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Abstract 

Cells often alter metabolic strategies under nutrient-deprived conditions to support their 

survival and growth. Characterizing metabolic reprogramming in the TME (Tumor 

Microenvironment) is of emerging importance in ongoing cancer research and therapy 

development. Recent developments in mass spectrometry (MS)-based technologies allow 

simultaneous characterization of metabolic features of tumor, stroma, and immune cells in the 

TME. However, they only measure a subset of metabolites and cannot provide in situ 

measurements. Computational methods such as flux balance analysis (FBA) have been 

developed to estimate metabolic flux from bulk RNA-seq data and have recently been extended 

to single-cell RNA-seq (scRNA-seq) data. However, it is unclear how reliable the results are, 

particularly in the context of tissue TME characterization. To investigate this question and fill 

the analytical gaps, we developed a computational program METAFlux (METAbolic Flux balance 

analysis), which extends the FBA framework to infer metabolic fluxes from either bulk or single-

cell transcriptomic TME data. We benchmarked the prediction accuracy of METAFlux using the 

exometabolomics data generated on the NCI-60 cell lines and observed significant 

improvement over existing approaches.  We tested METAFlux in bulk RNA-seq data obtained 

from various tumor types including those in the TCGA.  We validated previous knowledge, e.g., 

lung squamous cell carcinoma (LUSC) has higher glucose uptake than lung adenocarcinoma 

(LUAD). We also found a novel subset of LUAD samples with unique metabolic profiles and 

distinct survival outcome.  We further examined METAFlux on scRNA-seq data obtained from 

coculturing tumor cells with CAR-NK cells and observed high consistency between the predicted 
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and the experimental (i.e., Seahorse extracellular) flux measurements.  Throughout our 

investigation, we discovered various modes of metabolic cooperation and competition 

 between various cell-types in TMEs, which could lead to further target discovery and 

development.  

1 Introduction 

Proper metabolic regulation is essential for the functioning and health of normal cells. 

However, cancer cells have aberrant genetic alterations, such as amino acid substitutions and 

copy number alterations, that can perturb cellular metabolism[1, 2]. Thus, cancer cells often 

exhibit distinct metabolic programs from normal cells. Furthermore, proliferating cancer cells 

must balance diverged catabolic and anabolic requirements to maintain homeostasis while 

simultaneously increasing cellular mass [3]. Due to such importance, metabolic dysregulation 

has been firmly considered a hallmark of cancer[4]. 

Clinical studies have demonstrated that metabolism is associated with patient outcomes and 

that specific metabolic phenotypes could present vulnerabilities for cancer treatment[5]. 

Therefore, understanding how metabolic dysregulation promotes cancer is key to normalizing 

aberrant metabolism in cancer. However, there are several significant challenges in studying 

the metabolism of cancer cells in culture. First, it is challenging to mimic a complex metabolic 

environment, and findings obtained in cell culture may not be effective in clinical settings [3]. 

Part of the reason is that a tumor microenvironment is a dynamic mixture of malignant and 

non-malignant cells, which is difficult to mimic in an in-vitro experiment [6]. Also, traditional 

cell culture nutrient milieu does not resemble human physiological nutrient environment, but 

nutrient availability in a tumor microenvironment can modulate metabolic dependencies [7, 8]. 
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Over the past two decades, technological innovation in metabolism research has seen 

tremendous growth. LC/MS (liquid chromatography/mass spectrometry) based metabolomics is 

a powerful tool for measuring concentration of metabolites and is often the first choice of 

metabolism experiments [9]. However, the process of assigning peaks into metabolite identity 

is still low throughput, and it requires lots of time and effort on analyzing the datasets [10].  

Moreover, reproducing metabolomics experiments is challenging due to lack of methodology 

standardization and complexity of experiment[11]. Moreover, metabolomics only provides 

static metabolic snapshots of cells. Dynamic profiles of metabolite traffic, or velocities of 

metabolic reactions(fluxes), are critical to understanding mechanisms of cellular metabolic 

regulation from different angles. Therefore, metabolic flux techniques, for instance, 13C 

metabolic flux analysis (13C-MFA) and Seahorse flux assay, are also widely used in metabolic 

research[10]. 13C-metabolic flux analysis (13C-MFA) is the current gold standard to measure the 

intracellular fluxes of central carbon metabolism experimentally. However, it is insufficient to 

derive large metabolic networks[12]. For extracellular fluxes, Seahorse Extracellular Flux (XF) 

analyzer has been the industry standard to assess cells' bioenergetic state. Seahorse metabolic 

assay can measure OCR (Oxygen consumption rate: an indicator of mitochondrial respiration) 

and ECAR (extracellular acidification rate: an indicator of glycolysis) of living cells in 

simultaneously real-time[13].  Even though the Seahorse platform provides valuable insight into 

the functional status of cells, it only offers two measured fluxes, and interrogating fluxes of 

other metabolites is not directly available. 

With the advent of RNA-Seq and scRNA-seq, we have an opportunity to interrogate the 

genomic profile of samples with unprecedented high resolution at the system level [14, 15]. 
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Changes in expression of metabolic enzymes, resulting from genetic or downstream pathways 

alteration or epigenetic modifications [1], provide a valuable snapshot to extend our 

understanding of tumor metabolism. Recently, transcriptomic analyses have already shown 

both unique and shared patterns of metabolic reprogramming as well as the metabolic 

vulnerabilities distinguishing molecular subtypes in various human tumors[16-21].  

The most common approach to quantify metabolic pathway activity in transcriptomics data is 

by summarizing mRNA expression levels of genes in a pathway (i.e., KEGG metabolic pathway 

gene set) into a single score. Conventional geneset scoring methods can be applied here, for 

example, ssGSEA[22], AUCell[23], singscore[24], Z-score, etc. However, metabolic network is 

highly complex, connected, and dynamic, and it may allow cells to overcome inhibition in just a 

single enzymatic step[25]. Therefore, investigating individual pathways separately without 

considering the complete map of metabolic circuits is less likely to provide an accurate insight 

into underlying mechanisms. Moreover, those methods do not produce accurate results with 

extremely small gene sets. Some of our metabolic reactions contain only one or two genes, so 

gene set scoring method will be unstable in this scenario. In addition, not all metabolic 

reactions are associated with enzymes, thus gene set scoring methods are only limited to those 

with gene association. 

Reconstructed Genome-scale metabolic models (GEMs) have been one of the major 

approaches for systems biology. GEMs encapsulate an organism's stoichiometric balanced 

metabolic reactions by gene-protein-reactions (GPR) association[26]. GEMs enable the 

computational of metabolic response at the system level, which is not possible using metabolic 

geneset such as KEGG[27]. One of the most common analytic methods used in GEMs is flux 
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balance analysis (FBA), and it predicts the flux values of an entire set of reactions. Flux balance 

analysis is a well-established constrained optimization method to study such a complicated 

metabolism by analyzing the flow of metabolites [28-31]. It relies on a stoichiometric 

representation of the metabolic model to predict the fluxes for reactions while maximizing a 

cellular objective, subject to constraints, such as the uptake or excretion fluxes observed from 

the experiment. Furthermore, various extensions of FBA have been successfully applied under 

different settings[32-37].  

Many studies have focused on the integration of FBA and gene expression. They showed such 

integration could potentially improve the prediction of metabolic fluxes through this low-cost 

and straightforward fashion[38-49].  One possible solution to connect transcriptome with FBA is 

using gene expression to define the objective function in FBA. For example, Lee et al. replace 

the biological objective(i.e., biomass or ATP maintenance) and use the correlation between the 

fluxes and gene expression score as the objective function[43]. Similarly, iMAT uses gene 

expression to divide highly expressed and lowly expressed reactions. This method finds the flux 

distribution that best explains gene expression patterns. It maximizes the number of reactions 

classified as highly expressed and minimizes the number of reactions classified as lowly 

expressed[38]. Another way to incorporate gene expression into FBA is to use expression values 

to define flux bounds in FBA. For example, E-Flux directly uses transformed gene expression 

values as flux constraints since it assumes the gene expression level determines the flux upper 

bound[45]. Those studies have demonstrated that the addition of gene expression has 

improved the prediction of metabolic states [38-42]. However, still lacking is systematic 

inference of the metabolic reaction activity from mechanistic reaction flux network in human 
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cancer. Current scRNA-seq technology allows powerful characterization of cellular 

heterogeneity and has unraveled metabolic vulnerability and heterogeneity in many 

settings[17-19, 50]. Recently, several promising efforts have been made to predict COVID-19 

metabolic targets and changes using iMAT on scRNA-seq data [51, 52].  Damiani et al. has 

proposed single-cell Flux Balance Analysis(scFBA) to obtain single-cell fluxomics. However, 

usability in large scRNA-seq data was not discussed, and systematic validation in TME was not 

reported[53]. 

We developed METAFlux  that estimates flux-based metabolic pathway activity from gene 

expression to address these fundamental challenges. Briefly, we used Human-GEM (consisting 

of 13082 metabolic reactions, 8378 metabolites) as our underlying metabolic models. Then we 

derived MRAS (Metabolic Reaction Activity Score) from gene expression using GPR(Gene-

protein-reaction)[54] as flux constraints. To account for nutrient differences between cell 

cultures and patients, we defined lists of nutrient availability profiles for the "cell culture 

medium" and the "human blood" contexts. Subsequently, we formulated quadratic 

programming coupled with FBA under given nutrient constraints to calculate the metabolic 

fluxes for the 13082 reactions. We also extended the framework to calculate single cell cluster 

level metabolic activity. We combined the different cluster group metabolic network 

compartments in TME into one network and treated heterogeneous cell clusters as one 

community, where we can observe different modalities of metabolic organization, such as 

cooperation and competition for nutrients. Our model produces a higher-resolution activity 

prediction and will potentially facilitate a more accurate downstream analysis. Notably, our tool 
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has the potential to improve the understanding of aberrant metabolism and serve as a 

preliminary source to investigate specific metabolic targets. 

2 Results 

2.1 Modeling metabolism using transcriptomes 
Our underlying metabolic knowledge is extracted from the Human1. Human 1 is a genome-

scale metabolic model (GEM) that integrates the Recon, iHSA, and HMR models. It contains 

13082 reactions and 8378 metabolites[55]. This model encodes the mechanistic relationships 

between genes, metabolites, and reactions in a human cell. We choose Human1 because it 

shows a considerable improvement over other GEMs in terms of stoichiometric consistency, 

percentages of mass, and charge-balanced reactions[55]. Human1 model contains reactions in 

9 compartments (extracellular, peroxisome, mitochondria, cytosol, lysosome, endoplasmic 

reticulum, golgi apparatus, nucleus, inner mitochondria).  

For each sample in a bulk dataset, METAFLux (Fig. 1a, Methods) first computes the metabolic 

reaction activity score (MRAS) for each reaction, which describes the reaction activity as a 

function of the associated gene expression. Here, we do not consider the reaction kinetic 

constants and the binding affinity of proteins since robust estimates of all these parameters for 

genome-scale models are rather difficult[31, 45]. Instead, we use GPR rules, which decode the 

Boolean logic relationship between genes in a reaction[54], to map the relationship between 

gene products and then summarize gene expressions into Metabolic Reaction Activity Scores 

(MRAS) given the predefined relationships. Our approach is adopted from what has been 

proposed earlier to infer the activity of metabolic reaction from gene expression data [43, 56]. 
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To connect transcriptome and fluxes, a possible solution is to use the MRAS calculated before 

to define the flux constraints. We use a E-Flux type of approach [45], where the expression 

levels of the genes associated with a metabolic reaction serves as the maximum possible flux 

that reaction can carry. The rationale is that, although enzyme activities do not have a high 

correlation with RNA levels, given a specific level of translational efficiency and assuming there 

is a limited accumulation of enzymes over a certain time window[45], RNA expression levels can 

be used as the maximum amount of protein products available and the maximum protein 

products can then serve as the maximum reaction fluxes.  

Subsequently, we need to define a nutrient environment profile, which includes a list of 

metabolites available for uptake by the reactions (Methods). In the constrained optimization 

step, we hypothesize that tumors proliferate rapidly; thus, the new human biomass pseudo-

reaction, which constructs a generic human cell's nutrient demand and composition, should be 

optimized [55].  Here we reformulate this idea into convex quadratic programming (QP) to 

overcome degenerate solutions. Our optimization simultaneously optimizes the biomass 

objective and minimizes the sum of fluxes' squares,  similar to a previous approach 

[57](Methods). 

We also propose a workflow for single cell settings (Fig. 1b, Methods). Single-cell RNA-

sequencing enables characterization of individual cells to unravel complexity and heterogeneity 

of tumor microenvironments [58]. Since we believe that cell groups do not work in isolation, 

modeling the whole tumor microenvironment as one community will account for metabolic 

interaction between the groups. Here, we do not compute cell-wise flux. Instead, we model 

fluxes at pseudo-bulk level for the following reasons. First, scRNA-seq data is often highly 
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sparse and noisy. Directly estimating cell-wise MRAS from zero-inflated data can result in many 

zeros, which challenges downstream modeling. One possible solution seen in the Compass 

metabolic model, recently developed by Wanger et al., used KNN smoothing to mitigate 

sparsity and stochasticity [59]. Still, different imputation algorithms can generate different 

results, an issue beyond the scope of this study. Secondly, merging pseudo-bulk level groups 

into one network is more computationally efficient than working at single cell level.  

To estimate fluxes from scRNA-seq data, we first create stratified bootstrap sampling datasets 

and compute the pseudo-bulk gene expression profiles based on customized grouping for each 

bootstrap sample. Next, we calculate MRAS for each pseudo-bulk bootstrap sample. To run 

METAFlux in single-cell setting, we need to provide cluster (group) proportions with respect to 

the whole TME. Ideally, these proportions should be retrieved from experiments or calculated 

from matched bulk data using CIBERSORTx[60]. However, most datasets do not have such 

information. As a result, directly observed cluster (group) fractions in single-cell data could be 

used for the purpose, but further studies are warranted to evaluate the findings since those 

proportions may deviate from the truth due to sparse sampling [61, 62]. We then estimate the 

group proportions and derive fluxes for each bootstrap using the merged metabolic networks 

of different groups in TME under constrained optimization (Methods). 

2.2 Benchmarking the performance of METAFlux using experimental data 
We used NCI-60 RNA-seq data and publicly available metabolite CORE (consumption and 

release rate) data generated on NCI-60 cell lines to benchmark our model performance[63]. 

However, we only selected 11 cell lines as the experimental ground truth since other cell lines 

had nutrient depletion that could affect the reliability of flux profiling [55, 64]. There were 26 
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metabolites fluxes and one biomass flux per cell line. Our model was run based on Ham’s 

medium composition (Methods). 

Meanwhile, we also compared METAFlux performance with the state of art method enzyme-

constrained model(ecGEMs). These two results can be compared because they were generated 

based on the same medium composition and both models maximized biomass reaction. 

ecGEMs is an enzyme-constrained cell line-specific model, which utilizes tINIT to generate cell-

specific GEMs and then incorporates GECKO to add enzyme constraints. tINIT is an optimization 

algorithm that extracts context-specific and connected GEMs based on proteomics and/or 

transcriptomics datasets[65]. GECKO (enhancement of a Genome-scale model with Enzymatic 

Constraints and Omics data) extends the flux balance analysis approach (FBA) to enable the 

integration of enzyme and proteomics data[66].  

The overall Spearman correlation of experimental fluxes with predicted fluxes for all the 

metabolites in the 11 cell lines was 0.76 for METAFlux, and 0.45 for ecGEM (Fig. 2a). In terms of 

consistency across different metabolites, METAFlux generally achieved better spearman 

correlation with ground truth than ecGEM across metabolites (Fig. 2b). For metabolites like L-

carnitine and pyruvate, ecGEM predicted those fluxes to be 0. Therefore, the correlation of 

these two metabolites to background truth was not calculated. To further examine the accuracy 

of our flux prediction, we categorized metabolic fluxes to 'no flux' (flux equals to 0), 'uptake' 

(flux smaller than 0) and 'excrete' (flux greater than 0) because correlation metrics only show 

whether there is a relationship between pairs of fluxes. However, it omits the sign of fluxes 

which represents the directional uptake or excretion behavior. After categorization, we 

evaluated the predicted direction accuracy for each metabolite between two models (Fig. 2c). 
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Except for 'choline,' METAFlux achieved better accuracy for seven metabolites and the same 

accuracy with ecGEM for the other 19 metabolites. Taken together, these results suggest that 

METAFlux outperformed ecGEM on predicting metabolic fluxes from RNA-seq data. 

2.3 Biological meaningful medium resolved better prediction 
To estimate the effect of medium constraints on model performance, we first did not impose 

medium constraints in METAFlux, meaning that we freely allowed the uptake or excretion of all 

exchange metabolites with no rate restriction. Without any medium constraints, METAFlux only 

had a spearman correlation of 0.15. Similarly, both spearman correlations across metabolites 

and cell lines dropped significantly (Supplementary Figure 1a, b). The result showed that the 

prediction performance for models without medium constraints declined considerably 

compared with the original medium composition.  

To further explore the medium effect on performance, we tested our model on random 

generated medium. We compared the results obtained from our biological meaningful medium 

with same-sized random mediums. The original hypothesized hams medium contains 44 

metabolites, so we randomly selected 44 metabolites from the total 1648 exchange 

metabolites. We then allowed our model to uptake or excrete those 44 metabolites without 

rate restriction while only allowing the rest of 1604 metabolites to excrete with no rate 

restriction. We repeated this simulation process 𝑁 = 500 times. For each simulation 𝑖, we 

obtained the overall spearman correlation 𝜌𝑖 and directionality accuracy 𝑎𝑐𝑐𝑖. To calculate the 

p-value, we counted the number of measurements greater than our original biological 

meaningful statistics 𝜌𝜊 and 𝑎𝑐𝑐𝜊 and divided this number by 500. The P-values for both overall 

spearman accuracy and direction accuracy were zero, indicating that none of the results 
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generated by the random medium were superior to our original biological medium 

(Supplementary Figure 1c, d). These results indicate that METAFlux has achieved biologically 

meaningful modeling in in vitro cell-line culturing experiments and can potentially be applied in 

broader settings. 

2.4 METAFlux identified a novel metabolic cluster in TCGA lung cancer  
We applied METAFlux on TCGA LUAD (lung adenocarcinoma) and TCGA LUSC (lung squamous 

cell carcinoma) with human blood profile as medium constraints (Methods). A recent study 

utilizing TCIA (The Cancer Imaging Archive) database to quantify tumor glucose uptake using 

18F-FGD PET-CT observed a significant higher glucose uptake in LUSC than in LUAD. To validate 

METAFlux, we examined the glucose uptake flux estimated by METAFlux from the LUSC and the 

LUAD RNA-seq data. The METAFlux prediction results indicated that LUSC tumors had a higher 

glucose uptake than LUAD, which is consistent with the 18F-FGD PET-CT scan results (Fig. 3a). In 

addition, prior research has also suggested 18F-FGD was closely correlated with the proliferation 

index[67]. Consistent with this, we found that the glucose uptake influx from METAFlux was 

highly correlated with estimated proliferation signature scores with a spearman correlation of 

0.65 (Supplementary Figure 2a). The proliferation scores were calculated by ssGSEA using 

derived gene sets and were directly available from earlier study [68]. 

Clustering the metabolic fluxes revealed 2 clusters of samples for LUAD and LUSC (Fig. 3b). 

Cluster 1 was primarily made up of LUAD tumors, while cluster 0 was a mixture of LUAD and 

LUSC tumors (Supplementary Figure 2b). The LUAD tumors in cluster 0 are called ‘LUSC-like 

LUAD,’ because this subset of LUAD tumors exhibited a similar metabolic phenotype with LUSC. 

The LUAD tumors in cluster 1 (LUAD1) had significantly lower glucose uptake than 'LUSC-like 
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LUAD" (P values<2.26× 10−16 ), implying LUSC-like LUAD tumors are more metabolically active. 

Survival analysis revealed that LUAD1 tumors had significantly better survival outcomes (P value 

< 0.0084) than 'LUSC-like LUAD' (Fig. 3c). Moreover, such clustering membership cannot be 

found when performing clustering using the corresponding gene expression data (Fig. 3d) and 

Supplementary Figure 2c, d). There was no significant difference in patient survival among the 

resulting clusters in LUAD tumors (Fig. 3e). Results demonstrated that utilizing metabolic fluxes 

generated by METAFlux was able to discover novel tumor subtypes, which could not be found 

otherwise by gene expression.  

 

2.5 METAFlux identified a longitudinal metabolic competition trend between Tumor and NK 
cells 

In single cell settings, we first examined the scRNA-seq data generated from an in vivo coculture 

experiment assessing the killing of engineered CAR-NK cells on Raji cells, a non-curative CD19+ 

lymphoma cell-line model. Data included three products: CAR19-NK cells armed with IL-15, 

CAR19-NK cells lacking IL-15, and non-transduced NK cells, in addition to the tumor cells. In 

total, data from four time points were collected: day 7, day 14, day 21, and day28. The 

extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) data were measured 

by Agilent Seahorse XFe96 Analyzer, and the measurements were taken 2 hours after 

cocultured NK and Raji cells. METAFlux single cell framework requires cell type proportion as an 

input parameters, here we simply calculated percentage for each cell type using single cell RNA-

seq data.  

We sought to compare our METAFlux results with the Seahorse assay. We only utilized single-

cell RNA-seq data from day 7 for our benchmark comparison since day 7 profile would be the 
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closest to the state when Seahorse assay was measured. We used oxygen efflux as the 

surrogate for OCR. Similar to a previous study, we used proton efflux as the surrogate for 

ECAR[69]. We set the bootstrap number to 100 for each product. The Seahorse assay indicated 

that CAR19/IL15 NK cells had the highest OCR and ECAR, followed by CAR19 NK cells, and NT-

NK cells showed the lowest OCR and ECAR among the three products. Our predicted OCR and 

ECAR findings showed a consistent trend with Seahorse Assay that CAR19/IL15 NK cells were 

the most metabolically active, while NT-NK cells were the least metabolically active (Fig. 4a, b 

and Supplementary Figure 3a-b).  

Next, we aimed to analyze the metabolic competition in CAR19/IL15 over time. Our ongoing 

work demonstrated tumors recurred after day 14, and NK cells experienced metabolic 

dysfunction and decreased anti-tumor activity over time with tumor recurrence. We set the 

bootstrap number for each time point to be 100 and used per cell competition score to quantify 

the metabolic competition between tumor and NK cells. We defined tumor and NK nutrient 

competition score as the ratio of the per cell nutrient uptake flux in tumor to the per cell 

nutrient uptake flux in NK. We found that the metabolic competition for oxygen and glucose 

decreased from day 7 to day 14 but ramped up after day 14 and reached its peak on day 28(Fig. 

4c, d). Moreover, several amino acids showed similar trends (Supplementary Figure 3c-f). 

Consistent with prior work, METAFlux results suggested tumor cells eventually outcompeted NK 

cells for nutrients and NK cells became less metabolically fit over time[70]. 

We also observed that tumor cells were the major contributor to the total lactate production in 

the TME on day 21 and day 28, and there was an increasing trend of lactate production by all 

tumor cells over time (Fig. 4e and Supplementary Figure 3g). On average cell level, NK cells 
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showed an elevated lactate release over time (Supplementary Figure 3h).  As a result, the 

tumor microenvironment became more and more acidic, which suppressed the NK function and 

decreased the cytotoxic activity of NK cells, leading to tumor recurrence[71]. Our findings could 

be potentially relevant to understanding the associated mechanism with tumor resistance and 

relapse. Taken together, METAFlux can capture the longitudinal competition mechanism 

between NK and tumor cells and pinpoint the nutrients they compete for. 

 

2.6 METAFlux identified different modalities of metabolism 
Our TCGA sample analysis demonstrated that glucose uptake was significantly higher in LUSC 

than in LUAD at bulk level. However, glucose uptake comparison on bulk level did not show the 

distinct metabolic programs for different cell types in TME. To this end, we then sought to 

identify metabolic heterogeneity for different cell types using METAFlux in a community-based 

setting.  

We applied METAFlux on bulk sorted RNA profiling data from primary lung cancer patients 

directly acquired from the operating room[72]. The data was sorted into immune cells 

(CD45+EPCAM−), endothelial cells (CD31+CD45−EPCAM−), tumor cells (EPCAM+CD45−CD31−), 

and fibroblasts (CD10+EPCAM−CD45−CD31−). After data processing, we have 15 ADENO(lung 

adenocarcinoma) and 9  SCC (lung squamous cell carcinoma) samples with complete RNA-seq 

profiles for all four cell types. We used the cell type proportions from the original study as our 

input parameters and those cell type proportions were calculated by CIBERSORT using matched 

bulk data[72]. 

We next compared the nutrient uptake between cancer, immune cell, fibroblast, and 

endothelial cells between SCC and ADENO. Since the sample size was small, the P value was not 
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significant. Consistent with the findings from the bulk data, there was a trend toward higher 

glucose uptake from whole TME in SCC than in ADENO (P=0.058,95% CI of effect size [-1.8149, -

0.1191]) (Supplementary Figure 4a) . The cell type specific nutrient uptake indicated a weaker 

increase in glucose uptake from average cancer cells in SCC than in ADENO (P=0.222, 95% CI of 

effect size[-1.3435,0.2831]) (Fig. 5a). The glucose uptake per cell in endothelial and fibroblast 

cells was similar between SCC and ADENO (endothelial P=0.762, 95% CI of effect size [-

0.9300,0.6677], fibroblasts P=0.803,95% CI of effect size [-0.9037,0.6934]) (Fig. 5a).  However, 

the most striking difference came from immune cells. The immune cells in SCC had the highest 

per cell glucose uptake in TME, while the immune cells in ADENO had the lowest capacity to 

uptake glucose per cell among TME (P=0.045, 95% CI of effect size[-1.8626, -0.1579]) (Fig. 5a). 

This finding suggested that immune cells in SCC were not deprived of glucose.  

In addition to per cell metabolic profile for each cell type, we were also interested in total 

nutrient consumption for a particular cell type. To calculate the total consumption for a certain 

nutrient in a particular cell type, we multiplied the per cell nutrient uptake flux by its cell type 

abundance. Since the tumor has the largest abundance, the nutrients secretion or uptake can 

be greatly skewed by its mass. Cancer cells account for 56.55% of glucose uptake in ADENO and 

49.28% of glucose uptake in SCC. Immune cells account for 18.82% of glucose uptake in ADENO 

and 34.31% of glucose in SCC(Supplementary Figure 4b). For glutamine, cancer cells account 

for 68.25% of glutamine uptake in ADENO and 62.32% of glutamine uptake in SCC. Immune 

cells account for 15.79% of glutamine uptake in ADENO and 19.33 % of glutamine in SCC 

(Supplementary Figure 4b). METAFlux showed that heterogeneous cell types had different 

affinities for nutrient and revealed distinct metabolic phenotypes within TME. 
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TME is a highly complex mixture, and TME components either form metabolic antagonism or 

symbiosis when uptaking nutrients[73]. When one or more cell types benefit from the 

metabolites produced by other cell types, we define the interaction as a metabolic cooperation 

program. When all cell types compete for limited resources in TME, we define it as a 

competition metabolic program. A competition between TME components occurs when 

nutrient demands in TME are high.  

We captured different interaction mechanisms among TME in both ADENO and SCC (Fig. 5b-d). 

We identified the competition mode where different cell types compete for nutrients like 

glucose, glutamine, oxygen, and other amino acids (Fig. 5b and Supplementary Tables 1). In 

contrast, we have also identified a cooperation mechanism where one or more cell types 

utilized the nutrients (e.g., Phenylalanine) produced by other TME components to favor their 

growth (Fig. 5c and Supplementary Tables 1). Besides cooperation and competition, we also 

found a ‘parallel producer’ modality where all TME compartments released a certain nutrient 

(e.g., lactate) (Fig. 5d). 

3 Discussion 

In this study, we developed METAFlux, a computational framework that opens up the 

application of metabolic flux analysis to transcriptomic datasets. First, we converted RNA-seq 

data to metabolic reaction activity score and use constrained optimization to maximize biomass 

under the steady-state assumption to infer fluxes. We then extended the method to a single-

cell RNA-seq setting. For single cell settings, we first merged different compartments in TME 

into one network and calculate cluster level metabolic activity. Then, we treated 
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heterogeneous cell clusters in TME as one community and used constrained optimization to 

maximize biomass for the entire community and infer metabolic fluxes. 

METAFlux calculates metabolic fluxes at cluster level under single cell settings, because we 

observed that RNA-count dropout could affect flux prediction accuracy. Creating a pseudo-bulk 

sample can substantially alleviate the negative impact of dropout effect and save 

computational cost. For datasets with high dropout rates, it could be beneficial to applying 

gene expression imputation before applying METAFlux. 

The metabolic growth highly relies on the medium; however, we did not distinguish different 

levels of nutrient concentrations in the medium of METAFlux, and we only utilized the binary 

condition (presence vs. absence) of nutrients in medium as a constraint. This approach can be 

helpful when detailed experimental parameters are not available. However, there could be 

situations where the concentrations or fluxes of certain nutrients are significantly different for 

each sample, for example, different levels of hypoxia experienced by samples. Thus, more 

realistic profiling of the medium should increase the prediction accuracy in that case. 

Therefore, our future development could focus on the extension to enable quantitative 

integration of experimental nutrient concentration or measured metabolic fluxes.  

METAFlux in bulk RNA-seq setting achieved great benchmarking results using NCI 60 

experimental data as ground truth. It correctly predicted metabolic phenotypes in single cell 

CAR-NK dataset, compared against Seahorse assays. We also successfully applied METAFlux on 

various patient samples for hypothesis generation. Our tool provides a cost-effective approach 

for discovering novel metabolic features in high-dimensional datasets. We have shown our 

method can generate consistent results with experimental data and identify meaningful and 
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novel features. Furthermore, our tool allows for the connection between transcriptomic data 

and system-level FBA metabolic analysis and a better understanding of plastic and complex 

metabolic network. 

4 Methods 

4.1 Underlying genome-scale metabolic model (GEM) 

4.2 Inference of metabolic reaction activity score (MRAS) from transcriptomic data 
 In GPR, the AND operator joins the genes encoding for different subunits of the same enzyme, 

and the OR operator joins the genes encoding for isoenzymes[74].  For a reaction catalyzed by 

an enzyme complex, all the subunits need to be expressed to catalyze a reaction, and the 

lowest expressed unit will be the rate-limiting step for this complex. Therefore, the metabolic 

activity of such an enzyme complex will be the lowest expression value among all genes 

associated with this enzyme complex. For a reaction catalyzed by isoenzymes, all the isozymes 

contribute additively to this reaction[56].  Thus, metabolic activity will be the sum of all 

expressions of isoenzyme genes. Some genes are involved in multiple reactions (e.g., 

promiscuous enzyme), and we hypothesize that there may be enzyme resource competition 

may exist between reactions. We adjust for the enzyme promiscuity by dividing the expression 

value of a gene by the number of reactions the gene has participated in. A similar approach has 

been seen in[75]. The steps of deriving MRAS are the following: 

Let 𝑤𝑖  be the number of reactions 𝐸𝑛𝑧𝑦𝑚𝑒𝑖 participate and 

𝑁𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 𝑒𝑥𝑝𝑟 = 𝑙𝑜𝑔2(𝑒𝑥𝑝𝑟 + 1) 

𝑂𝑅 𝑙𝑜𝑔𝑖𝑐:𝑀𝑅𝐴𝑆 =∑
𝐸𝑛𝑧𝑦𝑚𝑒𝑖

𝑤𝑖

𝑛

𝑖=1
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𝐴𝑁𝐷 𝑙𝑜𝑔𝑖𝑐:𝑀𝑅𝐴𝑆 = 𝑀𝑖𝑛[ 
𝐸𝑛𝑧𝑦𝑚𝑒1

𝑤1
, 
𝐸𝑛𝑧𝑦𝑚𝑒2

𝑤2
,
𝐸𝑛𝑧𝑦𝑚𝑒3

𝑤3
….  ] 

 

4.2.1 Reaction flux constraints setup 
We set normalized MRAS as the flux upper bound to their corresponding metabolic reactions. 

The lower bound of reaction flux is set to be 0 if the reaction is non-reversible and 

(−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑅𝐴𝑆) if the reaction is reversible. The flux is loosely constrained when MRAS 

is high, so there is more bandwidth of reaction flux. On the other hand, the flux is strictly 

constrained when MRAS is low, so the bandwidth of flux is much narrower. Our model consists 

of 13,082 metabolic reactions in total, and 8,033 reactions (8,033 R1 reactions) are associated 

with enzymes. For the rest of the reactions that are not associated with any enzymes (5,049 R2 

reactions), those reactions are not constrained by gene expression, so we set the upper bound 

as one. 

The constraints of flux are as follows: 

(𝑙𝑏𝑖𝑗,𝑢𝑏𝑖𝑗) =

{
  
 

  
 𝑙𝑏𝑖𝑗 = 0,𝑢𝑏𝑖𝑗 = 

𝑀𝑅𝐴𝑆𝑖𝑗
max(𝑀𝑅𝐴𝑆𝑖)

                                            𝑖𝑓 𝑟𝑒𝑣𝑗 = 0 𝑎𝑛𝑑 𝑗 ∈ 𝑅1

𝑙𝑏𝑖𝑗 =
−𝑀𝑅𝐴𝑆𝑖𝑗

max(𝑀𝑅𝐴𝑆𝑖)
,  𝑢𝑏𝑖𝑗 =

𝑀𝑅𝐴𝑆𝑖𝑗
max(𝑀𝑅𝐴𝑆𝑖)

                   𝑖𝑓 𝑟𝑒𝑣𝑗 = 1 𝑎𝑛𝑑 𝑗 ∈ 𝑅1

𝑙𝑏𝑖𝑗 = 0, 𝑢𝑏𝑖𝑗 = 1                                                                   𝑖𝑓 𝑟𝑒𝑣𝑗 = 0 𝑎𝑛𝑑 𝑗 ∈ 𝑅2

𝑙𝑏𝑖𝑗 = −1,𝑢𝑏𝑖𝑗 = 1                                                               𝑖𝑓 𝑟𝑒𝑣𝑗 = 1 𝑎𝑛𝑑 𝑗 ∈ 𝑅2

 

 

Where 𝑙𝑏𝑖𝑗  and 𝑢𝑏𝑖𝑗are the input flux bounds for 𝑗𝑡ℎ reaction in 𝑖𝑡ℎ samples, and 𝑟𝑒𝑣 stands 

for reversibility of a reaction. If 𝑟𝑒𝑣 = 0, the reaction is non-reversible; if 𝑟𝑒𝑣 = 1, the reaction 

is reversible.  
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4.3 Optimization modeling 

4.3.1 Stoichiometric representation of metabolic reactions 
A chemical reaction is a basic unit in metabolic pathways, and stoichiometry can represent the 

quantitative relationship between products and reactants in a reaction. The stoichiometric 

coefficients of the reactions that constitute the network populate the stoichiometric matrix S. 

Here, Stoichiometric matrix is an 8378 M by 13082 N sparse matrix, where M equals the 

number of metabolites in different compartments, and N equals the total number of metabolic 

reactions. The negative coefficient refers to the number of moles of metabolites are consumed 

in a particular reaction. The positive coefficient means how many moles of the metabolites are 

produced in a specific reaction. At the same time, zero implies this metabolite does not 

participate in a specific reaction. 

4.3.2 Defining nutrient availability profile for cell culture and patient samples 
We use the ham's medium as the growth medium in cell line models [55]. It contains 44 

metabolites, and the uptake or excretion rates of these 44 metabolites are not limited, meaning 

that cells may uptake or excrete these metabolites without limit. For the remaining metabolites 

in the model, we do not allow cells to uptake from the medium, but cells can excrete those 

metabolites into the medium. For tissue samples from patients, it is necessary to define a more 

physiologically relevant environment as the traditional synthetic medium does not mimic 

human blood. Jason et al. developed a human plasma-like medium [HPLM] to better capture 

the composition of human blood, and we derive a list of 64 metabolites in human blood based 

on their profiling[7]. 

4.3.3 Quadratic programming 
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Traditional FBA by linear programming (LP) gives a unique optimal objective value. However, 

the solution to FBA from LP is most likely degenerate, meaning the solutions are not unique, 

and different solvers will likely return different vectors. Usually, the flux variability analysis will 

be used afterward to calculate the range of fluxes that achieves the optimal objective[76]. 

Another approach, pFBA or Parsimonious enzyme usage FBA, was proposed earlier [32]. pFBA 

assumes there is a selection for an organism to minimize the total amount of necessary 

enzymes to achieve optimal growth. pFBA first computes the optimal growth rate and then 

minimizes the sum of reaction fluxes under the optimal solution. Here we reformulate this idea 

into convex quadratic programming (QP). 

We define single-sample unsolved metabolic fluxes by vector v with the length of 13082. The 

dot product of matrix S and a vector of unknown fluxes v approximation to 0 represents steady-

state assumption where essentially the metabolite concentrations are held constant 
𝑑𝑥

𝑑𝑡
≈ 0, 

where x stands for the concentration of all metabolites.  

 The framework is implemented using OSQP solver[77] and formulated as the following 

optimization problem:  

𝑚𝑖𝑛 
1

2
 𝑣𝑇𝑣 − 𝛼𝐶𝑇𝑣 

𝑠. 𝑡.   𝑆𝑣 ≈ 0              (1) 

𝑙𝑏𝑗 ≤ 𝑣𝑗 ≤ 𝑢𝑏𝑗             (2) 

𝑙𝑏𝑗 = 0    𝑖𝑓 𝑗 ∈ 𝐸 𝑏𝑢𝑡 𝑗 ∉ 𝐺𝐸       (3) 

 Where 𝐶 is a vector of zeros with a one at the position of our designated biomass reaction, and 

constraint (3) is the growth medium constraints.  𝑎 is set to 10000, the same order of 
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magnitude with respect to fluxes used in Fit methods[57]. 𝑗 stands for the 𝑗𝑡ℎ reaction. We 

define a growth medium 𝐺 and all exchange reactions 𝐸 and 𝐺𝐸 as exchange reactions relevant 

to 𝐺. 

4.4 Community-based flux estimation in single-cell data 
Given a scRNA-seq dataset, we assign a group (cluster or cell type) label to each cell. We first 

perform stratified bootstrapping, which means we sampled with replacement with respect to 

each group.  

Step 1: Bootstrap sample generation. Let group be 𝑔 = 1,… . 𝑛, and 𝐵𝑖𝑔 be the 𝑖𝑡ℎ bootstrap 

sample for 𝑔𝑡ℎ group. For each bootstrap iteration 𝑖, we combine 𝐵𝑖1,𝐵𝑖2… for all groups to 

form resampled data. Each generated bootstrap data will be the same size and have the same 

group proportion as the original data.  

Step 2: Mean calculation. For each bootstrap sample, we calculate the mean gene expression 

vector for each group. 

Step 3: Define group fraction parameter 𝑃. 𝑃 is a fraction matrix defined as: 

𝑃 =

[
 
 
 
 
𝑝1 0 0 ⋯ 0
0 𝑝2 0 ⋯ 0
0 0 𝑝3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1]

 
 
 
 

=𝑑𝑖𝑎𝑔(𝑝1, 𝑝2⋯⋯, 1) 

𝑃𝑖 stands for the percentage of cell group 𝑖, and we constrain that ∑ 𝑝𝑖
𝑛
𝑖=1  should be one. 

We require group fractions as our input. Group fractions indicate the proportions of groups of 

interest with respect to the whole sample.  

Step 4: Merging metabolic networks. Let  𝑚𝑖𝑗
𝐸  be the metabolites associated with exchange 

reactions in group 𝑖. To merge multiple metabolic networks, we need to create a "TME 
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metabolite reservoir" for different cell groups to interact. We define 𝑟𝑚𝑖𝑗 as the reservoir 

metabolite 𝑗 in group 𝑖 

𝐶:𝑚𝑖𝑗
𝐸 ↔ 𝑟𝑚𝑖𝑗 

This representation allows different partitions of TME to share the same resources.  

𝑆𝑅: 𝑟𝑚𝑖𝑗 ↔ ∅ 

This representation ensures the model is an open system and allows reservoir metabolites to 

be exchanged with the external environment. The final size of the merged stoichiometric matrix 

is (𝑁 × 8378 + 1648) × (13082 × 𝑁 + 1648), where 𝑁 stands for the number for groups we 

defined. A specific construct of the merged stoichiometric matrix for three groups is shown 

below: 

 Group 1 

reactions 

Group 2 

reactions 

Group 3 

reactions 

Shared 

metabolic 

reactions 

Shared 

metabolites 

𝐶𝑖 𝐶𝑗 𝐶𝑘 𝑆𝑅 

Group 1 

Metabolites 

𝑆𝑖 𝟎 𝟎 𝟎 

Group 2 

Metabolites 

𝟎 𝑆𝑗 𝟎 𝟎 

Group 3  

Metabolites 

𝟎 𝟎 𝑆𝑘  𝟎 
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Our model aims to maximize the entire community's biomass while minimizing the sum square 

of overall fluxes. The framework is implemented using OSQP solver[77] and formulated as 

follows: 

𝑚𝑖𝑛 
1

2
 𝑣𝑇𝑃𝑣 − 𝑎𝐶𝑇𝑃𝑣 

𝑠. 𝑡.   𝑆𝑃𝑣 ≈ 0(1) 

𝑙𝑏𝑗 ≤ 𝑣𝑗 ≤ 𝑢𝑏𝑗 (2) 

𝑙𝑏𝑗 = 0    𝑖𝑓 𝑗 ∈ 𝐸(𝑆𝑅) 𝑏𝑢𝑡 𝑗 ∉ 𝐺𝐸(𝑆𝑅) (3) 

 

𝐶 is a vector of zeros with ones at each cell group's designated biomass reaction position.  𝑎 is 

set to 10000. Constraint (3) is the growth medium constraints, and we define a growth medium 

𝐺, and 𝐺𝐸(𝑆𝑅) as shared exchange reactions relevant to 𝐺. 𝑗 stands for the 𝑗𝑡ℎ reaction. 

4.5 Simulation  

4.5.1 Simulation of dropout data 
To estimate the effect of data sparsity on model performance, we plan to employ a similar 

strategy described in splatter to simulate dropout on 11 NCI-60 cell lines we used[78]. First, we 

used a logistic function 𝑓(𝑥) to calculate the dropout probability of every gene count. 

Subsequently, a Bernoulli distribution with dropout probability vector as input parameter will 

then be utilized to randomly replace the original count matrix with 0. 

𝑓(𝑥) =
1

1 + 𝑒−(𝑥−𝑥0)
 

Where 𝑥 is the log2 normalized gene count and 𝑥0 is the midpoint value. We increase the 

midpoint value sequentially to increase the proportion of dropout rates. The vector of midpoint 

values in the simulation is 0.1, 0.5, 1, 1.5 ,2 ,2.5 ,3, 3. 5, 4, 4.5, 5. METAFlux will be applied for 
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each simulated dataset and results obtained from simulated data will be compared with 

original data. 

4.5.2 Simulation of metabolic fluxes from random mediums 
To estimate the medium effect on model performance, we will compare the results obtained 

from our biological meaningful medium with same-sized random mediums. The assumed 

medium contains 44 metabolites, so we randomly select 44 metabolites from the total 1648  

exchange metabolites. We then allow our model to uptake or excrete those 44 metabolites 

without rate restriction while only allowing the rest of 1604 metabolites to excrete with no rate 

restriction. We repeat this process 𝑁 = 500 times. For each simulation 𝑖, we obtain the overall 

Spearman correlation 𝜌𝑖 and directionality accuracy 𝑎𝑐𝑐𝑖 . To calculate the p-value, we simply 

count the number of measurements greater than our original biological meaningful statistics 𝜌𝜊 

and 𝑎𝑐𝑐𝜊 and divide this number by 500. 

 

𝑝𝑣𝑎𝑙𝑢𝑒𝜌 =
∑ 𝐼(𝜌𝑖 ≥ 𝜌𝜊)
𝑖=𝑁
𝑖=1

𝑁
 

 

𝑝𝑣𝑎𝑙𝑢𝑒𝑎𝑐𝑐 =
∑ 𝐼(𝑎𝑐𝑐𝑖 ≥ 𝑎𝑐𝑐𝜊)
𝑖=𝑁
𝑖=1

𝑁
 

 

Where 𝐼(. ) Is an indicator function, equaling 1 if the condition in parenthesis is true, 0 

otherwise. 
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5 Additional Information 

5.1 Ethics approval and consent to participate 
Not applicable in this study. 

5.2 Consent for publication 
Not applicable in this study. 

5.3 Data and materials availability  
All datasets used in our study are publicly available. Human-GEM model was accessed from 

(https://github.com/SysBioChalmers/Human-GEM). We retrieved the medium composition and 

flux profiling data for 11 NCI-60 cell lines under the original manuscript [55]. ecGEM flux 

prediction for 11 NCI-60 cell lines was be obtained at 

https://zenodo.org/record/3583004#.YhQJdZPMJqs 

NCI-60 cell lines TPM RNA-seq data was obtained from 

https://depmap.org/portal/download/.The TCGA pan-cancer RNA-seq TPM data was 

downloaded from UCSC Xena data hubs(https://xenabrowser.net/). The proliferation score data 

can be found in the original publication[68]. CAR-NK single-cell RNA-seq data is available 

through NCBI Gene Expression Omnibus (GSE190976). Patient Lung cancer bulk sorted RNA-seq 

data can be downloaded from the NCBI Gene Expression Omnibus (GSE111907).  

5.4 Code Availability 
 Code will be available in Github. 
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Figure legends 

 

Figure 1. The workflow of METAFlux. (a) The workflow of METAFlux in bulk RNA-seq setting. In 

step A, metabolic reaction activity scores (MRAS) are estimated from RNA-seq data. In step B, a 

nutrient profile is defined so only certain nutrients can be uptaken. In step C, quadratic 

programming-based FBA (flux balance analysis) is constructed to estimate metabolic fluxes for 

each sample. (b) The workflow of METAFlux in single-cell RNA-seq setting. In step A, metabolic 

reaction activity scores (MRAS) are estimated for each stratified bootstrap sampled single-cell 

dataset. In step B, metabolic networks for different clusters are merged to form one 

community, and proportions of clusters should be defined during this step. In step C, nutrient 

profile is defined so only specific metabolites can be uptaken by TME. In step D, community-

based quadratic programming FBA is constructed to estimate per cell average metabolic fluxes 

for each cluster and total average metabolic fluxes for overall TME.  

 

Figure 2. Benchmark results of METAFlux on NCI-60 cell lines and performance comparison 

with ecModel. (a) Spearman correlation bar plot across each cell line for METAFlux and 

ecModel. The spearman correlations between predicted fluxes and experimental fluxes were 

calculated for 11 cell lines. (b) Spearman correlation bar plot across each metabolite for 

METAFlux and ecModel. The spearman correlations between predicted fluxes and experimental 

fluxes were calculated for 26 metabolites and one biomass reaction. 
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(c) Uptake and secretion direction accuracies of 26 metabolites and biomass reaction for 

METAFlux and ecModel. The accuracies were defined by the ratio of the number of direction-

aligned fluxes to the total number of fluxes for each metabolite. 

 

 

Figure 3. METAFlux application on TCGA LUAD and LUSC datasets. (a) Boxplot of glucose 

uptake activity in LUAD and LUSC. (b) UMAP of TCGA LUAD and LUSC samples using predicted 

metabolic fluxes. Two clusters were identified within those samples. Cluster 1 was enriched 

with LUAD tumors, while cluster 0 contained both LUAD and LUSC tumors. (c) Overall Kaplan-

Meier survival curves for clusters 0 and 1 in TCGA LUAD. Clusters were generated using 

metabolic fluxes. (d) UMAP of TCGA LUAD and LUSC samples using metabolic gene expression. 

(e) Overall Kaplan-Meier survival curves for clusters in TCGA LUAD. Clusters were generated 

using metabolic gene expression. 

 

Figure 4. CAR-NK single-cell RNA-seq METAFlux analysis. (a) Violin plot of oxygen consumption 

flux for the day 7 product of CAR19-IL15, CAR19, NT-NK. Each group includes n=100 bootstrap 

samples. (b) Violin plot of H+ release flux for the day 7 product of CAR19-IL15, CAR19, NT-NK. 

Each group includes n=100 bootstrap samples. (c-d) Competition score of (c) glucose and 

(b)oxygen for average cancer cell against average NK cell in TME from day 7 to day 28. (e) 

Barplot of tumor cells contribution of lactate release in TME. 

 

Figure 5. Different modalities of metabolic mechanisms identified by METAFlux. 
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(a) Bar plot of per cell average cell type-specific glucose uptake fluxes for ADENO and SCC. (b-d) 

Graph-based representation of 3 different metabolic modalities in ADENO and SCC. Each node 

represents one cell type (Immune, endothelial, tumor, or fibroblast) or system (shared TME). 

The edge width represents the absolute magnitude of flux. The arrow shows the direction of 

flux. Arrow coming from cells to system means the nutrient of interest is released to system. 

Arrow coming from system to cells means the nutrient of interest is absorbed from system. (b) 

Metabolic competition mode in ADENO and SCC.  Immune, endothelial, tumor and fibroblast 

cells compete for glucose, glutamine, and oxygen uptake in TME (represented by the system). 

(c) Metabolic cooperation mode in ADENO and SCC.  Immune, endothelial, and fibroblast cells 

release phenylalanine in TME (represented by the system) and tumor cells uptake 

phenylalanine to favor their growth. (d) Parallel producer mode in ADENO and SCC. Lactate 

released by all cell types to TME (system). 
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Figure 5a
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Supplementary Data: 

 

Supplementary tables 

Supplementary Table S1. Nutrients identified in competing and cooperation mechanisms for 
patient lung cancer samples.  
 

Nutrients (Competing) Nutrients(cooperating) 

Glucose, Isoleucine, Lysine, Methionine, Threonine, 

Tryptophan, O2, Glutamine, Tyrosine, Proline, 

Aspartate, Fe3+ Ornithine, Fructose, Folate, 2-

hydroxybutyrate, Citrate, Carnitine,  Hypoxanthine, 

Cystine 

Histidine, Leucine, Phenylalanine, Valine, H2O, 

Asparagine, Cysteine, Arginine, Serine, Glutamate, 

PO43-, SO42-, Na+, K+, Ca2+, Glycerol, Acetate, 

Biotin, Galactose, Riboflavin, Pyridoxine, Cl-, 

Malonate, Citrulline, Acetone, Creatine, Formate, 

Betaine, Myo-Inositol, Niacinamide, Pyridoxal,  

Succinate, Urea 
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Supplementary figures 

Supplementary Fig. S1 
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Supplementary Fig. S1.  Simulation results of random medium and constraint-free medium 

predicted fluxes. (a) Spearman correlation bar plot across each cell line for METAFlux model 

without any medium constraints. The spearman correlations between predicted fluxes and 

experimental fluxes were calculated for 11 cell lines. (b) Spearman correlation bar plot across 

each metabolite for METAFlux model without any medium constraints. The spearman 

correlations between predicted fluxes and experimental fluxes were calculated for 26 

metabolites and one biomass reaction. (c) Distribution of correlation between predicted fluxes 

with experimental fluxes over 500 random mediums. The red dotted line indicates the results of 

the original biological meaningful medium. (d) Distribution of direction accuracy over 500 

random mediums. The red dotted line indicates the result of the original biological meaningful 

medium.  
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Supplementary Fig. S2 

 

Supplementary Fig. S2.  Clustering and UMAP of TCGA LUAD and LUSC. (a) Scatterplot of 

glucose uptake flux with proliferation score. Each dot was color-coded by lung cancer type. The 

trend curve was generated using loess smoothing. (b) UMAP of TCGA LUAD and LUSC samples 

using predicted metabolic fluxes. Each dot represents one sample, and it is color-coded by lung 

cancer type. (c) UMAP of TCGA LUAD and LUSC samples using metabolic gene expression. Each 
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dot represents one sample, and it is color-coded by lung cancer type. (d) A river plot showing 

the clustering membership for flux-based clustering and gene-based clustering. 

 

Supplementary Fig. S3  
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Supplementary Fig. S3. Nutrients competition and lactate release profile in CAR-NK datasets. 

(a-b) Distribution of glucose and oxygen fluxes for three products. (c-f) Competition score of (c) 

arginine, (d) methionine, (e) isoleucine, and (f) tyrosine for average cancer cell against average 

NK cell in TME from day 7 to day 28. (g) The trend plot of total tumor lactate release to TME 

from day 7 to day 28. (h) The trend plot of lactate release by average NK cell over time. 
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Supplementary Fig. S4 
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Supplementary Fig. S4. METAFlux results on patient lung cancer datasets. (a) The overall 

glucose uptake comparison for ADENO and SCC. (b) Donut pie charts of total cell type specific 

nutrient uptake percentage for ADENO and SCC. The outer circle shows the LUSC nutrient 

uptake, and the inner circle shows ADENO nutrient uptake percentage. To calculate the 

percentage of specific nutrient uptake in a particular cell type, we divided the total uptake of 

that nutrient from each cell type by the total TME uptake of that nutrient. The total cell type 

uptake was calculated using per cell average flux multiplied by cell type proportion. Total TME 

nutrient uptake was calculated by summing the total uptake of that nutrient from all cell types. 
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