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Abstract 17 

Quantifying home range size and habitat resource selection are important elements 18 

in wildlife ecology and are useful for informing conservation action. Many home 19 

range estimators and resource selection functions are currently in use. However, 20 

both methods are fraught with analytical issues inherent within autocorrelated 21 

movement data from irregular sampling and interpretation of resource selection 22 

model parameters to inform conservation management. Here, we apply satellite 23 

telemetry and remote sensing technologies to provide first estimates of home range 24 

size and resource selection for six adult Philippine Eagles (Pithecophaga jefferyi), 25 
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using five home range estimators and non-parametric resource selection functions. 26 

From all home range estimators, the median 95 % home range size was between 27 

39-68 km2 (range: 22-161 km2), with the 50 % core range size between 6-13 km2 28 

(range: 5-33 km2). The space-time autocorrelated kernel density estimate (AKDE) 29 

had the largest median 95 % home range size = 68 km2 and a 50 % core range = 13 30 

km2. Local convex hulls (LoCoH) estimated the smallest median 95 % home range = 31 

39 km2 and a 50 % core range = 6 km2. From the resource selection functions, all 32 

adults used areas high in photosynthetic leaf and canopy structure but avoided areas 33 

of old growth biomass and denser areas of vegetation, possibly due to foraging 34 

forays into fragmented areas away from nesting sites. For the first time, we 35 

determine two important spatial processes for this Critically Endangered raptor that 36 

can help in directing conservation management. Rather than employing a single 37 

home range estimator, we recommend that analysts consider multiple approaches to 38 

animal movement data to fully explore space-time and resource use.  39 

 40 

Introduction 41 

Estimating animal home range size and habitat resource selection is a fundamental 42 

aspect in wildlife ecology and conservation (Hooten et al. 2017). Quantifying home 43 

range behaviour and resource selection using Global Positioning System (GPS) 44 

telemetry devices are used to inform conservation management and policy (Fieberg 45 

et al. 2021; Silva et al. 2021). Therefore, it is crucial that reliable and robust metrics 46 

are used for both. Since the inception of the home range concept (Burt 1943), many 47 

home range estimators have been used (Signer & Fieberg 2021). However, finding a 48 

reliable home range estimator has proven difficult due to the analytical challenges 49 

inherent with animal movement data that are often autocorrelated, have irregular 50 
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sampling, or small sample sizes (Silva et al. 2021). Similarly, estimating resource 51 

selection functions by comparing environmental covariates at an individual’s used 52 

locations to those environmental locations assumed to be available with logistic 53 

regression is popular (Johnson et al. 2006). However, interpreting resource selection 54 

model parameters to inform management is difficult (Fieberg et al. 2021).  55 

 56 

An animal’s home range is formally defined as those movements regularly used for 57 

foraging and breeding but excluding occasional sallies outside of this area (Burt 58 

1943; Fieberg & Borger 2012). Thus, an animal’s home range reflects its ecological 59 

needs and the decisions that result from these environmental requirements 60 

(Tétreault & Franke 2017). Home ranges are therefore expected to differ amongst 61 

individuals within a species over space and time dependent on shifting ecological 62 

needs and varying resources (Signer & Fieberg 2021). Further, selection of a 63 

specific home range estimator can in itself explain as much of the variation in home 64 

range size as the ecological processes influencing it (Signer et al. 2015; Tétreault & 65 

Franke 2017).  66 

 67 

Home range estimators can be split into two classes: geometric and probabilistic 68 

(Signer & Fieberg 2021). Geometric estimators are built following a set of hull-based 69 

rules, with a typical example being a minimum convex polygon (MCP). However, the 70 

MCP often overestimates the home range, with Local Convex Hulls (LoCOH, Getz & 71 

Wilmers 2004), which generalize the MCP, an improved estimator able to account for 72 

autocorrelation, better reflecting the true home range by considering hard boundaries 73 

within the range extent (Getz et al. 2007). Further, Time Local Convex Hulls (T-74 

LoCoH) are a further generalization of local convex hulls, incorporating time by using 75 
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adaptive scaling of individual velocities to define a utilization distribution that 76 

captures space-time use (Lyons et al. 2013). Conversely, probabilistic estimators are 77 

constructed using an underlying probabilistic model which estimates a utilization 78 

distribution, that is, the relative frequency distribution of an animal’s locations in two-79 

dimensional space (Van Winkle 1975). The utilization distribution is an extension of 80 

the original home range concept (Burt 1943), where an animal’s use of space is 81 

defined by a probability density function that quantifies the chance the animal will be 82 

found at any given location within its home range (Van Winkle 1975; Worton 1987).  83 

 84 

Kernel density estimators (KDEs, Worton 1989) are a non-parametric probabilistic 85 

estimator, fitted with both fixed and adaptive kernel bandwidths to account for over 86 

smoothing (Wand & Jones 1994). However, fixed and adaptive KDEs can 87 

overestimate home range sizes, even when accounting for bandwidth over 88 

smoothing with an adaptive kernel (Silva et al. 2021). Recently, autocorrelated kernel 89 

density estimates (AKDE, Fleming & Calabrese 2017) have been proposed as an 90 

improvement on fixed and adaptive KDEs. AKDEs first fit an Ornstein-Uhlenbeck 91 

(Uhlenbeck & Ornstein 1930) continuous-time stochastic process movement model 92 

to the animal locations, and then incorporate the movement model into an area-93 

corrected home range estimator with weighting that accounts for autocorrelation and 94 

irregular sampling (Calabrese et al. 2016; Silva et al. 2021). Space-time home range 95 

estimates are therefore expected to provide more robust estimates of the utilization 96 

distribution because they account for the important third dimension of time in animal 97 

movement patterns (Keating & Cherry 2009).  98 

 99 

 100 
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Within an animal’s home range, resource selection functions (RSFs) are used to 101 

infer the probability of resource use for a given individual within that defined area 102 

(Manly et al. 2002). Standard parametric logistic regression is the most popular 103 

method to quantify resource selection (Johnson et al. 2006) but has been criticized 104 

because used locations (species presence) are continuous points but are compared 105 

to available locations (raster pixels) in discrete space (Keating & Cherry 2004; 106 

Fieberg et al. 2021). Poisson point processes have been proposed as an alternative 107 

to standard parametric resource selection functions to make habitat selection 108 

analyses easier to understand and more accessible to a wide range of end users 109 

(Baddeley et al. 2012). For ease of interpretation, non-parametric RSFs can be fitted 110 

directly to the species locations without accounting for available locations using a 111 

point process intensity probability density function based on a kernel density 112 

estimate (Baddeley et al. 2012).  113 

 114 

The Philippine Eagle (Pithecophaga jefferyi) is a globally threatened tropical forest 115 

raptor (Bildstein et al. 1998), currently classified as ‘Critically Endangered’ on the 116 

IUCN Red List (BirdLife International 2018). This large eagle is endemic to four 117 

islands in the Philippine archipelago (Mindanao, Leyte, Samar, and Luzon; Kennedy 118 

1977), with a restricted distribution across lowland and montane tropical forests 119 

(Salvador & Ibañez 2006; Sutton et al. 2022). The two key threats to its future 120 

survival are habitat loss and human persecution (Salvador & Ibañez 2006). Despite 121 

its elevated extinction risk, fundamental aspects of Philippine Eagle ecology such as 122 

home range size and habitat use are relatively unknown. Indeed, the IUCN Red List 123 

suggests that further research into ecological requirements is urgently required to 124 

inform conservation actions (BirdLife International 2018). Here, we use satellite 125 
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telemetry locations from six GPS tagged adult Philippine Eagles to (1), estimate 126 

home range size using five geometric and probabilistic estimators, and (2), quantify 127 

habitat use with non-parametric resource selection functions. Finally, we outline how 128 

quantifying these key ecological processes can inform conservation action for this 129 

raptor of conservation concern.  130 

 131 

Methods 132 

GPS telemetry data 133 

We sourced Philippine Eagle satellite telemetry locations from the Philippine Eagle 134 

Foundation that is archived in the Global Raptor Impact Network (GRIN, McClure et 135 

al. 2021), a data information system for global population monitoring for all raptors. 136 

For the Philippine Eagle, GRIN includes GPS fixes from six breeding adult Philippine 137 

Eagles (four females, two males) on the island of Mindanao. All Philippine Eagles 138 

were trapped using either a modified Bal-Chatri (Miranda & Ibanez 2006) or a large 139 

bownet baited with domestic rabbit (Oryctolagus cuniculus). Two eagles were 140 

instrumented with solar-powered Global Positioning System-Global System for 141 

Mobile Communications (GPS-GSM) transmitters (weight = 70 g; Microwave 142 

Telemetry, Inc) while four eagles had battery-powered LC4™ Argos-GPS platform 143 

transmitter terminal (PTT) fitted (weight = 105g; Microwave Telemetry, Inc), 144 

harnessed with Teflon-coated nylon ribbon backpacks. All tags weighed < 3 % of the 145 

body weight for all adults tagged. Tags were programmed to transmit on a 2-hr 146 

sampling interval for adults 001F, 002F, 004M, 006F, with adult 003F at 24 hrs and 147 

adult 005M at 2 mins. All birds were marked with aluminium leg bands – the four 148 

females with blue bands on their left tarsus, and the two males with green bands on 149 

their right tarsus. All GPS transmitter harnessing was conducted with a Gratuitous 150 
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Permit to trap and tag the birds in the presence of a veterinarian as required by the 151 

national government of the Philippines. 152 

 153 

A total of 80,481 fixes were obtained from four adult females and two adult males 154 

from April 2013 to September 2021 (Table 1). We removed all duplicated records 155 

and used all raw GPS fixes in the autocorrelated kernel density estimates (AKDEs) 156 

for all birds expect 005M which we sub-sampled using a 3-hr interval due to 157 

computing constraints using the full raw dataset of 74,098 fixes. For the fixed and 158 

adaptive kernel density estimates (KDEs) along with local convex hull (LoCoH) 159 

estimators, we subsampled fixes from all birds using a minimum 3-hour interval 160 

between fixes to achieve consistency across estimators and to account for 161 

autocorrelation (Signer & Fieberg 2021). We assessed how effective the number of 162 

GPS relocations was at capturing the utilization distribution using an incremental 163 

analysis with bootstrapped minimum convex polygons (n = 100), quantifying when 164 

the number of relocations within the MCP area reached an asymptote (Walls & 165 

Kenward 2012), using the ‘hrBootstrap’ function in the R package move 166 

(Kranstauber et al. 2020). From our bootstrapped estimates, the number of 167 

relocations for all six adults was sufficient at capturing the MCP utilization 168 

distribution, ranging from asymptotes of 100 relocations for adult 003F to 1000 169 

relocations for adult 005M (Fig. S1).  170 

 171 

 172 

 173 

 174 

 175 

 176 
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Table 1. Global Positioning System (GPS) telemetry metadata for six satellite tagged adult Philippine 177 

Eagles from the island of Mindanao, used for home range estimation. Totals for 3-hr fixes are 178 

subsampled from the raw data locations using a 3-hr sampling rate interval. Totals for 250m fixes are 179 

the number of spatially thinned fixes using a 250m spatial filter. 180 

 181 

ID Sex From To  Raw fixes  3-hr fixes  250m fixes 

001F Female 16/02/2014 10/05/2015   1487 1186  290 

002F Female 22/12/2014 20/01/2016   1370 1063  311 

003F Female 11/04/2013 19/02/2014     263   263  138 

004M Male 19/04/2014 05/08/2014     240   190  144 

005M Male 17/11/2019 12/09/2021 74098 5252  822 

006F Female 15/10/2019 05/06/2021   3023 2344  444 

Total  
 

 80481 10298 2149 

 182 

To test for range residency we calculated semi-variance functions visualised with 183 

empirical variograms to identify unbiased estimates of stationary movement periods 184 

of site fidelity with data containing time-averaged autocorrelation structure in the R 185 

package ctmm (Calabrese et al. 2016). Variograms represent the average square 186 

distance travelled within a specified time lag. We used a median sampling interval for 187 

the time lag bin widths and Markovian Confidence Intervals for calculating the 188 

maximum number of non-overlapping lags (Calabrese et al. 2016). All six adults 189 

showed site fidelity with clear asymptotes ranging between 2 to 18 km continuous 190 

range residency behaviour after 3 to 9 day short time lags and all less than one 191 

calendar month from tagging (except adult 006F which was less than 2 calendar 192 

months), supporting the application of home range analysis (Figs. S2-S3).  193 

 194 

Home range estimation 195 

Utilization distributions were constructed to estimate the probability of relocating an 196 

individual within a given home range using the standard definitions in two-197 
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dimensional space (Van Winkle 1975; Worton 1987, 1989), which we further extend 198 

to three-dimensional space-time (Keating & Cherry 2009). We calculated utilization 199 

distributions using five home range estimators because of variation in outputs 200 

between different estimator methods (Signer & Fieberg 2021). For all estimators we 201 

fitted 95 % probability of use contour isopleths to represent the home range 202 

utilization distribution (Laver & Kelly 2008), and 50 % probability of use contour 203 

isopleths to represent a core range utilization distribution, characteristic of a territorial 204 

area (White & Garrott 1990). We selected a core range of 50 % probability of use to 205 

maintain consistency across the different estimators but recognise that defining a 50 206 

% core range is not always appropriate (Vander Wal & Rodgers 2012). All home 207 

range area estimates were calculated in a Universal Time Mercator (UTM) projection 208 

in R (v3.5.1; R Core Team 2018) and following analytical recommendations from 209 

Laver & Kelly (2008). 210 

 211 

Kernel Density Estimates 212 

We calculated utilization distributions using three different kernel density estimators 213 

(Worton 1989). First, we fitted standard fixed bandwidth non-normal Epanechnikov 214 

kernels (Epanechnikov 1969), with an ad-hoc reference smoothing parameter (href ) 215 

multiplied by 1.77 (Silverman 1986), based on the number of locations and the 216 

variance between x and y coordinates. Second, we fitted adaptive smoothing plug-in 217 

bandwidth bivariate kernel estimates (hpi) (Wand & Jones 1994) using a Sum of the 218 

Asymptotic Mean Squared Error (SAMSE) pilot bandwidth selector (Duong & 219 

Hazelton 2003). We assessed a range of potential univariate plug-in bandwidth 220 

selectors (termed ‘pilots’) and opted for SAMSE due to its higher numerical stability 221 

(Duong 2007) and the low variance between each respective pilot bandwidth. We 222 
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fitted both fixed and adaptive KDEs in the R packages adehabitatHR (Calenge 223 

2006), ks (Duong 2007) and sp (Bivand et al. 2013), with R code adapted from 224 

Tétreault & Franke (2017). 225 

 226 

We fitted autocorrelated KDEs (AKDEs; Fleming & Calabrese 2017) in the R 227 

package ctmm (Calabrese et al. 2016) with a movement model that best explains the 228 

autocorrelated structure of our tracking data using a perturbative Hybrid Residual 229 

Maximum Likelihood parameter estimator (pHREML), which is a form of maximum 230 

likelihood estimation that reduces bias in variance/covariance estimation (Silva et al. 231 

2021). AKDEs were fitted with a continuous-time stochastic process movement 232 

model to overcome the autocorrelated nature of our GPS tracking fixes and mitigate 233 

small absolute and effective sample sizes (Calabrese et al. 2016). We evaluated a 234 

pool of candidate movement models for each individual eagle from Ornstein-235 

Uhlenbeck movement patterns including both isotropic (symmetrical diffusion) and 236 

anisotropic (asymmetrical diffusion) variants, along with the standard KDE 237 

assumption of independent and identical distributed (IID) data, based on Akaike’s 238 

Information Criterion (Akaike 1974) adjusted for small sample sizes (AICc; Hurvich & 239 

Tsai 1989). We considered all models with a ΔAICc < 2 as having strong support 240 

(Burnham & Anderson 2004). From our candidate models, the best supported 241 

movement process for all six eagles was an Ornstein-Uhlenbeck anisotropic process 242 

(ΔAICc = 0.0; Table S1), which we then fitted into an area-corrected AKDE home 243 

range estimator with additional weighting that upweights fixes in under-sampled 244 

times and down-weights fixes in over-sampled times (Silva et al. 2021).  245 

 246 

 247 
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Local Convex Hulls 248 

We calculated utilization distributions using fixed and temporal Local Convex Hull 249 

(LoCoH) estimators, both using k nearest neighbour convex hulls, which are a 250 

generalization of a minimum convex polygon estimator (Getz & Wilmers 2004), in the 251 

R package tlocoh (Lyons et al. 2013). We constructed fixed local convex hulls by 252 

associating each point and its k -1 nearest neighbours localized in space. The hulls 253 

were then ordered smallest to largest, taking the cumulative union of each hull from 254 

smallest upwards thus constructing the utilization distribution isopleths, with the 255 

smallest hulls indicating the most frequently areas, i.e., the 10% isopleth contains 256 

10% of the points with a higher utilization than the 95% isopleth that contains 95% of 257 

the points (Getz et al. 2007; Tétreault & Franke 2017). In addition, we constructed 258 

time local convex hulls (T-LoCoH), which are a generalization of LoCoH, 259 

incorporating time into the aggregation of the k-nearest neighbour local convex hulls 260 

in Euclidean space using adaptive scaling of individual velocities to define a 261 

utilization distribution that captures space-time use (Lyons et al. 2013). T-LoCoH 262 

incorporates the timestamp as a time-scaled distance metric between any two points 263 

into a third axis of Euclidean space in the selection of k-nearest neighbours and hull 264 

sorting within the LoCoH algorithm. 265 

 266 

Resource Selection 267 

Habitat covariates 268 

We quantified resource selection using the GPS fixes and three habitat covariates 269 

derived from satellite remote sensing data using 16-day 250-m composite surface 270 

reflectance band imagery from the Moderate Resolution Imaging Spectroradiometer 271 

(MODIS, https://modis.gsfc.nasa.gov/) product MCD13Q1. We used two surface 272 
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reflectance bands that represent unclassified raw measures of vegetation structure 273 

and composition, used previously to represent vegetation patterns (Morán-Ordóñez 274 

et al. 2012; Shirley et al. 2013; Van doninck et al. 2020). Band 2 Near Infrared 275 

represents leaf and canopy structure, with Band 7 Short Wave Infrared related to 276 

senescent or old growth biomass (Shirley et al. 2013). Additionally, we used 277 

Enhanced Vegetation Index (EVI) processed using all four MODIS surface 278 

reflectance bands using the ‘spectralIndices’ function in the R package RStoolbox 279 

(Leutner et al. 2019). EVI ranges on a scale from -1 to 1, with positive values closer 280 

to 1 indicating dense, healthy vegetation, and negative values indicating low 281 

vegetation cover.  282 

 283 

EVI is an optimized vegetation index responsive to canopy structure variations and 284 

with improved sensitivity in areas of high biomass through reduction in background 285 

noise and atmospheric influences (Huete et al. 2002). We selected EVI due to its 286 

superior performance at capturing dense vegetation characteristics and canopy 287 

structure in tropical regions compared to other spectral indices such as Normalised 288 

Difference Vegetation Index (NDVI; Qiu et al. 2018), which tends to saturate in 289 

densely vegetated areas (Huete et al. 2002). We downloaded imagery 290 

corresponding to the start and end dates over the time period of each tracked eagle 291 

using the R package MODIStsp (Busetto & Ranghetti 2016) and calculated mean 292 

surface reflectance values over each respective time period to use in processing the 293 

covariates. All surface reflectance bands contain spectral reflectance values 294 

estimated by target at surface, calibrated with cloud detection and atmospheric 295 

corrections. Reflectance values are expressed as the ratio of reflected over incoming 296 

radiation, meaning reflectance can be measured between the values of zero and 297 
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one. Absolute reflectance values of 3-4 indicate healthy vegetation (Huete et al. 298 

2004). All covariates used for each respective eagle had low collinearity with 299 

Variance Inflation Factors <2.  300 

 301 

Resource Selection Functions 302 

We thinned GPS fixes using a 250-m spatial filter (Table 1) to match the resolution of 303 

the covariate rasters and fitted presence points and the three covariates to individual 304 

RSFs following third-order home range resource selection (Johnson 1980). We 305 

defined a resource use home range for each individual eagle by merging the 95 % 306 

maximum likelihood AKDE with a 100 % minimum convex polygon to fully capture 307 

the total potential home range and thus all the spatially filtered GPS fixes therein 308 

(Northrup et al. 2013). We fitted non-parametric RSFs where we only considered 309 

resource use at presences using a point process intensity probability density function 310 

using the ‘rhohat’ function in the R package spatstat (Baddeley & Turner 2005). 311 

RSFs were fitted by computing a non-parametric kernel smoothing estimate of 312 

locations as a point process intensity function λ (u) of the three spatial covariates 313 

over each respective eagles’ home range window following the formulation of 314 

Baddeley et al. (2012),  315 

                                                       λ (u) = ρ (Z (u)) 316 

 317 

where Z is the spatial covariate and ρ (z) is the resource selection function to be 318 

estimated, with u representing location. We fitted Gaussian kernel densities with 319 

variable-bandwidth kernel smoothing using cross-validated bandwidth selection 320 

which assumes a Cox process for clustered data (Diggle 1985) and an isotropic 321 

edge correction for polygon windows derived from Ripley’s K-function (Ripley 1988). 322 
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Additionally, we corrected for sampling bias with Horvitz-Thompson weighting 323 

(Horvitz & Thompson 1952), where each GPS fix in the sample is weighted by the 324 

reciprocal of its sampling probability. We fitted all RSFs with 95 % Confidence 325 

Intervals.  326 

 327 

Results  328 

Home Range Estimation 329 

Kernel Density Estimates 330 

The median 95 % home range estimate from the fixed Epanechnikov KDE was 61 331 

km2 (SE ±13.5), and the median 50 % core home range estimate 12 km2 (SE ±1.9), 332 

with the core range comprising 21 % of the 95% home range area (Table 2; Fig. S4). 333 

Home range estimates from the adaptive SAMSE KDE were smaller, with the 334 

median 95 % home range estimate 43 km2 (SE ±5.7) and a median 50 % core home 335 

range estimate of 7 km2 (SE ±1.2), with the core range comprising 19 % of the 95% 336 

home range area (Table 2; Fig. S4). The median 95 % home range estimate from 337 

the weighted AKDEs was greater than both the fixed and adaptive estimates at 68 338 

km2 (CI = 62-74 km2), with the median 50 % core home range estimate 13 km2 (CI = 339 

11-14 km2), comprising 21 % of the 95% home range area (Table 3, Fig. 1).  340 

 341 

Local Convex Hulls 342 

The median 95 % home range estimate from the LoCoH estimators was 39 km2 (SE 343 

±7.8), and the median 50 % core home range estimate 6 km2 (SE ±0.8), comprising 344 

20 % within the 95% home range area (Table 4; Fig. S5). Home range estimates 345 

from the T-LoCoH were larger, with the median 95 % home range estimate 56 km2 346 

(SE ±12.0) and the median 50 % core home range estimate 13 km2 (SE ±1.2), 347 
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comprising 25 % of the 95% home range area (Table 4; Fig. 2). Overall, using the 348 

median estimates there was a 19-21 % probability of space use within the 50 % core 349 

range across all estimators, except for the temporal LoCoH where 50 % probability 350 

of use increased to 25 % core range use (Table 4). AKDE estimated the largest 351 

range of 95 % utilization distributions (39-161 km2), with the adaptive KDE estimating 352 

the smallest range of 95 % utilization distributions (26-58 km2, Fig. 3). Adult female  353 

003F and adult male 005M had the narrowest range of home range size estimates 354 

(Fig. 3), with adult female 006F having the broadest range of home range size 355 

estimates overall (Figs. 3 & 4).  356 

 357 

Resource selection 358 

From the non-parametric RSF response functions, all six eagles were associated 359 

with Band 2 Near Infrared values peaking between 0.34-0.39 (Fig. 5), indicating a 360 

relationship with dense, healthy leaf and canopy structure. Band 7 Shortwave 361 

Infrared values peaked between 0.07-0.14, indicating an association with areas of 362 

lower percent old growth biomass for all adults (Fig. 5). All six adults were more 363 

likely to be associated with EVI values between 0.35-0.55 (Fig. 5), indicating 364 

resource use of moderately dense vegetation averaged over the annual vegetation 365 

growth cycle. 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 
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Table 2. Fixed and adaptive kernel density home range estimates (KDE) for six adult Philippine 374 

Eagles on the island of Mindanao. Estimates calculate 95 % probability of use contour isopleths to 375 

represent the home range utilization distribution and 50 % probability of use contour isopleths to 376 

represent a core range utilization distribution, SAMSE = Sum of the Asymptotic Mean Squared Error 377 

pilot bandwidth selector. All area values in the 95% and 50% columns are km2. 378 

 379 

  Epanechnikov fixed KDE SAMSE adaptive plug-in KDE 

ID   95%  50% % core 95%   50% % core 

001F   58 11 19 37   7 19 

002F   64 13 20 48   9 19 

003F   43   9 21 28   7 25 

004M   87 20 23 58 13 22 

005M   36   8 22 26   5 19 

006F 126 17 13 56   6 11 

Median   61 12 21 43   7 19 

 380 

 381 

Table 3. Autocorrelated kernel density estimates (AKDE) for six adult Philippine Eagles on the island 382 

of Mindanao. Estimates calculate 95 % probability of use contour isopleths to represent the home 383 

range utilization distribution and 50 % probability of use contour isopleths to represent a core range 384 

utilization distribution with 95% Confidence Intervals (CI). All area values in the 95% and 50% 385 

columns are km2. 386 

 387 

  Autocorrelated KDE 

ID 95% (CI) 50% (CI) % core 

001F 64 (59-70) 12 (11-13) 19 

002F 71 (64-78) 13 (12-14) 18 

003F 39 (33-45) 9 (8-11) 24 

004M 108 (85-133) 24 (18-29) 22 

005M 41 (37-46) 9 (8-10) 22 

006F   161 (133-192) 33 (28-40) 21 

Median 68 (62-74) 13 (11-14) 21 

 388 

 389 
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390 

Figure 1. Autocorrelated kernel density estimates (AKDE) for six adult Philippine Eagles on the island 391 

of Mindanao. Maximum likelihood estimates (bold black lines) calculate 95 % probability of use (light 392 

grey) to represent the home range utilization distribution and 50 % probability of use (dark grey) to 393 

represent a core range utilization distribution. Hashed lines show 95% Confidence Intervals for both 394 

home and core range maximum likelihood estimates. Blue points show raw locations for each 395 

respective adult Philippine Eagle, except for adult 005M which was sub-sampled using a 3-hr interval 396 

due to computing constraints. White points indicate nest sites.  397 

 398 
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Table 4. Local Convex Hull (LoCoH) and time Local Convex Hull (T-LoCoH) home range estimates 399 

for six adult Philippine Eagles on the island of Mindanao. Estimates calculate 95 % probability of use 400 

contour isopleths to represent the home range utilization distribution and 50 % probability of use 401 

contour isopleths to represent a core range utilization distribution. All area values in the 95% and 50% 402 

columns are km2.  403 

 404 

  LoCoH T-LoCoH 

ID  95%   50% % core   95%  50% % core 

001F 33   8 24   60 13 22 

002F 49 10 20   53 14 26 

003F 22   5 23   24   9 38 

004M 45   7 16   58 16 28 

005M 26   5 19   34   8 24 

006F 74   5   7 109 13 12 

Median 39   6 20   56 13 25 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 
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 420 

Figure 2. Time Local Convex Hull (T-LoCoH) home range estimates for six adult Philippine Eagles on 421 

the island of Mindanao. Estimates calculate 95 % probability of use to represent the home range 422 

utilization distribution (light grey) and 50 % probability of use to represent a core range utilization 423 

distribution (dark grey). Blue points show filtered locations using a 3-hr sampling interval for each 424 

respective adult Philippine Eagle. White points indicate nest sites. 425 

 426 

 427 
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 428 

 429 

Figure 3. Comparison of five home range size estimators from 95 % probability of use to represent 430 

the home range utilization distribution for six adult Philippine Eagles on the island of Mindanao. KDE = 431 

kernel density estimate, LoCoH = Local Convex Hull, T-LoCoH = Time Local Convex Hull.  432 

 433 

 434 
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 435 

Figure 4. Home range estimates for adult female Philippine Eagle 006F using five home range 436 

estimators (KDE = kernel density estimate). Estimates calculate 95 % probability of use to represent 437 

the home range utilization distribution (light grey with solid black lines) and 50 % probability of use to 438 

represent a core range utilization distribution (dark grey with hashed black lines), except for the 439 

adaptive KDE 95 % home range which is shown in light blue with solid black line and 50 % core range 440 

shown in dark blue with hashed black line. For the autocorrelated KDE 95 % Confidence Intervals are 441 

shown by hashed light grey lines.  442 

 443 

 444 
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 445 

Figure 5. Non-parametric resource selection response curves (blue lines) using point process 446 

intensity probability density functions for six adult Philippine Eagles on the island of Mindanao. Grey 447 

shading represents 95% Confidence Intervals. 448 

 449 
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Discussion 450 

Quantifying animal space and habitat use is fundamentally important in 451 

understanding the ecological processes influencing an individual animal’s behaviour 452 

and movement (Hooten et al. 2017). By using a suite of home range estimators, our 453 

results demonstrate that adult Philippine Eagles on Mindanao have relatively small 454 

home ranges, with 75-80 % of space-time use outside of their core territorial range. 455 

AKDE estimated the largest median 95 % home range size = 68 km2 and the largest 456 

median 50 % core range = 13 km2. LoCoH estimated the smallest median 95 % 457 

home range = 39 km2 and the smallest 50 % core range = 6 km2. Additionally, most 458 

adults used areas high in photosynthetic leaf and canopy structure but tended to 459 

avoid areas of old growth biomass and denser areas of vegetation, possibly due to 460 

extended foraging movements outside of densely forested nesting areas. Our results 461 

quantify for the first time two key ecological processes for this critically endangered 462 

raptor that can be useful in informing conservation management.  463 

 464 

Home Range Estimation 465 

Although the median home range estimates for all adults combined was between 39-466 

68 km2 for the 95 % home range and 6-13 km2 for the 50 % core range, there was 467 

wide variance in home range sizes for each individual eagle irrespective of the 468 

estimator used (see Fig. 3). For example, variance amongst the adaptive 95 % 469 

kernel estimates was lower (range = 28-56 km2), compared to the fixed 95 % kernels 470 

(range = 36-126 km2), with the 95 % LoCoH hulls having lower variance (range = 22-471 

74 km2), compared to the T-LoCoH hulls (range = 24-109 km2). Though we did not 472 

test this directly, we assume that high variance in home range size amongst 473 

individual eagles is driven by varying resource needs for each eagle across 474 
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fragmented forest on Mindanao. The ratio of percent space use for the 50 % core 475 

range within the 95 % home range was generally consistent across all estimators 476 

between 19-21 %, except for T-LoCoH where this increased to 25 % core range use. 477 

Thus, adult Philippine Eagles are using 75-80 % of space-time use outside of the 478 

core territorial area, presumably when searching for food within their home range. 479 

 480 

Previous home range estimates for the Philippine Eagle calculated median 95 % 481 

home range sizes between 64-90 km2 (Sutton et al. 2022), similar to our estimates 482 

here. These uniform estimates are not surprising because Sutton et al. used the 483 

same satellite telemetry dataset to calculate home range sizes but using a fixed 484 

Gaussian KDE, a radius LoCoH and a minimum convex polygon as estimators. Prior 485 

to these quantitative home range estimates, Rabor (1968) suggested a home range 486 

of 40-50 km2 for the Philippine Eagle, within the lower range of our median 95 % 487 

estimates, with Gonzales (1968, 1971) suggesting up to 100 km2. However, 488 

Kennedy (1977) calculated much lower home range sizes of between 13-25 km2 489 

based on polygon and circular estimates from observer sightings of a pair of 490 

breeding eagles within an approximately 5x5 km2 area. Assuming these sightings 491 

were of a nesting territorial pair then they are remarkably similar to our upper range 492 

of 50 % core territorial range estimates.  493 

 494 

Resource selection 495 

Habitat resource selection by animals will often give contrasting results related to 496 

issues of scale (Boyce 2006). Our results showed all eagles were associated with 497 

medium Band 2 Near Infrared reflectance values, representing healthy 498 

photosynthetic leaf and canopy structure but low Band 7 Shortwave Infrared values 499 
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representing old growth forest, in contrast to a previous range-wide habitat use 500 

assessment (Sutton et al. 2022). Thus, solely using GPS fixes from the six adults 501 

captured the finer scale home range resource use, which is generally outside of old 502 

growth forest areas. This is possibly related to adults foraging over secondary forest 503 

and cleared agricultural lands along forest edges (Kennedy 1977; Salvador & Ibañez 504 

2006). These foraging areas are distant from nest sites which are generally within 505 

denser forested areas (Salvador & Ibañez 2006; Ibañez et al. 2003). This 506 

assumption is further supported by the general association with medium values of 507 

Enhanced Vegetation Index, indicating most adults are using areas of canopy 508 

vegetation density between EVI values of 0.35-0.55 over the annual growth period 509 

(see Fig. 5).  510 

 511 

Human-eagle conflicts are one of the key threats to the future survival of the 512 

Philippine Eagle (Ibañez et al. 2016). Due to the habitat preferences identified here 513 

for forest edges and clearings which are the same areas humans occupy, the 514 

likelihood of human-eagle encounters is high, which often results in death or severe 515 

injury for eagles. This is mainly through retaliatory trapping due to eagle predation on 516 

domestic animals, or accidental trapping in snares set by locals to capture wildlife in 517 

the forests. This is further exacerbated in forest edges because these areas are 518 

often designated as buffers or multiple use zones in protected areas which may not 519 

offer the protection needed for Philippine Eagles. Previously, conservation priorities 520 

for the Philippine Eagle have been focused on protecting nest sites in densely 521 

forested areas (Sutton et al. 2022). However, whilst this is still important, we show 522 

that adult eagles spend 75-80 % of space-time outside of core nesting areas in 523 

human fragmented landscapes. Thus, promoting eagle-friendly lifestyles and values 524 
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within forest communities as part of area-based conservation is also necessary at 525 

nest sites located in forest edges, along with community incentives to reduce human-526 

eagle conflict (Ibañez et al. 2016).  527 

 528 

We recognise there are limitations to our inferences due to the low sample size of 529 

individual eagles tagged. However, the financing of expensive GPS telemetry 530 

devices, along with capturing adult eagles in rugged and remote tropical forest 531 

terrain is difficult. Tagging more adult eagles, including beyond Mindanao, would 532 

allow further interpretation of the results and conclusions here. We also recognise 533 

the large differences in the number of GPS fixes between adults and the subsequent 534 

potential bias in our results. However, all our sample sizes were within the range 535 

deemed suitable for estimating home range size (Bekoff & Mech 1984; Seaman et 536 

al. 1999) and resource selection (Northrup et al. 2013). The disparity between GPS 537 

location sample size is largely due to tagged adults being deliberately killed (Ibañez 538 

et al. 2016) or tags failing. There is little we can do about this in the context of the 539 

current study. However, accounting for these disparities in sample size, rates, and 540 

intervals using methods such as AKDE, whilst improving GPS device setting 541 

protocols, can remedy these issues for home range estimation.  542 

 543 

The use of modern satellite tracking devices, combined with environmental data 544 

derived from satellite remote sensing has revolutionized our collective understanding 545 

of animal movement ecology and resource selection (Seidel et al. 2018). Building on 546 

the analyses here by incorporating movement models using either Hidden Markov 547 

models (HMMs; Langrock et al. 2012) or integrated Step-Selection Functions (iSSFs; 548 

Avgar et al. 2016), would further identify the drivers of Philippine Eagle space and 549 
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resource use from latent behavioural states and movement patterns. Rather than 550 

focusing on a single ‘best’ home range estimator, we implemented a range of robust 551 

space use estimators, along with easily interpretable resource selection functions to 552 

accommodate variation in space and resource use across individual eagles to help 553 

inform conservation management. We recommend that analysts consider various 554 

statistical approaches to animal movement data to fully explore space-time and 555 

resource use, ensuring that model outputs are interpretable to conservation 556 

managers and practitioners. 557 
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Supplementary Tables 769 

Table S1. Comparison of candidate movement models for each adult Philippine Eagle from Ornstein-770 

Uhlenbeck (OU) movement patterns including both isotropic and anisotropic variants using change in 771 

Akaike’s Information Criterion corrected for small sample sizes (ΔAICc). OUF = Ornstein-Uhlenbeck 772 

foraging process , IID = Independent and identically distributed data, ΔRMSPE = root mean square 773 

predictive error, DOF = effective number of degrees of freedom.  774 

ID Movement process            ΔAICc  ΔRMSPE (km)             DOF 

001F OU anisotropic 0.00 0.00 407.58 

 OUF anisotropic 2.01 -3.58 408.61 

 OU isotropic 244.67 79.27 385.83 

 OUF isotropic 246.67 75.22 386.90 

  IID anisotropic 2238.31 -164.98 1487.00 

     

002F OU anisotropic 0.00 0.00 283.00 

 OUF anisotropic 2.01 -5.10 284.11 

 OU isotropic 88.42 94.78 263.74 

 OUF isotropic 90.42 91.20 264.43 

  IID anisotropic 2734.57 -183.76 1370.00 

  
   

003F OU anisotropic 0.00 0.00 105.95 

 OUF anisotropic 0.53 2.63 114.50 

 OU isotropic 3.49 -16.74 109.38 

 OUF isotropic 4.45 -15.60 116.79 

  IID anisotropic 109.75 -28.85 263.00 

  
   

004M OU anisotropic 0.00 0.00 51.41 

 OUF anisotropic 2.06 -39.40 52.52 

 OU isotropic 21.52 -182.89 56.90 

 OUF isotropic 23.55 -213.36 57.92 

  IID anisotropic 464.52 -439.68 240.00 

  
   

005M OU anisotropic 0.00 0.00 146.62 

 OUF anisotropic 1.46 -40.04 148.61 

 OU isotropic 367.55 -802.23 147.62 

 OUF isotropic 366.94 -851.92 152.08 

  IID anisotropic 23879.18 -2579.50 5274.00 

  
   

006F OU anisotropic 0.00 0.00 59.86 

 OUF anisotropic 1.98 -41.83 60.86 

 OU isotropic 160.71 380.38 51.87 

 OUF isotropic 162.68 329.77 52.83 

  IID anisotropic 14844.51 -54.53 2952.00 

 775 
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Supplementary Figures 776 

 777 

Figure S1. Incremental analysis using bootstrapped minimum convex polygons (n = 100), quantifying 778 

when the number of GPS relocations within the MCP area reached an asymptote for capturing the 779 

utilization distribution for six adult Philippine Eagles on the island of Mindanao. Black line indicates 50 780 

% percentile of MCP area, dashed red lines lower 25% percentile and upper 75 % percentile of MCP 781 

area and dashed turquoise lines indicate 0% and 100% percentile of MCP area.  782 
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 784 

Figure S2. Range residency tests calculated over the entire sampling period for six adult Philippine 785 

Eagles on the island of Mindanao using semi-variance functions visualised with empirical variograms 786 

to identify unbiased estimates of stationary movement periods of site fidelity. Red vertical line 787 

indicates range residency asymptote with Markovian Confidence Intervals for calculating the 788 

maximum number of non-overlapping lags. 789 

 790 
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 791 

Figure S3. Range residency tests calculated over a 60-day sampling period for six adult Philippine 792 

Eagles on the island of Mindanao using semi-variance functions visualised with empirical variograms 793 

to identify unbiased estimates of stationary movement periods of site fidelity. Red vertical line 794 

indicates range residency asymptote with Markovian Confidence Intervals for calculating the 795 

maximum number of non-overlapping lags. 796 
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 797 

Figure S4. Fixed and adaptive kernel density estimates for six adult Philippine Eagles on the island of 798 

Mindanao. Fixed kernel estimates calculate 95 % probability of use (grey with hashed border) to 799 

represent the home range utilization distribution and 50 % probability of use (black dot-dash line) to 800 

represent a core range utilization distribution. Adaptive kernel estimates calculate 95 % probability of 801 

use contour isopleths (red) to represent the home range utilization distribution and 50 % probability of 802 

use contour isopleths (yellow) to represent a core range utilization distribution. Black points show 803 

filtered locations using a 3-hr sampling interval for each respective adult Philippine Eagle. White 804 

points indicate nest sites. 805 
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 806 

Figure S5. Local Convex Hull (LoCoH) home range estimates for six adult Philippine Eagles on the 807 

island of Mindanao. Estimates calculate 95 % probability of use to represent the home range 808 

utilization distribution (light grey) and 50 % probability of use to represent a core range utilization 809 

distribution (dark grey). Blue points show filtered locations using a 3-hr sampling interval for each 810 

respective adult Philippine Eagle. White points indicate nest sites. 811 

 812 
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