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Abstract

The k-spectrum of a string is the set of all distinct substrings of length k occurring in the string. This
is a lossy but computationally convenient representation of the information in the string, with many
applications in high-throughput bioinformatics. In this work, we define the notion of the Spectral
Burrows-Wheeler Transform (SBWT), which is a sequence of subsets of the alphabet of the string
encoding the k-spectrum of the string. The SBWT is a distillation of the ideas found in the BOSS
and Wheeler graph data structures. We explore multiple different approaches to index the SBWT for
membership queries on the underlying k-spectrum. We identify subset rank queries as the essential
subproblem, and propose four succinct index structures to solve it. One of the approaches essentially
leads to the known BOSS data structure, while the other three offer attractive time-space trade-
offs and support simpler query algorithms that rely only on fast rank queries. The most general
approach involves a novel data structure we dub the subset wavelet tree, which we find to be of
independent interest. All of the approaches are also amendable to entropy compression, which leads
to good space bounds on the sizes of the data structures. Using entropy compression, we show that
the SBWT can support membership queries on the k-spectrum of a single string in O(k) time and
(n + k)(log σ + 1/ ln 2) + o((n + k)σ) bits of space, where n is the number of distinct substrings of
length k in the input and σ is the size of the alphabet. This improves from the time O(k log σ)
achieved by the BOSS data structure, while maintaining the same asymptotic space complexity of
O(n log σ), albeit with smaller constant factors. We show, via experiments on a range of genomic
data sets, that the simplicity of our new indexes translates into large performance gains in practice
over prior art.

1 Introduction

The set of substrings of a given length k of a string S is called the k-spectrum of S. Indexing such
spectra has been an important topic in bioinformatics in the past decade. For example, the k-spectrum
and the associated de Bruijn graph is a central tool in genome assembly [7]. In metagenomics, k-spectra
have found their place as a useful approximation of the sequence content of the sample, allowing rapid
similarity estimation between data collected from sequencing estimates [19, 27]. In applications, typical
values for k are in the range from 20 to 100.

There are multiple design goals for efficient representations of k-mer spectra. In general, the index
should be small enough to fit in the main memory of a server machine, while offering fast support for
membership queries, that is, queries asking whether a given k-mer (string of length k) is part of the
spectrum. Additional query support may include querying for the neighbors of a k-mer, that is, k-mers
that share a suffix or a prefix of length k − 1 with the current k–mer. This allows fast simulation of
the de Bruijn graph of the spectrum. The BOSS data structure [4] is a popular solution that meets all
the above requirements. Other methods include hashing [22], Bloom filters [28] and the FM-index-based
DBGFM structure [6]. Some more recent solutions emphasize the need for dynamic operations, allowing
insertion or deletion of data on the index after it has been built [2, 8, 3, 1]. It is also desirable to
be able to support attaching some satellite data to each k-mer, like is done in, e.g., colored de Bruijn
graphs [16, 23, 15, 22, 20], which are now in widespread use. We refer the reader to the recent surveys of
Chikhi [5] and Marchet et al. [21] for comprehensive surveys on existing methods.

In this work, we define a static representation of k-mer spectra which we call the Spectral Burrows-
Wheeler Transform, or SBWT for short. The SBWT is an evolution of the BOSS data structure [4],
which is an indexed representation of the edge-centric de Bruijn graph, based on a version of the Burrows-
Wheeler transform. The SBWT differs from the BOSS in that it is node-centric, and more general – the
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BOSS data structure can be seen as a particular implementation of the SBWT. The SBWT can also be
seen as a specialization of the Wheeler graph framework [11] into k-spectra, taking full advantage of the
properties of the special case.

The SBWT, which we define in Section 3, is a particular sequence of subsets from the alphabet of the
input string. To implement k-mer membership queries on the SBWT, a form of rank queries on subset
sequences is required. A subset rank query takes in a character c and an index i, and returns the count
of how many of the first i subsets in the sequence of subsets contain c. We propose four possible index
data structures for subset rank queries, leading to four different SBWT index structures, which we call
ConcatSBWT, MatrixSBWT, SplitSBWT and SubsetWTSBWT. ConcatSBWT is a simplified version of
the original BOSS representation, whereas the other three are novel variants offering different time-space
tradeoffs. SubsetWTSBWT is based on a new data structure we call the subset wavelet tree, which is of
independent interest. SplitSBWT uses a practical version of subset wavelet tree that is tailored for an
SBWT of an input string with a small alphabet, such as the DNA alphabet. MatrixSBWT is a simple
variant suitable for small alphabets, that is only slightly larger than the others in practice, but offers
extremely fast subset rank queries and k-mer search operations.

We then show that it is possible to use entropy coding methods to compress the space of these data
structures while retaining query support. In particular, we show that MatrixSBWT implemented with
bit vectors compressed to the zeroth order entropy leads to a data structure taking 3.25 bits per k-mer
on the DNA alphabet, matching the navigational lower bound of Chikhi et al. [6].

An important caveat is that the lower bound of Chikhi et al. is for an arbitrary set of k-mers, not for the
spectrum of a single string. The space on a general alphabet of size σ is (n+k)(log σ+1/ ln 2)+o((n+k)σ),
where n is the number of k-mers in the spectrum. The data structure can answer k-mer membership
queries in O(k) time, improving on the original BOSS data structure, which occupies the same asymptotic
space, but takes O(k log σ) time for membership queries.

The index structures SplitSBWT and SubsetWTSBWT are aimed at occupying space that is lower
than the navigational lower bound. This is achieved by exploiting the uneven distribution of the subsets
in the subset sequence of the SBWT. We aim to compress the size of the data structures down to the
zeroth order entropy of the subset sequence, where each subset is considered as a symbol. We show that
this method allows us to get down to 2.44 bits per k-mer on an E. coli pangenome.

We also propose a compression-boosting algorithm that aims to minimize the entropy of the subset
sequence by adjusting the sets without changing the underlying k–spectrum. We find that in practice
the method quickly converges to a local minimum that has 0.25% lower entropy than the initial SBWT.
We leave it as an open question whether this local minimum is optimal.

In practice, our methods lead to a radically new level of performance for succinct de Bruijn graphs,
significantly outperforming the best previous approach [23] when space-usage is equated and simultane-
ously offering a range of attractive space-time tradeoffs. Two highlights are (1) an index that takes only 4
to 5 bits per k-mer on our genomic datasets, and is 90 to 112 times faster than the BOSS implementation
of VARI and (2) an index taking only 2.6 to 3.35 bits per k-mer while being 19 to 26 times faster than
VARI.

2 Preliminaries

Throughout we will consider a string S = S[1..n] = S[1]S[2] . . . S[n] on an integer alphabet Σ of σ
symbols. The colexicographic order of two strings is the same as the lexicographic order of their reverse
strings. The substring of S that starts at position i and ends at position j, j ≥ i, denoted S[i..j], is the
string S[i]S[i + 1] . . . S[j]. If i > j, then S[i..j] is the empty string ε. A suffix of S is a substring with
ending position j = n, and a prefix is a substring with starting position i = 1. We use the term k-mer to
refer to a (sub)string of length k.

A de Bruijn graph (dBG) of order k is directed labelled graph built from a set of k-mers S. There are
two prevailing views of a dBG, and we define both here. In the node-centric dBG, the node set is given
by S and there is an edge from node u to v iff the last k − 1 symbols of u are equal to the first k − 1
symbols of v. In an edge-centric dBG, the node set is given by the set of (k − 1)-mers present in S, and,
for every x ∈ S, there is an edge from x[1..k − 1] to x[2..k]. In other words, the k-mers of S are nodes
in the node-centric dBG and edges in the edge-centric dBG. See Figure 1. Node-centric and edge-centric
dBGs represent equivalent information, however, as we shall see, the ease of representing and navigating
them can differ significantly.

A key tool in the design of succinct data structures is the support for the query operations rank, select,
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and access, on a bit string X of length n defined as follows (for i ≤ n and x ∈ {0, 1}):

rankx(i) = number of x’s among the first i bits of X

access(i) = value of the ith bit of X

selectx(i) = position of the ith x in X

Classical techniques (see, e.g., [24]) require n+ o(n) bits to support each of the above queries in O(1)
time. However, the information theoretic lower bound on space usage for a bit string of length n having
n1 1s, is B(n, n1) = log

(
n
n1

)
= n1 log

n
n1

bits.
There are data structures that come within a lower order term of this lower bound while still supporting

fast rank, select, and access operations. Perhaps the foremost of these, known as “RRR”, is due to Raman,
Raman, and Rao Satti [29], which takes space B(n, n1)+o(n) and answers all queries above in O(1) time.
Fast implementations of RRR have been studied by several authors [25, 13].

Another notable compressed data structure for bit strings is the so-called “Elias-Fano” (or EF)
scheme [31, 9, 10], which occupies 2n1 + n1⌈log(n/n1)⌉ bits and supports rank in O(log(n/n1)) time
and select1(i) in O(1) time, and tends to be faster than RRR in practice when applied to very sparse
bit strings. Like RRR, the efficient implementation of EF has also received considerable practical atten-
tion [18, 26].

The rank, access and select queries are also sometimes needed on strings with an alphabet larger than
2. The wavelet tree data structure [14] supports these queries in O(n log σ) bits of space and O(log σ)
time, where n is the length of the string and σ is the size of the alphabet.

In our analysis later in the paper, we will also make use of the entropy of a probability distribution
p, which is denoted H(p) and is defined as:

H(p) = −
∑
x

p(x) log p(x) , (1)

where the sum is over the domain of p.
A useful form of the entropy for strings is the so-called zeroth-order empirical entropy, denoted H0(S)

for a string S, or just H0 when the context is clear. In particular,

H0 =
∑
c∈Σ

nc

n
log

n

nc
, (2)

where n = |S| is the length of S and nc is the number of occurrences of the symbol c in S. We remark
that B(n, n1) is bounded above by nH0.

3 The Spectral Burrows-Wheeler Transform

In this section we define the Spectral Burrows-Wheeler transform, and the spectrum membership query
algorithm based on it. We begin with two basic definitions:

Definition 1. (k-spectrum). The k-spectrum of a string T , denoted with Sk(T ), is the set of all k-mers
of the string T .

Definition 2. (k-prefix set). The k-prefix set of a string T is defined as the left-padded set of prefixes
Pk(T ) = {$k−iT [1..i] | i = 0, . . . , k − 1}, where $ is a special character not found in the alphabet, that is
smaller than all characters of the alphabet.

For example, for string T = TAGCAAGCACAGCATACAGA, we have:

S3(T ) = {AAG,ACA,AGA,AGC,ATA,CAA,CAC,CAG,CAT,GCA,TAC,TAG},

and
P3(T ) = {$$$, $$T, $TA}.

We are now ready to define the Spectral BWT.

Definition 3. (Spectral BWT, SBWT). Let T be a string from an alphabet Σ of size σ. The spectral
BWT of order k of T is a mapping from Sk(T ) to a sequence X1, X2, . . . Xn of subsets of Σ. The set
Xi is defined as follows. Let xi be the colexicographically i-th k-mer in Sk(T ) ∪ Pk(T ). If xi[2..k] is the
colexicographically smallest k-mer in Sk(T )∪Pk(T ) that has xi[2..k] as a suffix, then Xi is the set of last
characters of k-mers y ∈ Sk(T ) ∪ Pk(T ) that have xi[2..k] as a prefix. Otherwise, xi is an empty set.
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GCAAGC

CAAAAG

CAC

ACACAG

CAT

ATA

TACTTA

TAG

AGA

Figure 1: The de Bruijn graph for the string TAGCAAGCACAGCATACAGA. Black edges are in the
edge-centric graph. Blue edges are only in the node centric graph

GCAAGC

CAAAAG

CAC

ACACAG

CAT

ATA

TACTTA

TAG

AGA

Figure 2: The de Bruijn graph of TAGCAAGCACAGCATACAGA after edge pruning. Every node except
for the node of the empty string has exactly one incoming edge, such that the incoming path spells the
colexicographically smallest incoming path in the graph prior to pruning.
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Continuing for the previous example, the colexicographically ordered list of S3(T ) ∪ P3(T ) is:

$$$, CAA,ACA,GCA,AGA, $TA,ATA,CAC, TAC,AGC,AAG,CAG, TAG, $$T,CAT

and the SBWT is the sequence:

{T}, {G}, {ACGT}, ∅, ∅, {CG}, ∅, {A}, ∅, {A}, {AC}, ∅, ∅, {A}{A}

The sets in the SBWT represent the labels of outgoing edges in the node-centric de Bruijn graph, such
that we only include outgoing edges from k-mers that have a different suffix of length k − 1 than the
preceeding k-mer in the colexicographically sorted list. See Figure 2. The padding of dollar-symbols in
Definition 3 is a technical detail that is required to make the SBWT work. Alternatively, the sequence
T could be made cyclic, and the need for Pk(T ) avoided.

We now describe how to implement efficient k-mer membership queries on the spectrum of the input
string, using only the information encoded in the SBWT. Here it is beneficial to view the spectrum as
a de Bruijn graph. We can think of the nodes as being ordered by the colexicographic order of the
corresponding k-mers. We define an order for the edges such that the edges are sorted primarily by the
edge label, and secondarily by the order of the origins of the edges. We denote with R(e) the rank of
edge e in this order. Because the graph is a de Bruijn graph, the indices of the destination nodes of the
edges are in the same order as the ranks R(e), that is, if R(e1) < R(e2), then the destination of edge e1
is larger than the destination of edge e2.

Due to Definition 3, every node has exactly one incoming edge, except for the node corresponding
to k-mer $k, which has no incoming edge. This is because when there are multiple nodes that could
have an edge to the same node, we always use the node corresponding to the colexicographically smallest
k-mer choice, and since the graph is built from a spectrum of a single string, every node has at least one
candidate incoming edge (except for the node of k-mer $k). This means that the destination of edge e is
the node with index R(e) + 1 in the sorted order.

Thus, the entire graph can be extracted from just the SBWT alone. The k-mer label of a node is
spelled by any incoming path of length k to the node (the properties of de Bruijn graphs ensure that
every incoming path of length k has the same label). This shows that the SBWT is invertible in the sense
that is it possible to extract the original spectrum back from the SBWT.

This graph is also a Wheeler graph [11], which means that the generic Wheeler graph index could
be used to index the graph. The Wheeler graph index however requires the storage of the sequence of
indegrees and outdegrees of the nodes in the graph, whereas in the SBWT this is not required because
every node apart from the node of the empty string has in-degree of exactly 1, and the sequence of
outdegrees is already included in the sizes of the sets of the outgoing edge label sets. The most important
conceptual advance over the Wheeler graph index, however, is a reformulation of the k-mer search problem
in terms of subset rank queries.

Subset rank query: Let X1, . . . Xn be a sequence of subsets of an alphabet Σ = {1, . . . , σ}. A subset
rank query takes as an input an index i and a character c ∈ Σ, and returns the number of subsets Xj

with j ≤ i such that c ∈ Xj .

We now describe a k-mer search routine that uses subset rank queries as the only subroutine. The search
routine works by searching the k-mer character by character from left to right, maintaining the interval
of nodes that are suffixed by the prefix that has been processed so far. Suppose we have an interval [i, j]
of nodes suffixed by prefix α of the k-mer, and we want to find the interval [i′, j′] of nodes suffixed by αc,
where c is the next character in the k-mer. This is equivalent to following all edges labeled with c from
the nodes in [i, j]. Due to the way the edges are defined, the end points of these edges are a contiguous
range [i′, j′] such that i′ is the destination of the first outgoing edge labeled c from [i..j], and j′ is the
destination of the last one. Let C[c] be the number of edge labels with label smaller than c in the graph.
Now we have the following formulas:

i′ = 1 + C[c] + subsetrankc(i− 1) + 1

j′ = 1 + C[c] + subsetrankc(j) ,
(3)

where subsetrankc is a subset rank query on the sequence of subsets in the SBWT. The “+1” at the
start of the formulas is to skip over the node of $k. The values C[c] can be precomputed for all characters
c ∈ Σ. By iterating these formulas k times, we have the k-mer search routine. See Algorithm 1. This
establishes the result below.
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Algorithm 1 SBWT k-mer search query.
Input: k-mer S.
Output: The colexicographic rank of k-mer S in the underlying spectrum of the SBWT, or 0 if S is not
in the spectrum.

function Search(S):
[ℓ, r]← [1, n]
for i = 1, . . . , k do

c← S[i]
1 + ℓ← C[c] + subsetrankc(ℓ− 1) + 1
1 + r ← C[c] + subsetrankc(r)
if ℓ > r then

return 0
return ℓ.

Lemma 1. The SBWT supports k-mer membership queries in O(kt) time, where t is the time for a
subset rank query.

□

3.1 Extension to Multiple Strings

In this subsection, we define an extension of the SBWT to multiple input strings T1, . . . Tm. The easiest
way to extend the SBWT to multiple strings would be to just replace the the spectrum Sk(T ) and the
k-prefix set Pk(T ) in Definition 3 with the unions Sk(T1) ∪ . . . ∪ Sk(Tm) and Pk(T1) ∪ . . . ∪ Pk(Tm)
respectively. However, if the input consists of a large number of short strings, such as DNA sequence
reads, this method can introduce a lot of space overhead because every string Ti adds k padded prefixes
to the union. On the other hand, the prefixes are only there to ensure that every k-mer has at least one
incoming edge. Actually, we only need to include the k-prefix sets of those strings Ti where the leftmost
(k− 1)-mer of Ti does not appear as a suffix of any k-mer in T1, . . . , Tm. Let R(T1, . . . , Tm) be the set of
indices i such that Ti have this property, and let

P ′
k(T1, . . . , Tm) =

 ⋃
i∈R(T1,...,Tm)

Pk(Ti)

 ∪ {$k}
be the modified prefix set. The k-mer $k is always added for convenience to match the property in the
regular SBWT where the k-mer $k always exists. Finally, let

S′
k(T1, . . . Tm) =

m⋃
i=1

Sk(Ti) .

Now, we define the Multi-string Spectral BWT as follows:

Definition 4. (Multi-SBWT). Let {T1, . . . Tm} be a set of strings from an alphabet Σ of size σ and let U =
S′
k(T1, . . . Tm) ∪ P ′

k(T1, . . . Tm). The multi-SBWT of order k of {T1, . . . Tm} is a sequence X1, X2, . . . Xn

of subsets of Σ. The set Xi is defined as follows. Let xi be the colexicographically i-th k-mer in U . If
xi[2..k] is the colexicographically smallest k-mer in U that is suffixed by xi[2..k], then Xi is the set of last
characters of k-mers y ∈ U that are prefixed by xi[2..k]. Otherwise, xi is an empty set.

All the properties required in the SBWT for the k-mer search in Algorithm 1 to work are preserved in
this definition, so the k-mer search routine still works for the multi-SBWT without modifications.

4 Data Structures for Subset Rank Queries

In this section, we propose four different succinct data structures for subset rank queries. Our treatment
here is not intended to be exhaustive, but rather to demonstrate that an interesting range of space-time
tradeoffs are possible. We use the notation from the previous section, that is, we are indexing a sequence
X1, . . . Xn of subsets of an alphabet Σ = {1, . . . , σ}. A subset rank query takes as an input an index i
and a character c ∈ Σ, and returns the number of subsets Xj with j ≤ i such that c ∈ Xj .
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$$$ CAA ACA GCA AGA $TA ATA CAC TAC AGC AAG CAG TAG $$T CAT
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Figure 3: MatrixSBWT of TAGCAAGCACAGCATACAGA with k = 3. The dashed lines indicate
borders of suffix groups. Two adjacent columns are in the same group if they have the same suffix of
length k−1. Bits may be moved horizontally inside a suffix group without affecting the k-mer set encoded
in the matrix.
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Figure 4: SplitSBWT of TAGCAAGCACAGCATACAGA. The bits are spread out inside a suffix group
to maximize the number of singleton sets. The index consists of just B,M+ and W .

4.1 Plain Matrix Representation

This data structure uses a binary matrix M of size σ × n, such that M [i][j] = 1 iff subset Xj contains
the i-th character in the alphabet. See Figure 3. The rows of the matrix are indexed for constant-time
succinct rank queries. The subset rank query for the i-th character of the alphabet up to index j is
answered in contant time with a rank query on row M [i] up to index j.

4.2 Split Representation

This is a version of the plain matrix representation, tailored for the use case of subset rank queries in the
SBWT, exploiting the property that, in many use cases in genomics, most of the sets in the SBWT are
singletons. Let M− be the submatrix of matrix M in the plain matrix representation that contains only
the columns of M with exactly one 1-bit set, and let M+ be the submatrix of M containing the rest of
the columns. Let B be a bit vector of length equal to the number of columns in M , marking with 1-bits
which columns of M are in M+.

We index both M+ and M− for character rank queries. Matrix M+ is indexed like in the plain matrix
representation. Matrix M− on the other hand is replaced by a string W that is the concatenation of
the labels corresponding to the bits in the columns. The string W is indexed as a wavelet tree. The bit
vector B is indexed for rank queries. In summary, the final index consists of just B, M+ and W and
their rank support structures. See Figure 4.

Subset rank query for i-th character up to index j in the original subset sequence can now be answered
by using a rank query on B to determine how many of the first j columns of M went to M+ and M−, then
using the rank structures of M+ and M− to count the number of characters in the corresponding prefixes
of columns in both matrices, and returning the sum of the two counts. That is, if r = rank1(B, j), then
answer to the query is rank1(M

+[i], r) + ranki(W, j − r).
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L

Figure 5: ConcatSBWT of TAGCAAGCACAGCATACAGA. The bits are spread out inside a suffix group
to maximize the number of singleton sets.

T G ACGT CG A A AC A A

ACGT CG A A AC A A T G ACGT CG

0 0 1 0 0 1 0 1 0 1 1 0 0 1 1
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 1 1
1 1 0 0 1 0 0 1 0 1 0

AC
GT

A
C

G
T

Figure 6: SubsetWTSBWT of TAGCAAGCACAGCATACAGA. The labels are concentrated to single
sets inside a suffix group to create many empty sets. The index consists of just the bit vectors in the
figure.

4.3 Concatenated Representation

This data structure uses a concatenation of the contents of the subsets, and an encoding of the sequence
of sizes of the subsets. In more detail, let S(Xi) be the concatenation of the characters in subset Xi. If
Xi is the empty set, we define S(Xi) = $. We build the string L = S(X1)S(X2) . . . S(Xn) and index it
for rank queries. The empty sets are represented as dollars to be able to encode the sizes of the subsets
with a bit vector B that is the concatenation 0 · 1|S(X1)|−1 · 0 · 1|S(X2)|−1 · · · 0 · 1|S(Xn)|−1. See Figure
5. If the sequence of subsets contains a large number of singleton or empty sets, the bit vector B is
sparse, and is efficiently compressed using the Elias-Fano encoding. The bit vector B is indexed for
queries for select-0. A subset rank query for a character c up to index i is then answered by computing
rankc(L, select0(B, i+ 1)− 1).

4.4 Subset Wavelet Tree

We build a tree with log σ levels (assume for simplicity that σ is a power of 2). Each node of the tree
corresponds to a part of the alphabet, defined as follows. We denote with Av the alphabet of node v. The
root node corresponds to the full alphabet. The alphabets of the rest of the nodes are defined recursively
such that the left child of a node v corresponds to the first half of Av, and the right child corresponds to
the second half of Av. Let Qv be the subsequence of subsets that contain at least one character from Av.
As a special case, the subsequence Qv also includes the empty sets if v is the root.

Each node v contains two bit vectors Lv and Rv of length |Qv|. We have Lv[i] = 1 iff subset Qv[i]
contains a character from the first half of Av, and correspondingly Rv[i] = 1 if Qv[i] contains a character
from the second half of Av. See Figure 6. The bit vectors Lv and Rv may be entropy-compressed
efficiently by considering them together as a string from alphabet {0, 1, 2, 3}, such that the i-th character
is defined as (2 · Lv[i] + Rv[i]). This will take advantage of the fact that in the case of the SBWT, it is
rare that Lv[i] = Rv[i] because most of the sets in the SBWT tend to be singletons. Rank queries on Lv

can then be implemented by summing the ranks of characters 0 and 2, and rank queries on Rv can be
implemented by summing the ranks of characters 1 and 3.

To answer our query for a character c and position i, we traverse from the root to the leaf of the
tree that where Av is the singleton subset {c}. While traversing, we compute for each visited node v
the length of the prefix in the current subset sequence Qv that contains all the subsets of X1, . . . Xi that
have at least one character from Av. This is done by using rank queries on the bit vectors Lv and Rv,
analogously to the regular wavelet tree query. The pseudocode is given in Algorithm 2.

Query time for the subset wavelet tree is clearly O(log σ), and without compression the data structure
consumes 2n log σ + o(n log σ) bits of space.
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Algorithm 2 Subset wavelet tree query.
Input: Character c from an alphabet Σ = {1, . . . , σ} and an index i.
Output: The number of subsets Xj such that j ≤ i and c ∈ Xj .

function SubsetRank(c, i):
v ← root
[ℓ, r]← [1, σ]
while ℓ ̸= r do

if c < (ℓ+ r)/2 then
r ← ⌊(ℓ+ r)/2⌋
i← rank1(Lv, i)
v ← left child of v

else
ℓ← ⌈(ℓ+ r)/2⌉
i← rank1(Rv, i)
v ← right child of v

return i.

5 Analysis

In this section, we prove bounds on the sizes of entropy-compressed versions of the plain matrix repre-
sentation of an SBWT. The size bounds are expressed in terms of the number of columns of the matrix,
which is equal to |Sk(T )|+ k, where T is the original string.

Theorem 1. A plain matrix SBWT representation can be encoded in n(log σ + 1/ ln 2) + o(nσ) bits of
space, with support for k-mer membership queries in O(k) time, where n is the number of columns in the
matrix, and σ > 1 is the size of the alphabet.

Proof. The bit matrix has σ rows and n columns, and always has n − 1 ones. In other words, the
fraction of one-bits in the matrix is (n − 1)/(nσ), which is less than 1/σ. Plugging Pr(1) = 1/σ and
Pr(0) = 1 − 1/σ to the entropy formula (Eq. (1)), which is a monotonically increasing function in the
interval [0, 1/σ], gives

H ≤ (log σ − (σ − 1) log((σ − 1)/σ))/σ

bits of entropy per matrix element, or

nσH ≤ n(log σ − (σ − 1) log((σ − 1)/σ))

bits of entropy for the whole matrix. The term −(σ − 1) log((σ − 1)/σ) is upper bounded by 1/ ln 2,
when σ > 1, where ln is the natural logarithm. This can be shown by plugging in x = 1/(σ − 1) to the
well-known inequality ln(x + 1) ≤ x, which gives ln(1/(σ − 1) + 1) ≤ 1/(σ − 1), which is equivalent to
−(σ − 1) log((σ − 1)/σ) ≤ 1/ ln 2. So we have:

nσH ≤ n(log σ + 1/ ln 2)

This shows that entropy compressing the matrix to the zeroth order entropy of the bits results in space
n(log σ + 1/ ln 2). In practice this can be done using the RRR bit vector encoding, which also supports
constant-time rank queries on the bit vector with an overhead of o(nσ). Combining Lemma 1 with the
RRR encoding gives the result claimed in the theorem.

In the case of the DNA alphabet (σ = 4), the space per k-mer is (−0.25 log(0.25)−0.75 log(0.75))·4 = 3.245
bits ignoring the lower order term. We note that this exactly matches Chikhi’s navigational lower bound
of 8 − 3 log 3 = 3.245 bits per k-mer [6]. This is remarkable, as our data structure is a membership
structure, whereas the lower bound of Chikhi et al. is for a weaker navigational structure. On the other
hand Chikhi’s bound allows an arbitrary k-mer set, whereas ours is restricted to the spectrum of a single
string.

A different bit vector representation leads to the following space-time tradeoff:

Theorem 2. The plain matrix SBWT representation can be encoded in n⌈log σ⌉+2n bits of space, with
support for k-mer membership queries in O(k log σ) time, where n is the number of columns in the matrix,
and σ > 1 is the size of the alphabet.
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Proof. We concatenate the rows of the matrix and represent the resulting bit string, which is of length nσ
and contains at most n 1-bits, using the Elias-Fano scheme. The space required is n⌈log(nσ/n)⌉+ 2n =
n⌈log σ⌉+2n bits. The time for a single rank query is O(log(nσ/n)) = O(log σ), leading to the O(k log σ)
time for a k-mer membership query as claimed.

5.1 Compression Boosting

In this section we use the same notation as before, that is, the SBWT subset sequence is denoted with
X1, . . . , Xn, and the corresponding sequence of k-mers in colexicographic order is denoted with x1, . . . xn.
We introduce the notion of suffix groups:

Definition 5. (Suffix groups). Two sets Xi and Xj of SBWT are in the same suffix group iff xi[2..k] =
xj [2..k].

All sets in a suffix group are adjacent in the SBWT, and the suffix groups partition the SBWT into
contiguous segments. The definition of the SBWT is such that if Xi is in the same suffix group as Xi−1,
then Xi is the empty set. We now argue that it is possible to move labels in Xi into different sets inside
the same suffix group without changing the set of k-mers represented by the SBWT.

This works because moving the labels inside a suffix group changes the source node of the edge, but
not the destination. That is, if xi and xj are in the same suffix group, then the destinations xi[2..k]c
and xj [2..k]c are the same for any character c. Moving labels like this does not change the number of
incoming edges to a node, so we preserve the critical property that every node apart from the node of
the empty string has exactly one incoming edge.

This then raises the question: How should we distribute the labels inside of a suffix group to minimize
the entropy of the subset sequence? One obvious strategy would be to concentrate the labels inside a
suffix group into a single set in the suffix group, as is done in the definition of the SBWT. This gives the
optimal solution sometimes, but not always. We formalize the problem as follows:

The SBWT Entropy Optimization Problem.
Input: A sequence of subsets X1, . . . Xn of Σ, and a segmentation of the sequence into t segments. The
segmentation is represented by a list of indices p1 < p2 < . . . < pt+1 = n+1, such that the i-th segment
consists of sets Xpi

, . . . , Xpi+1−1 . The sets inside a segment are disjoint.
Output: A sequence of subsets Y1, . . . Yn of Σ with the smallest possible zeroth-order entropy, such
that for every segment Yi, . . . , Yj , we have

⋃j
r=i Yr =

⋃j
r=i Xr and the sets inside a segment are disjoint.

We now describe a heuristic optimization algorithm that converges very quickly in practice. Let C1, . . . , Cm

be the sequence of suffix groups. Each suffix group is described as a pair Ci = (Li, wi), where Li is the
union of the sets in the suffix group, and wi is the number of sets in the group (the ”width” of the group).
The algorithm starts by counting the number of times each type of a group appears in the sequence.
Then, we start to tweak the groups to improve the entropy. We call the distribution of labels Li into
the wi sets inside a group as the configuration of the group. We iterate the group types, and for each
group type, we pick the configuration that minimizes the current total entropy. We repeat this until we
are unable to improve the entropy by changing the configuration of any single group type.

6 Experiments

In our experiments, we measure query time and the size of the SBWT using the four different subset
rank implementations described in Section 4. We used the value k = 31 in all experiments. For each
implementation, we include a variant that has entropy compression, and a variant that does not. The

Sequences Base pairs Distinct 31-mers Sets in multi-SBWT
E. coli genomes 745,409 18,917,805,788 257,785,486 258,506,521
SARS-CoV-2 14,641,164 1,464,052,896 69,553,831 82,700,941
Metagenome reads 34,673,774 8,701,078,392 2,771,108,020 2,796,378,115

Table 1: Key statistics on the three experimental datasets used. Note that the number of sequences in
the case of E. coli is not the number of genomes, which is 3682, but the number of contigs in assemblies
of those genomes.
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Figure 7: Experimental results. The top two plots are for the SARS-CoV-2 dataset, the middle two for
the E. coli dataset, and the bottom two for the metagenomic read dataset. In the left column are the
time and space of queries. The plotted times are for the present k-mers. In the right are the subset
distributions in the SBWTs of the three datasets.
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entropy compression is done either with RRR bit vectors [29], or the Elias-Fano encoding [31, 9, 10].
We make use of the Succinct Data Structures Library (SDSL) [12] for plain and RRR bitvectors, and
use the Elias-Fano bitvector implementation from [18]. We also include the VARI data structure [23],
which is derived from the original BOSS implementation of Bowe et al. [4], to provide us with an external
reference data point for comparison. Specifically, we use the version of VARI found at commit 79693b7
of the branch named VARI-merge in the Github repository https://github.com/cosmo-team/cosmo/

tree/VARI-merge. We considered including the early BOSS-like index structure of Rødland [30], which
is written in Java. Rødland’s data structure is somewhat similar to our plain matrix variant, but with
a different memory layout and an additional bit vector. However, the implementation was unable to
process our datasets, probably due to it’s internal use of 32-bit integers limiting the maximum input size.

Experiments were run on Ubuntu 18.04.5 LTS kernel version 4.15.0-147-generic. The compiler was
g++ 9.3.0. The CPU was an Intel Core i7-9700K CPU clocked at 3.60 GHz with with L1d, LIi, L2 and
L3 caches of size 256KiB, 256KiB, 2MiB and 12MiB, respectively. The system had 64GiB of DDR4 2400
MHz memory. Reported times are the average of 10 repeated runs. The C++ code of the implementations
used are available at https://github.com/algbio/SBWT.

6.1 Datasets

We experiment on three different data sets that represent typical targets for k-mer indexing in bioinfor-
matics applications:

1. A pangenome of 3682 E. coli genomes, downloaded by selecting a subset of 3682 assemblies listed
in ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt with the
organism name ”Escherichia coli”, downloaded during the year 2020. To reproduce the dataset,
the list of accession numbers of the selected genomes are available at our Github repository. The
dataset contains 745,409 contigs and 257,785,486 distinct 31-mers.

2. A set of 17 million Illumina HiSeq 2500 sequence reads of length 502 sampled from the human gut
(SRA identifier ERR5035349) in a study on irritable bowel syndrome and bile acid malabsorption
[17]. The dataset contains 2,771,108,020 distinct 31-mers.

3. A set of 14,641,164 genomes of the SARS-CoV-2 virus downloaded from NCBI datasets. The dataset
contains 69,553,831 distinct 31-mers.

We preprocess the sequences by deleting all characters that are not in the DNA alphabet {A,C,G,T}. We
then construct the multi-string variant of the SBWT defined in Section 3.1 for each of the datasets. For
all new index variants, we extract the data structure from the Wheeler BOSS index constructed using
the tool Themisto [20]. This is straightforward as the Wheeler BOSS index gives access to the outgoing
edge labels from each k-mer of the data in colexicographic order. The VARI index was constructed using
the construction algorithm included with VARI. We did not measure index construction time and space
since optimizing index construction is out of scope of this work.

Table 1 shows the number of sequences, total number of base pairs, number of distinct 31-mers and
the number of sets in the multi-SBWT of each of the datasets. It is notable that in the SARS-CoV-2
data, the number of sets in the multi-SBWT is as much as 19% larger that the number of 31-mers. This
shows that in practical datasets, the size of the prefix set P ′

k(T1, . . . , Tm) in Definition 3.1 can not be
neglected. For the other two datasets, the gap was less than 1%.

6.2 Time and Space

For each variant, we measure the size of the index, and the query time. We run two sets of queries on
each dataset: a randomly sampled set of 10% of the k-mers that are known to be in the index (so-called
present k-mers), and a set of uniformly random k-mers from the space of all possible k-mers from the
DNA alphabet (absent k-mers). This gives rough bounds on the practical query performance. The k-mers
that are present in the index are the slower of the two sets to query because the search function has to
run for the full k iterations; whereas random k-mers are faster to query because the search function can
exit early. We report the average time per query for each query type. The reported times include only
the time to query the k-mers, so that the time incurred by disk I/O when reading the index and the
queries into memory is not included. The reported space is the size of the data structures serialized to
disk, which in the case of all structures here corresponds to the size in memory.
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Bits per k-mer Present k-mer query Absent k-mer query
Matrix 5.05 1.99 0.66
Matrix + RRR 3.95 11.19 4.30
Split 3.93 7.33 2.47
Split + RRR 3.14 13.12 4.93
Split + EF 3.35 8.44 2.87
Concat 4.45 9.59 3.22
Concat + EF 2.93 56.14 23.40
SubsetWT 5.00 11.68 4.14
SubsetWT + RRR 3.00 56.64 24.43
VARI 11.27 223.17 100.89

Table 2: Results for the SARS-CoV-2 pangenome.

Bits per k-mer Present k-mer query Absent k-mer query
Matrix 4.26 2.40 0.87
Matrix + RRR 3.36 12.99 5.44
Split 3.26 9.08 3.45
Split + RRR 2.49 14.26 5.94
Split + EF 2.63 11.16 4.27
Concat 3.70 12.82 4.78
Concat + EF 2.32 63.28 28.22
SubsetWT 4.25 14.20 5.66
SubsetWT + RRR 2.44 63.53 29.06
VARI 3.13 218.05 103.72

Table 3: Results for the E. coli pangenome.

Bits per k-mer Present k-mer query Absent k-mer query
Matrix 4.29 3.02 1.34
Matrix + RRR 3.40 15.34 7.45
Split 3.27 11.55 5.34
Split + RRR 2.47 17.91 8.81
Split + EF 2.60 14.05 6.77
Concat 3.74 16.34 7.67
Concat + EF 2.30 83.80 41.96
SubsetWT 4.27 17.80 8.45
SubsetWT + RRR 2.43 72.26 37.59
VARI 4.23 280.05 151.91

Table 4: Results for the metagenomic read set.

The results are listed in Tables 2, 3, 4 and plotted in Figure 7. The index structures for the metagenome
were between 15% to 29% larger than corresponding indexes for the other two datasets when the size is
measured as bits per k-mer. This is due to the large number of prefixes P ′

k(T1, . . . , Tm) required for the
metagenome in Definition 4. The matrix variant with RRR entropy compression achieved 3.36 bits per
k-mer on the E.coli pangenome, with is just 3.5% larger than the theoretical zeroth-order entropy and
navigational lower bound of 3.245. The consistently smallest variant was the concatenated representation
with Elias-Fano encoding, occupying between 2.32 to 2.93 bits per k-mer.

The plotted times are for the k-mers that are found in the index. The type of dataset used for
the index did not affect the query time much, except for the k-mer queries being slightly slower the
more k-mers there were in the index. The fastest variant was the plain matrix variant, at 0.66 to 3.02
microseconds per query, and the slowest of our variants was the concatenated variant with Elias-Fano
encoding, at 23.40 to 83.80 microseconds per query. The VARI implementation of Muggli et al [23] was
slower than all our variants — two orders of magnitude slower than our plain matrix variant. The space
was also up to multiple times larger than ours, which is explained by VARI having duplicate dummy
prefixes in what corresponds to set P ′

k(T1, . . . , Tm) of Definition 4.
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6.3 Entropy optimization

The distribution character subsets in the SBWTs are also plotted in Figure 7. We ran the column entropy
optimization algorithm described in Section 5.1 on the E. coli dataset. The algorithms converged quickly,
having to change the configuration of each suffix group at most once. The final column entropy was
2.20974, whereas the entropy of the SBWT was 2.22634, so the entropy was reduced by only approximately
0.25%. While this is a kind of a local optimum, it might not be the global optimum. We leave as an open
question whether or not this algorithm is optimal.

7 Conclusion

While our prototypes already handsomely outperform all previous succinct de Bruijn graph implementa-
tions, we believe they can be improved in several ways, perhaps most promisingly by the replacement of
wavelet trees with rank data structures specialized for small alphabet sequences. We also expect that the
simplicity of the new rank-based query algorithms will make them significantly more accessible than the
original BOSS, which is notoriously tricky to implement. The plain matrix, split and subset wavelet tree
variants are particularly easy to implement, requiring only regular rank queries as the only non-trivial
subroutine. This in contrast with the original BOSS, which also requires select and predecessor/successor
queries.

As mentioned in the previous section, we have not yet optimized index construction, which currently
uses the Themisto tool as an intermediate step to generate de Bruijn graph nodes in colexicographical
order. While there is certainly room for improvement, we remark that construction times are already
reasonable, taking around six hours on the 19GB E.coli dataset.

Finally, we note that it would be possible to fast add de Bruijn graph edge traversal capability to the
SBWT, by marking the starts of suffix groups in a bit vector. An edge labeled with a character c can
be traversed iff it occurs as an outgoing character from the current suffix group. In this case, we can
run one iteration of the k-mer loop in the search routine at Algorithm 1 to follow the edge. We leave
implementing and evaluating this approach to future work.

8 Acknowledgements

We thank Einar Andreas Rødland for the effort in helping us compile and run his succinct k-mer index
implementation, and we thank Massimiliano Rossi helpful remarks.

References

[1] J. Alanko, B. Alipanahi, J. Settle, C. Boucher, and T. Gagie. Buffering updates enables efficient
dynamic de bruijn graphs. Computational and structural biotechnology journal, 19:4067–4078, 2021.

[2] B. Alipanahi, A. Kuhnle, S. J. Puglisi, L. Salmela, and C. Boucher. Succinct dynamic de bruijn
graphs. Bioinformatics, 37(14):1946–1952, 2021.

[3] F. Almodaresi, J. Khan, S. Madaminov, M. Ferdman, R. Johnson, P. Pandey, and R. Patro. An
incrementally updatable and scalable system for large-scale sequence search using the bentley-saxe
transformation. Bioinformatics, 2022.

[4] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya. Succinct de bruijn graphs. In International
workshop on algorithms in bioinformatics, pages 225–235. Springer, 2012.

[5] R. Chikhi. A tale of optimizing the space taken by de bruijn graphs. In Proc. 17th Conference on
Computability in Europe (CiE), volume 12813 of LNCS, pages 120–134. Springer, 2021.

[6] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev. On the representation of de
bruijn graphs. In Proc. 18th Annual International Conference Research in Computational Molecular
Biology (RECOMB), LNCS 8394, pages 35–55. Springer, 2014.

[7] P. E. Compeau, P. A. Pevzner, and G. Tesler. Why are de bruijn graphs useful for genome assembly?
Nature biotechnology, 29(11):987, 2011.

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/


[8] V. G. Crawford, A. Kuhnle, C. Boucher, R. Chikhi, and T. Gagie. Practical dynamic de bruijn
graphs. Bioinformatics, 34(24):4189–4195, 2018.

[9] P. Elias. Efficient storage and retrieval by content and address of static files. J. ACM, 21(2):246–260,
1974.

[10] R. Fano. On the number of bits required to implement an associative memory. Technical report,
MIT, 1971.

[11] T. Gagie, G. Manzini, and J. Sirén. Wheeler graphs: A framework for bwt-based data structures.
Theoretical computer science, 698:67–78, 2017.

[12] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with succinct
data structures. In International Symposium on Experimental Algorithms, pages 326–337. Springer,
2014.

[13] S. Gog and M. Petri. Optimized succinct data structures for massive data. Softw. Pract. Exp.,
44(11):1287–1314, 2014.

[14] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 841–850, 2003.

[15] G. Holley and P. Melsted. Bifrost: highly parallel construction and indexing of colored and compacted
de bruijn graphs. Genome biology, 21(1):1–20, 2020.

[16] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly and genotyping of
variants using colored de bruijn graphs. Nature genetics, 44(2):226–232, 2012.

[17] I. B. Jeffery, A. Das, E. O’Herlihy, S. Coughlan, K. Cisek, M. Moore, F. Bradley, T. Carty, M. Prad-
han, C. Dwibedi, et al. Differences in fecal microbiomes and metabolomes of people with vs without
irritable bowel syndrome and bile acid malabsorption. Gastroenterology, 158(4):1016–1028, 2020.

[18] D. Ma, S. J. Puglisi, R. Raman, and B. Zhukova. On Elias-Fano for rank queries in FM-indexes. In
31st Data Compression Conference (DCC), pages 223–232. IEEE, 2021.

[19] N. Maillet, C. Lemaitre, R. Chikhi, D. Lavenier, and P. Peterlongo. Compareads: comparing huge
metagenomic experiments. In BMC bioinformatics, volume 13, pages 1–10. Springer, 2012.
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