration of p53 signaling may be 
another determining factor for the particular senescence fate (Purvis et al., 2012; Reyes et al., 
2018; Tsabar et al., 2020). 
 

In our experimental system, we did not find increased stochastic noise of gene 
expression. The cells that we measured were not more dissimilar from one another. These results 
are distinct from some previous reports, but not all (Kimmel et al., 2019). We do not yet 
understand the cause of these differences. It seems likely that different cell types and different 
senescence conditions will have different effects on the amount of cell-to-cell variation in gene 
expression and other kinds of cellular heterogeneity. It is suggested by Anderson et al that there 
will be both abnormal increases and decreases in cellular heterogeneity that will both have 
pathological consequences (Mendenhall et al., 2021). Only since the 21st century have we begun 
to understand the causes and consequences of cell-to-cell variation in gene expression (Elowitz 
et al., 2002; Raser and O’Shea, 2004). Further in vivo and in vitro studies on cell-to-cell 
variation in senescent cells will likely yield additional means to target these cells for elimination 
to improve the health of aging animals and people. Our work suggests that the number of 
transcriptional states may be fairly limited among any particular cell type that becomes 
senescent, offering hope to the idea that a few different senolytic drugs may one day be sufficient 
to greatly improve human health.  
 
Finally, various types of molecular stress induce formation of senescent cells with distinct 
transcriptional profiles. It will be important to analyze these different types of senescent cells at 
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single-cell level to better understand the source of the differences. We may find that different 
stressors induce completely distinct types of senescent cells, or on the opposite, both shared and 
distinct subtypes of senescent cells may emerge after different types of molecular stress. Indeed, 
in our own system, we observed that one of the post-stress fractions is transcriptionally more 
similar to nutlin-treated cells, while another fraction is more distinct. It will be important to 
expand such single-cell analysis to different types of senescent cells for better understanding of 
the senescence and identification of more reliable markers of senescence for research and 
therapeutic applications. 
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Figure 1. Two distinct senescence-like responses are observed upon oxidative stress. 
a. Experimental outline. Cells were treated with 2.5uM nutlin-3a to induce 
senescence/senescence-like arrest, or with 55uM H2O2 for 2 hours to induce senescence, or they 
were maintained for 7 days in 0.2% FBS media to induce quiescence. ‘Untreated’ cells were 
collected in the beginning of the experiment. b. Fraction of cells in each condition that were 
positive for senescence-associated ß-galactosidase as measured by X-gal staining. * indicates 
statistical significance with p<0.05 in t-test. c. Universal Manifold Approximation (UMAP)-
based representation of transcriptional profiles of individual cells. Oxidative stress induces two 
distinct senescent states with different transcriptional signatures. d. Louvain community 
detection analysis of individual cells. e. Post-oxidative stress cells that were transcriptionally 
similar to nutlin-treated cells were labeled as OxStress-TR, and cells that were more 
transcriptionally distinct were labeled as OxStress-CP. f. Cell cycle phase of ‘Untreated’ cells 
were determined by scoring expression of cell cycle specific genes. g, h. Markers of OxStress-
CP and OxStress-TR fractions were determined by Wilcoxon rank-sum test. Shown are top 10 
statistically significant markers for each fraction. Also see Table S2. j. Expression of select 
markers of each fraction. Two OxStress fractions exhibit antagonistic pattern of expression of the 
markers.  
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Figure 2. Gene Set Enrichment Analysis (GSEA) of OxStress fractions. 
a. ‘Hallmarks’ gene sets enriched in OxStress-CP compared to Quiescent cells (low serum-
treated cells). b. Hallmarks gene sets enriched in OxStress-TR compared to Quiescent cells. c. 
Hallmarks gene sets enriched in OxStress-CP compared to OxStress-TR cells (positive values) or 
in OxStress-TR compared to OxStress-CP (negative values). d. Fraction of mitochondrial 
transcripts in transcriptome of individual OxStress cells. e. Fraction of mitochondrial transcripts 
in Untreated cells and OxStress-CP and OxStress-TR groups. f. Enrichment of glycolysis-related 
genes in individual OxStress cells. g. Enrichment of glycolysis-related genes in Untreated, 
OxStress-CP and OxStress-TR groups. 
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Figure 3. Cells exhibit early bias toward post-stress fates. 
Cells were collected at different time points after oxidative stress. a. UMAP representation of 
time course analysis. Cells are colored based on their sample of origin. b, c. Enrichment of type 
A and type B signatures across the time course. A and B signatures are sets of genes that 
distinguish type A and type B responses (see Table X). d. Enrichment of type A and type B 
signatures at individual time points. e. Fraction of mitochondrial transcripts and enrichment of 
glycolytic transcripts ‘A’ and ‘B’ group cells at Day 1. At this time point, cells were assigned to 
‘A’ or ‘B’ depending on which respective signature was higher. 
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Figure 4. Increased stochastic noise of gene expression is not a universal feature of senescence. 
a. Coefficient of variation (CV) of genes in untreated and OxStress cells. b. Mean expression of 
genes in untreated and OxStress cells. c. Mean expression of genes with similar expression in 
untreated and OxStress cells. d. CV of genes with expression was similar in untreated and 
OxStress cells. e. Coefficient of variation (CV) of genes in quiescent and OxStress cells. f. Mean 
expression of genes in quiescent and OxStress cells. g. Mean expression of genes with similar 
expression in quiescent and OxStress cells. h. CV of genes with similar expression in quiescent 
and OxStress cells. All axes are in log scale. 
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Figure 5. Subfractions of senescent cells differ in expression of some of senescence markers. 
a. Genes with previously reported increased expression in senescent cells with significantly 
higher expression in OxStress-CP compared to OxStress-TR. b. Genes with previously reported 
increased expression in senescent cells with significantly higher expression in OxStress-TR 
compared to OxStress-CP. c. Genes with previously reported decreased expression in senescent 
cells with significantly lower expression in OxStress-CP compared to OxStress-TR. d. Genes 
with previously reported decreased expression in senescent cells with significantly lower 
expression in OxStress-TR compared to OxStress-CP. 
 
 
 
Methods. 
 
Cell Culture and Treatments. 
Human fetal lung fibroblasts IMR-90 were cultured in Dulbecco’s modified Eagle’s medium 
containing 10% fetal bovine serum and penicillin/streptomycin. Cells were maintained at 37oC 
and 5% CO2. For treatments, cells were seeded at ~104/cm2 and all treatments started next day. 
For induction of quiescence cells were kept in media with 0.2% serum for 7 days. For induction 
of senescence/senescence-like arrest with nutlin-3a, cells were kept for 7 days in media 
supplemented with 2.5uM nutlin-3a. For induction of senescence with oxidative stress, cells 
treated with 55uM hydrogen peroxide for two hours. In one experiment (Figure S1h-n), cells 
were treated with 75uM hydrogen peroxide twice, on Day 0 and Day 3. As in other experiments, 
cells were collected on Day 7 after the first treatment. In this experiment, quiescence was 
induced by low serum treatment for 3 days, from Day 4 till Day 7. In time course experiments, 
cells were collected at different time points after stress treatment, that was performed on Day 0. 
For assaying senescence-associated ß-galactosidase activity, cells were fixed with 
formaldehyde/glutaraldehyde and stained with 5-bromo4-chloro-3-indolyl P3-D-galactoside (X-
Gal) as described before (Dimri et al, 1995). 
 
Preparation of cDNA library and sequencing. 
We followed standard SPLITseq protocol as described before (Rosenberg, Rocco et al). Briefly, 
cells were fixed in formaldehyde, then permeabilized with triton, filtered through 40um strainer 
and counted. Cells were subjected to 3 rounds of barcoding using 3’ targeting polyT oligos in the 
first round. After barcoding, cells were digested with proteinase K and isolated cDNA was 
further amplified, size-selected and indexed. The libraries were subjected to 2x150bp paired-end 
sequencing on Illumina platforms by Genewiz. 
 
Determining transcriptional profiles of individual cells. 
Reads were aligned to human genome (hg19) using STARSolo following developers guidelines. 
Read2 was used to decode cellular barcodes and unique molecular identifiers, while read 1 was 
actually mapped to transcriptome. Further processing was done with scanpy using developers 
guidelines (Wolf et al., 2018). We filtered out cells with low read count (less than 1000 or 2000 
depending on sequencing depth) and cells with more than five percent of reads originating from 
mitochondrial genome. Genes expressed in less than 100 cells were excluded from analysis. We 
selected ~2000 most variable genes in each experiment and used them for principal component 
analysis (PCA). After PCA, cells were embedded using UMAP (Becht et al., 2019) and 
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community detection was performed with Louvain algorithm (Blondel et al., 2008). Markers of 
transcriptional groups were determined by Wilcoxon rank-sum test.  
 
Gene set enrichment analysis (GSEA). 
Gene set enrichment analysis was performed using its Python implementation, GSEAPY. Genes 
were ranked by Wilcoxon rank-sum-based comparison of different transcriptional groups. 
Ranked list of genes was used as an input for GSEAPY. We used ‘Hallmarks’ gene sets and 
performed the analysis with 1000 permutations of gene sets. Benjamini-Hochberg Correction 
was used for adjusted p values. For plotting, only gene sets with adjusted p values 0.05 or less 
and False Discovery Rate of 0.25 or less were included. When comparing two groups, positive 
enrichment scores indicate that gene sets are enriched in a first group compared to a second 
group, while negative enrichment scores indicate enrichment of gene sets in a second group 
compared to a first one. 
 
Scoring gene expression signatures. 
To derive gene expression signatures of senescent cells fractions, we selected genes that 
reproducibly show statistically significant (adjusted p values 0.05 or less) difference in 
expression between two fractions of senescent cells in independent experimental trials: in two 
non-time course experiments and three time course experiments. Final time point, Day 7, was 
used in time course experiments. Experiment with repetitive stimulation with hydrogen peroxide 
was not used to derive these gene expression signatures. Enrichment of the signatures in all cells 
of the time course experiments was performed using score_genes function of the scanpy Python 
library. To score enrichment of glycolytic genes, we used genes of the 
KEGG_GLYCOLYSIS_GLUCONEOGENESIS set. 
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