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Abstract 

 

Microglia is one of the major immune cell types in the human brain and plays pivotal roles in 

regulating inflammatory and immune response in healthy as well as disease states. By analyzing 

whole transcriptomic data derived from a large cohort of postmortem cortex tissues, we 

identified two distinct microglial subtypes within the population. The main difference between 

the two subtypes lies in the differential expression levels of the C1q complex components, Fc γ 

receptor (CD16) components and CD14. We validated our discovery in independent cohorts of 

brain autopsy tissues as well as in RNA-seq data generated from isolated microglia. Future 

investigations into the causes and physiological implications of these subtypes may shed more 

light on the homeostasis and regulation of the immune related processes in the brain.  

 

 

Introduction 

 

Molecular subtyping is a strategy employed to uncover potential disease heterogeneity in 

etiology, pathology, progression, and prognosis within patient populations. It has been 

successfully applied to various types of cancers based on transcriptomic and somatic 

mutational profiling of tumor tissues (Guinney et al., 2015; Hoadley et al., 2014; Koboldt et al., 

2012). The subtype information could inform treatment choice for patients as well as guide the 

potential development of targeted therapies. The availability of transcriptomic profiling data for 

biobank scale cohorts has greatly facilitated efforts to identify molecular subtypes for 

neurodegenerative diseases. For instance, Neff et al. identified three major molecular subtypes 

of Alzheimer’s Disease (AD) based on their analysis of 1,543 brain tissue transcriptomes across 

two AD cohorts (Neff et al., 2021). Directly applying clustering algorithms on the whole 

transcriptomic data often leads to clusters driven largely by variances of cell type compositions 

within the tissue. An alternative approach is to first identify gene modules that correspond to 

individual cell types or biological pathways and then interrogate if there exist sample/subject 

clusters within each gene module based on expression pattern similarity. We applied this 

strategy to the transcriptomic data of dorsal lateral prefrontal cortex (DLPFC) tissues within the 

Religious Orders Study-Memory and Aging Project (ROSMAP) cohort and identified two distinct 

molecular subtypes for microglia-associated genes. Furthermore, we validated our finding in 

independent cohorts of cortex tissues as well as isolated microglia RNA-sequencing datasets 

and explored major pathways and processes affected by the subtypes.  
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Results 
 

We leveraged whole-transcriptomic dataset derived from a cohort of 629 dorsal lateral 

prefrontal cortex (DLPFC) autopsy tissues in the ROSMAP study (de Jager et al., 2018) for the 

discovery of potential molecular subtypes. The cohort includes 249 subjects diagnosed with AD, 

168 subjects with minor cognitive impairment (MCI) and 200 age-matched healthy donors with 

no apparent cognitive impairment. After normalization and batch effect correction (see 

Materials and Methods), we first performed a high-level decomposition of the aggregated data 

using Non-negative Matrix Factorization (NMF). Genes enriched in each of the derived 

components were analyzed to identify common biological processes in Gene Ontology. The top 

five most enriched processes for each component are listed in Table 1. We noticed that for 

some components, the enriched processes correspond to the functions or features of certain 

cell types. For instance, synaptic transmission related processes are the most enriched terms 

for Component 2 genes, indicating that these genes are preferentially expressed in neurons. 

Similarly, Component 7 genes seem to be enriched for oligodendrocyte specific processes such 

as “oligodendrocyte differentiation” and “gliogenesis” (Table 1).  

 

To confirm this observation, we conducted analysis on a single cell RNA-seq dataset derived 

from PFC tissues (Morabito et al., 2020). Clustering of single cells based on the similarity of their 

gene expression levels revealed distinct cell populations (Figure 1a). By inspecting the 

expression levels of well-known marker genes across the populations, we were able to assign 

each population to one of the major cell types in the brain (Figure 1a & 1b). Next, we calculated 

the average expression levels in each cell population and measured cell type specificity of a 

gene by comparing its average expression levels across cell populations. We then evaluated the 

cell type specificity of NMF component enriched genes. Component 1 enriched genes are 

predominantly astrocyte specific; Component 2 and 6 enriched genes are mostly neuronal 

genes; Component 7 enriched genes are largely oligodendrocyte specific, whereas Component 

5 enriched genes are preferentially expressed in microglia, endothelial cells, and astrocytes 

(Figure 1c and Supplementary Material Figure 1S). 

 

To obtain a more granular view of the non-neuronal pathways and processes, we employed 

WGCNA (Langfelder & Horvath, 2008) to group genes enriched in NMF Components 1, 3, 4, 5, 7 

and 8 (4,353 non-neuronal genes). This resulted in 18 gene modules (Figure 2a). Gene Ontology 

enrichment analysis revealed that most modules corresponded to specific biological processes 

that are essential to the functions and homeostasis of the brain (Supplementary Material 

Figures S2). For example, “cyan” module genes are enriched for immune response and 

leucocyte activation related processes; “brown” module genes are enriched for type I 

interferon signaling pathways and “dark grey” module genes showed enrichment for blood 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


vessel related processes (Figure 2b). Within the “cyan” module genes we recognized several 

classical markers for microglia cells such as FYB, INPP5D and RUNX1. Indeed, when inspecting 

expression levels of the top genes in that module across major cell types using single cell RNA-

seq data, we were able to confirm that most “cyan” module genes are specifically expressed in 

microglia (Figure 2c).  

 

Next, we focused on the microglial module (the “cyan” module) genes and investigated 

whether it is possible to uncover microglia specific subtypes within the ROSMAP cohorts. To 

this end, we calculated the pairwise Pearson’s correlation coefficients among all samples using 

the expression levels of the top 100 microglial module genes and performed hierarchical 

clustering using the pairwise PCC as the distance metric. This analysis revealed two major 

clusters that included most of the samples (Figure 3a) in the cohort. Samples within the same 

cluster display higher level of similarity (as manifested by higher PCC) to each other compared 

with samples from a different cluster. To elucidate the differences between the two clusters 

and identify the key genes that contribute to such differences, we fitted the expression level 

data with a linear mixed model (LMM). LMM has the advantage of estimating cluster specific 

contributions to the coefficients while controlling the variability of overall levels of microglial 

genes (the intercept) in each donor (see Materials and Methods). We noticed that while for 

most genes the expression levels are quite comparable for the two clusters, several genes 

showed considerably elevated expression in one of the two major clusters (Figure 3b). The 

genes showing the strongest preferential expressions include those encode C1 complement 

component C1QA, C1QB and C1QC, Fc γ binding protein FCGBP, Fc γ receptor component 

FCGR3A and monocyte differentiation antigen CD14 (Figure 3b). We validated this discovery in 

two independent cohorts of cerebral cortex tissue RNA-seq datasets: 258 frontal pole tissues 

from the Mount Sinai Brain Bank (MSBB) collection (Wang et al., 2018) and 209 frontal cortex 

(BA 9) tissues from the GTEx consortium (Lonsdale et al., 2013). In both cohorts we found 

similar patterns of two major clusters whereby one of them is characterized by the elevated 

levels of C1q component genes, FCGR3A and CD14 (Figure 3c & d, Supplementary Material 

Figure S3). In fact, when we compared the top ten differential genes between the two clusters 

in the ROSMAP cohort with those in the MSBB cohort, nine of them are shared between the 

two cohorts (Supplementary Material Table S1), indicating that the clusters observed in 

independent cohorts are consistent across independent cohorts and likely represent distinct 

molecular subtypes.  

 

With the potential microglial subtypes identified from transcriptomic profiling of brain tissues, 

we further inquired whether we would detect similar subtypes from the transcriptomes derived 

from isolated microglia and if so what pathways and processes are most differentially regulated 

between the two subtypes. To that end, we leveraged RNA-seq datasets generated from 
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microglia isolated from postmortem autopsy brain tissues from 25 donors of the Netherlands 

Brain Bank (Alsema et al., 2020). The tissues were dissected from two brain regions: superior 

parietal lobe (LPS) and superior frontal gyrus (GFS). We first performed hierarchical clustering 

using the same genes as used in the DLPFC analysis and again identified two major clusters 

from the microglial RNA-seq data (Figure 4a). Next, we conducted a differential expression 

analysis comparing the two clusters and found 1,054 differentially expressed genes (FDR < 0.05, 

Figure 4b). Among these differentially expressed genes are the genes identified from the DLPFC 

transcriptomes including C1QA, C1QB, C1QC, FCGR3A and CD14 (Figure 4c). Eight out of the ten 

top differentially expressed genes in DLPFC tissue transcriptomes also show significantly altered 

expressions (and in the same direction) in the isolated microglial transcriptomes, which is 

significantly higher than expected by chance (p-value = 1.36e-5, hypergeometric test). This 

indicated that the microglial subtypes we discovered from DLPFC tissue RNA-seq dataset is 

replicated in isolated microglia. Brain tissue transcriptomes contain transcripts from various cell 

types and therefore we can only focus on those genes specifically expressed in microglia (the 

“cyan” module). RNA-seq dataset derived from isolated microglia, on the other hand, does not 

have such limitation and allows us to compare the two subtypes in a more comprehensive 

manner. We performed KEGG and Reactome pathways enrichment analysis for the 

differentially expressed genes using pathfindR (Ulgen et al., 2019). Among the enriched KEGG 

pathways are TNF signaling pathway and Fc γ receptor-mediated phagocytosis, while 

interleukin signaling pathway and TLR4-related signaling pathways are notable among the 

enriched Reactome pathways (Supplementary Material Figure S4).  

 

A key question regarding the microglial subtypes we discovered is if there is any clinical or 

physiological metrics associated with it. For donors within the ROSMAP study, several 

demographic and clinical information are available. Since the design of the ROSMAP study has a 

particular focus on Alzheimer’s Disease, the records include the AD diagnostic status, APOE 

genotype, Braak staging and CERAD score of the donors. We tested the association between 

the microglial subtypes and the aforementioned clinical measurements as well as sex of the 

subjects, RNA integrity number (RIN) and postmortem interval of the samples (PMI). After 

correcting for multiple testing, none of the characteristics we analyzed was significantly 

associated with microglial subtypes (Figure 5a, False Discovery Rate < 0.05). We further 

investigated whether there are any genomic markers associated with the microglial subtypes. 

The ROSMAP consortium conducted whole genome sequencing on 552 of the 629 donors 

included in our analysis, allowing us to use the genotype information for a genome-wide 

association analysis. We tested ~6.28 million variants with minor allele frequency greater than 

5% and did not detect any variants with significant association (using threshold p-value = 5e-8, 

Figure 5b & c). This indicated that either genetic factors did not play a major role in the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


determination of the microglial subtypes, or our current cohort lacked sufficient power to 

detect the effects.  

 

 

Discussion 

 

Transcriptomic data generated from postmortem brain tissue RNA sequencing typically reflects 

contributions from multiple cell types and pathways. The ability to deconvolute and dissect the 

data computationally allows us to individually evaluate cell types or pathways of interest. The 

availability of single cell RNA-seq data supports and facilitates the interpretation and 

annotation of the results. In this study, we employed a computational workflow that combines 

NMF and WGCNA to deconvolute the transcriptomic data of 629 DLPFC autopsy tissues in the 

ROSMAP study and identified gene modules that correspond to specific cell types and biological 

processes in the central nervous system. By focusing on the gene module associated with the 

cell type or pathway of interest, we were able to target our analysis on that particular cell type 

or pathway even though the transcriptomic data includes information from many other cell 

types or pathways. This mode of investigation is useful considering that cell sorting and 

enrichment are often laborious and time-consuming for a large cohort of tissues, and it allows 

us to directly harness the existing high-quality tissue RNA-seq datasets for the investigation of 

specific cell types or pathways without requiring cell sorting.  

 

When analyzing the expression profiles of microglial module genes within the ROSMAP cohort, 

we discovered two distinct subtypes characterized by the differential expression of a small 

number of genes. This observation is replicated in two additional independent cohorts, 

suggesting that it likely reflects a genuine feature within the human population. Most of the 

genes differentially expressed between the two subtypes are related to the recognition and 

clearance of invading foreign microbes. For instance, C1QA, C1QB and C1QC encode 

components of the C1 complex in the complement system, which is responsible for binding to 

the antigen-antibody complexes and initiating attacks on the membrane of the microbes (Reid, 

2018). FCGR3A encodes a component of the Fc fragment of IgG receptor III (also known as 

CD16), which plays key roles in the removal of antigen-antibody complexes and mediating 

antibody dependent cellular cytotoxicity (Mahaweni et al., 2018). Cluster of differentiation 14 

(CD14) encodes a protein that (with the help of other proteins) binds to bacterial 

lipopolysaccharide (LPS) as well as other pathogen-associated molecular patterns and activates 

Toll-like receptor 4 (TLR4) along with its downstream signaling pathway (Zanoni et al., 2011). To 

obtain a more comprehensive picture of the pathways driving the inter-subtypes differences, 

we searched for pathways that are enriched in genes differentially expressed between the two 

subtypes. Among the enriched KEGG pathways are “TNF signaling pathway”, which is a key 
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regulator of inflammation; and “Fc γ receptor mediated phagocytosis”, which includes FCGR3A. 

The enriched Reactome pathways include TLR4 downstream processes such as “MyD88-

independent TLR4 cascade” and “TRIF-mediated TLR4 signaling”, which are activated by the 

presence of invading pathogens; and interleukins signaling pathways which are activated upon 

the triggering of TLR4 signaling pathway. These findings imply that the main differences 

between the transcriptomes of the two microglial subtypes might be related to immune 

responses to microbial pathogens in the brain.  

 

Our analysis revealed that the microglial subtypes are not significantly associated with the 

onset or progression of Alzheimer’s Disease within our study cohort. Therefore, the 

physiological and pathological implications of the cortex microglial subtype remain to be 

discovered. Larger cohorts with more diverse backgrounds and involving more disease 

phenotypes will likely be needed to solve the puzzle. Another potential usage of the molecular 

subtype is to predict response to novel therapies, especially those targeting the inflammatory 

and immune response pathways in the brain. Since microglia cells are a critical component of 

the CNS immune system, it is possible that microglial subtypes might influence the efficacy of 

immune-modulating interventions. We uncovered the microglial subtypes by analyzing the 

transcriptomic data of the postmortem cortex tissues, but brain tissues are unavailable for 

studies involving living subjects. Therefore, we attempted to find genetic variants whose 

genotypes strongly associate with the molecular subtypes and can be used as surrogates to 

predict subtype status of the subject without requiring brain biopsy. With the genome-wide 

association analysis conducted on the ROSMAP cohort, we unfortunately did not find any 

variant that significantly associates with the microglial subtypes. Future studies with increased 

power or testing alternative surrogates are needed in the search for more efficient approaches 

to determine the microglial subtype status.  

 

 

 

 

 

Materials and Methods 
 

RNA-seq data processing 

RNA-seq and genomic sequencing data for the ROSMAP and MSBB studies are hosted by the 

AMP-AD consortium and is accessible through the Synapse portal 

(https://www.synapse.org/#!Synapse:syn2580853/wiki/409840). Demographic and clinical 

information are available through the same portal (syn3191087 for ROSMAP; syn6101474 for 
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MSBB). Processed and harmonized read-count matrix tables were directly downloaded from 

the Synapse portal (syn10507739 for ROSMAP; syn10507730 for MSBB). Briefly, reads were 

aligned to the GENCODE24 (GRCh38) reference genome using STAR, with “twopassMode” set 

as Basic. Transcript abundances were estimated for each sample using Sailfish. For more details 

about RNA-seq data processing please refer to 

https://www.synapse.org/#!Synapse:syn17010685. RNA-seq data of isolated microglia from the 

Netherlands Brain Bank study was downloaded from Gene Expression Omnibus (GSE146639). In 

this study, we analyzed the RNA-seq data at the gene level by summing up read counts over all 

isoforms belonging to the same gene. Genes that were detected (>= 5 counts per million) in less 

than 75% of the samples were excluded from subsequent analysis. The “removeBatchEffect” 

function in the “limma” R library (version 3.42.2) (Ritchie et al., 2015) was used to correct the 

effects of sequencing batch and RNA Integrity Number (RIN) after regression using voom (Law 

et al., 2014). Variant calling results from whole genome sequencing for ROSMAP study were 

downloaded from Synapse portal (syn11707420). Single-cell RNA-seq data was downloaded 

from Synapse portal (syn18915937). The processing of single-cell RNA-seq data including 

filtering, transformation, normalization, dimension reduction and visualization was 

implemented using Scanpy (version 1.8.2) library in Python (Wolf et al., 2018). Differential gene 

expression analysis was performed using DESeq2 (version 1.26.0) R package (Love et al., 2014).  

 

Non-negative Matrix Factorization and gene module analysis 

NMF decomposition was implemented in Python using the “NMF” function of the scikit learn 

library (version 0.23.2) (Pedregosa FABIANPEDREGOSA et al., 2011) with number of 

components set to eight (n_components = 8), maximum number of iterations set to 1,000,000 

(max_iter = 1000000) and no regularization penalty (alpha = 0). The mean and standard 

deviation of the read counts were calculated for each gene and capped at 5 standard deviations. 

Before the decomposition, the read counts for each gene were normalized to the 3rd quartile 

(75th percentile) to ensure that genes are comparable. The resulting loading matrix was 

normalized by the sum of weights for each gene to determine the relative contributions to each 

component. For a gene-component pair if the relative contribution by the gene to the 

component is greater than 35%, the gene is considered “enriched” in that component. Gene 

module analysis was implemented using the “WGCNA” (version 1.70-3) package in R 

(Langfelder & Horvath, 2008). In the construction of adjacency matrix, the soft thresholding 

power set to 10. After gene clustering, we merged those gene modules whose eigengenes have 

correlation greater then 0.75.  

 

Sample clustering based on microglial genes 

The 100 genes with the highest contribution to the eigengene of the microglial module (“cyan” 

module) were selected for subsequent analysis. Hierarchical clustering was performed on the 
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expression levels of those 100 genes across the donors using the “linkage” function in the Scipy 

(version 1.6.1) (Virtanen et al., 2020) library (scipy.cluster.hierarchy) in Python with metric set 

to “correlation” and method set to “average”. Linear Mixed Model (LMM) was used to ascertain 

the average expression profiles of the two major clusters while controlling for individual 

variations and was implemented in Python with the statsmodels.formula.api.mixedlm function 

in the statsmodels library (version 0.12.2) (Perktold & Seabold, 2010). The formula for the 

mixed model is ���� �  �� �  �� �  ��� � �� � 	���  , where ����  stands for the expression level 

of gene 
 in donor � belonging to cluster �, �� the coefficient for gene 
, ��  the coefficient for 

cluster �, ���  the effects of membership in cluster � on gene 
, ��  the intercept for donor � and 

	���  the noise. ��  is treated as the random effect in the model while ��, ��  and ���  are treated as 

the fixed effects. The fitting of the LMM is performed after logarithm (log2) transformation.    

 

Association of microglial subtypes with demographic/clinical traits and genomic variants 

The association of microglial subtype with categorical traits such as sex and AD status are 

measured by Fisher’s Exact test with the “scipy.stats. fisher_exact” function in the Scipy 

(version 1.6.1) (Virtanen et al., 2020) library. The association with numerical traits including RIN, 

PMI, APOE ε4 allele copy number, Braak staging and CERAD score are calculated by comparing 

the values of those traits of the two subtypes using Mann-Whitney test 

(scipy.stats.mannwhitneyu). The association with the genomic variants was performed using 

PLINK (version v1.90b6.17) (Purcell et al., 2007) with the logistic regression mode (--logistic --

geno --maf 0.05 --hwe 0.000001) and treating sex, age, and PMI as covariates.  

 

Gene Ontology and pathway enrichment analysis 

Enrichment for Gene Ontology biological process terms was performed using the “topGO” 

package (version 2.38.1) in R. Benjamini-Hochberg method was used to correct for multiple 

testing. Pathway enrichment analysis was performed using pathfindeR (version 1.4.1) (Ulgen et 

al., 2019) with options “min_gset_size=50, max_gset_size=500”.  

  

 

Figure Legend 

 

Figure 1 

 

Annotation of NMF components using single-cell brain transcriptomic data. (a) UMAP plot 

revealing cell populations that represent distinct cell types. (b) Violin plots showing distribution 

of cell-type specific marker genes across major cell populations. (c) Heatmaps representing cell-
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type specificity of genes enriched in NMF components 2 and 5. Each column (gene) is 

normalized to its maximum value.  

 

 

Figure 2 

 

Identification of non-neuronal gene modules with WGCNA. (a) Dendrogram showing gene 

modules identified with WGCNA. (b) Top 5 Gene Ontology (biological processes) terms for 

“cyan”, “brown” and “darkgrey” modules. The color of the bars matches the “color” of the 

respective module. (c) Dotplot showing the cell type specificity of the “cyan” module genes. The 

colors of the dots denote the average expression level of the genes whereas the sizes of the 

dots are proportional to the percentage of cells in which the expression of the gene is detected.  

 

 

Figure 3 

 

Analysis of microglia gene modules reveals subtypes within large cohorts. (a) & (c) Heatmaps 

showing subject clusters based on pairwise correlation of microglia genes in ROSMAP (a) and 

MSBB (c) cohorts. Hierarchical clustering is applied. The color of each grid represents the 

Person Correlation Coefficient between two donors. The color bars on the left of the heatmap 

denote cluster membership and demographic traits. (b) & (d) Scatter plots comparing the fitted 

coefficients of the two clusters in ROSMAP (b) and MSBB (c) cohorts. Labeled genes are the 

ones showing the highest discrepancies between the two clusters. Dotted red line represents 

the curve  � �.  

 

 

Figure 4 

 

Similar subtypes are observed in microglia RNA-seq dataset. (a) Heatmap showing hierarchical 

clustering based on microglia RNA-seq data. The color of each grid represents the Person 

Correlation Coefficient between two samples. The color bars on the left of the heatmap denote 

cluster membership. (b) Volcano plot showing differentially expressed genes between the two 

clusters. Genes that are up- or down-regulated by more than 2-fold and have adjusted p-values 

smaller than 1e-4 are colored in red. (c) Boxplots comparing the expression levels of C1QA, 

C1QB, C1QC, FCGBP, FCGR3A, CD14, HAMP and TYMP in microglia between the two clusters.  
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Figure 5 

 

The microglia subtypes are not explained by any of the sample characteristics, patient 

demographic/pathological traits or genomic variants we investigated. (a) Bar plots showing the 

adjusted p-values of association between various clinical/demographical features and the 

microglia subtype. (b) & (c) Manhattan plot (b) and Quantile-Quantile plot (c) of genome-wide 

association study analysis between genomic variants and microglia subtypes. Red dotted lines 

in (a) and (b) represent levels of statistical significance.  
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GO.ID Term Hit FDR
Component 1 GO:0019752 carboxylic acid metabolic process 42 5.22E-05
n = 263 GO:0006082 organic acid metabolic process 44 5.22E-05

GO:0050877 nervous system process 35 5.22E-05
GO:0055114 oxidation-reduction process 39 5.22E-05
GO:0043436 oxoacid metabolic process 43 5.22E-05

Component 2 GO:0007268 chemical synaptic transmission 67 3.09E-19
n = 423 GO:0098916 anterograde trans-synaptic signaling 67 3.09E-19

GO:0099537 trans-synaptic signaling 67 5.06E-19
GO:0099536 synaptic signaling 67 6.04E-19
GO:0017156 calcium ion regulated exocytosis 28 8.09E-13

Component 3 GO:0010817 regulation of hormone levels 8 1
n = 241 GO:0007186 G protein-coupled receptor signaling pat... 8 1

GO:0008285 negative regulation of cell proliferatio... 8 1
GO:0010648 negative regulation of cell communicatio... 12 1
GO:0023057 negative regulation of signaling 12 1

Component 4 GO:0006457 protein folding 12 2.30E-09
n = 45 GO:0061077 chaperone-mediated protein folding 8 1.15E-08

GO:0009408 response to heat 10 2.81E-08
GO:0006986 response to unfolded protein 10 4.63E-08
GO:1900034 regulation of cellular response to heat 8 1.12E-07

Component 5 GO:0006952 defense response 82 <1E-22
n = 247 GO:0002250 adaptive immune response 35 8.61E-21

GO:0006954 inflammatory response 45 5.62E-20
GO:0002252 immune effector process 63 7.53E-20
GO:0034097 response to cytokine 63 1.59E-19

Component 6 GO:0007610 behavior 10 0.17787167
n = 72 GO:0007269 neurotransmitter secretion 6 0.17787167

GO:0099643 signal release from synapse 6 0.17787167
GO:0006836 neurotransmitter transport 7 0.17787167
GO:0099504 synaptic vesicle cycle 6 0.31829667

Component 7 GO:0048709 oligodendrocyte differentiation 21 6.18E-12
n = 361 GO:0042063 gliogenesis 27 1.78E-08

GO:0014003 oligodendrocyte development 13 2.62E-08
GO:0048514 blood vessel morphogenesis 36 2.62E-08
GO:0001525 angiogenesis 33 2.62E-08

Component 8 GO:1903708 positive regulation of hemopoiesis 6 0.00028085
n = 29 GO:0051094 positive regulation of developmental pro... 12 0.00050553

GO:0045597 positive regulation of cell differentiat... 10 0.00082777
GO:0030099 myeloid cell differentiation 7 0.0009036
GO:0002521 leukocyte differentiation 7 0.0009036

Table 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


UMAP1

U
M
AP

2

a b

c

Figure 1

NMF Component 2

NMF Component 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster Dendrogram

hclust (*, "average")
as.dist(dissTOM)

H
ei

gh
t

Dynamic Tree Cut

a b

c

Figure 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cluster
ClusterA

ClusterB

Sex
Female

Male

Race
White

Black

Other

Diagnosis
AD

MCI

NCI

a b

c d

Figure 3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cluster
ClusterA ClusterB

LPS

GFS
Brain region

a b

c

Figure 4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

b c

Figure 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492569doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492569
http://creativecommons.org/licenses/by-nc-nd/4.0/

