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ABSTRACT

Connectome-based neural mass modelling is the emerging computational neuroscience paradigm 1

for simulating large-scale network dynamics observed in whole-brain activity measurements such as 2

fMRI, M/EEG, and related techniques. Estimating physiological parameters by fitting these models 3

to empirical data is challenging however, due to large network sizes, often physiologically detailed 4

fast-timescale system equations, and the need for long (e.g. tens of minutes) simulation runs. Here 5

we introduce a novel approach to connectome-based neural mass model parameter estimation by em- 6

ploying optimization tools developed for deep learning. We cast the system of differential equations 7

representing both neural and haemodynamic activity dynamics as a deep neural network, imple- 8

mented within a widely used machine learning programming environment (PyTorch). This allows 9

us to use robust industry-standard optimization algorithms, automatic differentiation for computa- 10

tion of gradients, and other useful functionality. The approach is demonstrated using a connectome- 11

based network with nodal dynamics specified by the two-state RWW mean-field neural mass model 12

equations, which we use here as a model of fMRI-measured activity and correlation fluctuations. 13

Additional optimization constraints are explored and prove fruitful, including restricting the model 14

to domains of parameter space near a bifurcation point that yield metastable dynamics. Using these 15
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techniques, we first show robust recovery of physiological model parameters in synthetic data and 16

then, as a proof-of-principle, apply the framework to modelling of empirical resting-state fMRI data 17

from the Human Connectome Project database. For resting state activity, the system can be under- 18

stood as a deep net that receives uncorrelated noise on its input layer, which is transformed into 19

network-wide modelled functional connectivity on its output layer. This is consistent with the pre- 20

vailing conception in theoretical neuroscience of resting-state functional connectivity patterns as an 21

emergent phenomenon that is driven by (effectively) random activity fluctuations, which are then in 22

turn spatiotemporally filtered by anatomical connectivity and local neural dynamics. 23

Keywords neural mass model, connectome, connectivity, fMRI, network, dynamical systems, optimization, deep 24

learning 25

1 Background 26

1.1 Connectome-based neural mass models in neuroimaging and computational neuroscience 27

Human brain functioning is characterised by complex spatio-temporal activity patterns, and can be investigated via 28

computational models that describe mathematically how this activity evolves in time. Neuroimaging techniques such 29

as functional magnetic resonance imaging (fMRI) and magneto/electroencephalography (M/EEG), allow noninvasive 30

and holistic measurement of these large-scale activity patterns in human subjects. A dominant theoretical perspective 31

in computational modelling of neuroimaging data is that much of the richness and complexity in the observed activity 32

results from the combination of anatomical network structure and local neural dynamics (Honey et al., 2009; Deco 33

et al., 2013b). Connectome-based neural mass models (CNMMs) have, over the past decade, become one of the 34

principal computational tools used to explore scientific questions in this line of research (e.g. Deco et al., 2013b,a, 35

2014; Deco and Kringelbach, 2014; Breakspear, 2017; Griffiths et al., 2020). In CNMMs, equations describing the 36

mesoscopic collective neural population behaviour in a large patch of tissue are used to model regional neural activity, 37

such as that measured by average blood oxygenation level-dependent (BOLD) fMRI signal within a brain region or 38

‘parcel’. CNMM network nodes are interconnected with weights representing the strength of long-range white matter 39

projections (the anatomical connectome), typically parameterized in human brain data using diffusion-weighted MRI 40

(dwMRI) tractography (Hagmann et al., 2008). 41

To date, CNMMs have been used with moderate success to simulate, and thereby better understand, several character- 42

istics of functional neuroimaging data, including static resting-state fMRI (rsfMRI) functional connectivity (FC; Deco 43

et al., 2013b), dynamic (moving-window) FC (Hansen et al., 2015; Kehoe et al., 2017), state switching (Kringelbach 44

and Deco, 2020; Griffiths et al., 2020), power spectra (Xie et al., 2018), graph-theoretic properties (Vecchio et al., 45

2017), metastability (Deco et al., 2017), travelling waves (Muller et al., 2016; Roberts et al., 2019), and EEG-BOLD 46

anticorrelations (Schirner et al., 2018; Pang and Robinson, 2018). These studies have employed a combination of 47

mathematical/numerical systems analysis (e.g. bifurcations, attractor landscapes, linear stability) and more direct 48

goodness-of-fit evaluations for comparing empirical and simulated data. The latter process of finding the best set of 49

model parameters, as defined by minimizing some explicitly defined objective function, is variously termed ‘param- 50

eter estimation’, ‘parameter optimization’, ‘model inversion’, ‘model fitting’, and ‘data fitting’. These terms shall be 51

treated as largely synonymous in the present paper. 52

Even though CNMMs have been extensively employed to reproduce the spatially distributed patterns of neuronal ac- 53

tivity in numerical simulations, methodologies for CNMM parameter estimation remain relatively underdeveloped. 54

Dynamic causal modelling (DCM; Friston et al., 2003), a related family of techniques that has largely focused on 55

smaller networks and simpler models of neural dynamics than CNMMs, makes effective use of relatively sophisti- 56

cated Variational Bayesian inference techniques. Unlike DCM however (which has always been principally concerned 57

with parameter estimation), research using CNMMs has focused on characterizations of neural system dynamics at 58

the whole-brain scale, mainly through the use of numerical simulations, and to a lesser extent analytic theory. Where 59

parameter estimation has been employed in CNMM studies, it has usually (with some exceptions, discussed later) 60

been ‘brute-force’ - whereby all possible combinations of some constrained parameter space are evaluated. Whilst the 61

brute-force method is by definition the most robust way of identifying optimal parameters for some defined objective 62

function, it is only viable for extremely low-dimensional parameter spaces, due to the combinatorial explosion intro- 63

duced by every additional parameter added. The number of parameters that can be feasibly covered with a brute-force 64

approach depends on run time of each parameter combination, the granularity of the parameter space sampling, and 65

the compute resources available for concurrent model runs. CNMMs are often quite computationally expensive to 66

run, as they typically model whole-brain activity, across networks with several hundred nodes, with systems of (often 67

stochastic, often nonlinear, often delay) differential equations, with both sub-millisecond integration time steps and 68

run lengths of tens of minutes (the typical session length of an rsfMRI scan). These factors combine to make a single 69
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CNMM simulation run take quite a long time to execute, even on fairly powerful compute hardware. The number of 70

parameters that can be feasibly covered with the brute-force method for typical CNMMs is therefore usually fewer 71

than five. 72

Properly deployed, modern optimization techniques are easily capable of vastly superior performance than the brute- 73

force or parameter space exploration approach. In this article, we tackle the problem of CNMM parameter estimation 74

using a number of techniques that are novel or have been rarely used in this context to date. In the next few sections 75

we briefly review at a conceptual level some of the key ingredients of our approach, and then go on to present the 76

details of our methodology and results obtained. 77

1.2 Recasting CNMM parameter estimation as learning with deep recurrent neural nets 78

1.2.1 Black-Box and Glass-Box Approaches 79

In this work we approach the problem of parameter estimation for CNMMs, and for physiological models more 80

generally, through the lens of modern machine learning with artificial neural networks (ANNs). Parameter estimation 81

methodologies commonly used to date tend to vary in the level of ‘transparency’ given to the physiological elements 82

of the model being optimized. This can be thought of in terms of more or less ‘black-box’ vs. ‘glass-box’ approaches. 83

The black-box problem involves, as the name suggests, treating the CNMM as an opaque parameters-in, simulation- 84

out system. For this approach, one would wrap a core CNMM numerical simulator component within one of the 85

great many readily-available black-box parameter optimization frameworks, giving the algorithm no additional in- 86

formation on the class of optimization problem or the mathematical structure inside the box. The advantage of this 87

approach is that it allows the researcher to use the same software implementations, such as those in various widely 88

used computational neuroscience simulator libraries, that they are already familiar with and have expertise in. These 89

implementations are themselves often highly complex and heavily optimized for numerical performance by domain 90

experts, so ‘opening up the box’ may be neither desirable nor feasible. 91

Although black-box approaches to parameter estimation have the advantage of simplicity, it is widely understood that 92

performance of optimization algorithms can be improved considerably by ‘glassening’ the box in one way or another 93

- giving the algorithm some information about the internal structure, or at least the input-output behaviour, of the 94

system. 95

Two ways that optimization performance can be enhanced through knowledge of the problem are: 96

1) Appropriate choice of optimization algorithm. The choice of algorithm may be determined by considerations such 97

as whether the geometry of the objective function or type of problem requires a method that is continuous or discrete, 98

constrained or unconstrained, single or multi-objective, deterministic or stochastic, etc. 99

2) Jacobians. In the context of parameter optimization, the Jacobian is a matrix of partial derivatives of model pa- 100

rameters with respect to the objective function. Knowledge of the Jacobian dramatically speeds up and improves the 101

convergence of numerical optimization routines. In some cases, the Jacobian can be found analytically, although this 102

is prone to error and relatively rare in computational neuroscience applications, which often use complex sets of equa- 103

tions to model neural activity. More common is to approximate the Jacobian by first linearizing the model equations, 104

and then evaluating the system’s eigenvalues at its fixed points1. In other cases the Jacobian can be found numerically, 105

without any specialised mathematical knowledge or reformulation. The traditional way this is done computationally is 106

by numerically approximating the Jacobian using, for example, finite difference techniques. More recently, however, 107

scientific computing tools have begun to make use of automatic (also known as algorithmic) differentiation (AD). AD 108

(or often just ‘autodiff’) is a computational technique that allows implicit application of the chain rule, allowing cal- 109

culation of derivatives, or ‘gradients’, between variables in a computer program that are separated by long sequences 110

of elementary mathematical operations (see Baydin et al., 2018 for a recent review of AD in machine learning). Criti- 111

cally, in an optimization context, AD allows computation of the derivative of the objective function with respect to the 112

CNMM model parameters, for models with arbitrarily high levels of complexity. AD allows a manifestly glass-box 113

approach to parameter estimation, because it exposes the full set of numerical operations that together define the neu- 114

ral simulation, the observation model, and its associated objective function to the optimization algorithm. Unlike the 115

black-box approach that isolates and separates the CNMM simulator from the optimization machinery, the glass-box 116

approach uses the model equations written out entirely within a dedicated general-purpose numerical parameter opti- 117

1Note that the objective function Jacobian, defining a matrix of partial derivatives of model parameters with respect to the
objective function, is different to Jacobians that might define or aid a numerical integration routine used for simulating neural
activity, which would be a matrix of partial derivatives of the system states with respect to each other. This latter neural dynamics
Jacobian could nevertheless be, and often is, used in manual calculation of an analytic optimization Jacobian by application of the
chain rule.
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mization (and/or ANN modelling) library such as PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2016), Jax 118

(Bradbury et al., 2018), or STAN (Kucukelbir et al., 2015). We return to the significance of this approach from the 119

point of view of automatic gradient calculation later. First, let us consider the idea of CNMMs and neural simulators 120

more broadly as computation graphs. 121

1.2.2 CNMMs as Computation Graphs 122

Computation graphs are software data structures that describe the sequence of numerical operations and input/output 123

relationships along all steps in some computational process. They are specified independently of the actual values 124

of their constituent variables, and play both a schematic and an executional role in computational tasks. A canonical 125

type of computation graph is a deep ANN intended for image classification applications - consisting of states (‘activ- 126

ity’ level at each network node), parameters (e.g. ‘synaptic’ weights between nodes), and equations describing how 127

network activity responds to a given input. Interestingly, from this point of view, CNMMs have a strikingly similar 128

overall architecture to many ANN implementations (recurrent neural networks in particular), consisting as they do 129

of a graph of dynamic ODEs that circulate activation patterns via continuous-valued states, coupled via saturating 130

nonlinearities. Moreover, modern ANN tools not only allow highly flexible selections of off-the-shelf ANN architec- 131

tures, but also increasingly support the specification of computation graphs directly from arbitrary sets of differential 132

equations. Indeed, it has become clear in recent years that combining conventional ANN architectures and algorithms 133

with differential equation solvers and frameworks opens powerful new directions not only for machine learning itself 134

(e.g. with ‘neural ODEs’; Chen et al., 2018), but also for theoretically-oriented scientific fields such as physics (Raissi 135

et al., 2019). In neuroscience, the above developments have enabled progress both in the ML→Neuro direction - 136

identifying structural patterns in trained deep nets and searching for comparable patterns in the human brain (Güçlü 137

and van Gerven, 2015), and also in the Neuro→ML direction - identifying structural patterns in human brain networks 138

and asking whether they facilitate performance of neural nets on cognitive tasks (Suárez et al., 2021). 139

1.3 Present work 140

In summary, there are a variety of interesting and practically useful intersections between modern machine learning 141

computational architectures and optimization frameworks, the emerging paradigm of neurophysiological modelling 142

with CNMMs, and physiological modelling more generally. Motivated by this, we have developed a novel model 143

optimization framework that improves on previous work in this area in a number of ways. We demonstrate this 144

approach for a familiar class of CNMMs for resting-state fMRI activity, using a widely-used neural mass model (the 145

two-state RWW equations; Deco et al., 2013b, 2014) and associated haemodynamic model (Friston et al., 2000) to 146

describe regional neural dynamics at every brain region or network node in a whole-brain connectivity graph. Our 147

focus is principally on rsfMRI FC patterns, although the methodology is quite generic, and in other recent work 148

(Momi et al., in prep) we have also found it performs equally well. The framework’s effectiveness is largely owed to 149

a combination of an efficient time-windowed batching and epoching scheme, autodiff-computed gradients, and some 150

selected parameter constraints. 151

In the following sections we first detail the modelling approach, including equations defining the neural dynamics, 152

objective function, and numerical bifurcation analyses that are used to support parameter constraints. We then present 153

two sets of modelling results, demonstrating i) accurate recovery of parameters in a synthetic dataset with known 154

ground truth, and ii) model-based single-subject analyses of human connectome project (HCP) rsfMRI data. We then 155

conclude with a discussion around the innovations, implications, and limitations of the approach. 156

2 Methods 157

The chief contribution of this article is the introduction of a novel computational framework for CNMM parameter 158

estimation. A schematic of the general approach is given in Figure 1. The following sections outline the associated 159

neuroimaging data analysis details, followed by the mathematical theory and implementation details for both the 160

neurophysiological model and the optimization algorithm. 161
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Fig. 1 | Schematic of CNMM modelling approach. We model rsfMRI data by specifying a deep recurrent neural network having
RWW network node dynamics, anatomical connectome network structure, and a haemodynamic observation model, within an
autodiff-capable Python programming environment (PyTorch). A) Network nodes are defined from the grey matter parcellation,
and network edge weights between regions are defined from normalized, re-scaled DWI tractography streamline counts. B) Each
network node comprises an excitatory and inhibitory neural population, coupled by local gain parameters gEE ,gEI ,gIE ,
connected between nodes by the connectome weights C and global scaling g. C) A haemodynamic balloon model converts the
neural population activity to simulated regional BOLD fMRI time series, and a whole-brain FC matrix is computed from the
Pearson correlation between parcel time series. D) Complexity-penalized comparison of simulated to empirical rsfMRI FC
matrices informs the objective function (‘LOSS’), which is iteratively fed back into the network, and the AD-computed gradient
between the objective function and model parameters is used by the ADAM optimization algorithm to update the model
parameters. The model is run with new parameters for a short period (30s simulated time), and the process is repeated until E)
convergence, giving the final simulated FC matrix and estimated model parameters.

2.1 Implementation 162

There is a large and rapidly-growing array of computational tools used for modelling and optimization in both the 163

academic and commercial sectors. These include the PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2016), 164

Jax (Bradbury et al., 2018), and STAN (Kucukelbir et al., 2015) libraries, amongst others. Here we use PyTorch for 165

the neural network modelling and model-fitting work presented in this paper, which is comparable in most relevant 166

features to the other libraries listed above, with the notable advantage over some of a large, dynamic, and rapidly 167

growing user and developer community. Full code for reproduction of the data analyses and model fitting described in 168

this paper is freely available online at github.com/griffithslab/dl-paramest-for-neurophys-models. For 169

clarity, this repository also includes documentation detailing where and how each of the 40 equations given below 170

appear in the code. All models and analyses were run with Python 3.7 on quad-core processors running Ubuntu 18.0. 171

Full Python library version specifications are given in the repo’s dependencies file. 172

2.2 Neuroimaging data analyses 173

The CNMM methodology requires two principal data types: a) measured physiological activity (typically in time 174

series or FC matrix form), and b) an anatomical connectome. The aim is to simulate the former using the network 175

structure from the latter, plus an appropriately chosen model of neural dynamics. Here our focus is on modelling 176

resting-state fMRI data, although the general approach is also easily applied to EEG, MEG, and other data types. 177

We have explored the application of our modelling approach on several neuroimaging datasets, but in the interests of 178

space, focus, and simplicity, we focus in this paper on one: the Washington University-Minnesota (WU-Minn) Human 179

Connectome Project (HCP) consortium data (Van Essen et al., 2013; Glasser et al., 2013). 180

Neuroimaging data analyses were conducted in Python using Nilearn (Abraham et al., 2014), Dipy (Garyfallidis et al., 181

2014), Nipype (Gorgolewski et al., 2011), and other tools in the Neuroimaging-In-Python ecosystem (github.com/ 182

nipy). Anatomical connectivity matrices for 50 randomly chosen subjects were computed from HCP dwMRI data 183
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using deterministic tractography. Full details on the local tissue model and dwMRI and tractography analysis pipeline 184

are given in a previous article (Griffiths et al., 2020), and the original raw data (Van Essen et al., 2013) is publicly 185

accessible at https://db.humanconnectome.org. The parcellation used for both dwMRI and fMRI analyses was 186

the scale-1 (83 node) ‘Lausanne 2008’ parcellation (Hagmann et al., 2008; Daducci et al., 2012), which consists of 187

68 cortical and 15 subcortical regions. These parcels were defined initially on the Freesurfer cortical surface, and 188

converted to nifti volumes and resliced to the native-space EPI images for fMRI data analysis. Using this parcellation, 189

regional time series were extracted from preprocessed rsfMRI nifti volumes using tools from the Nilearn library, 190

with noise covariates from CSF signal, white matter signal, and motion parameters regressed out. FC matrices were 191

calculated as the Pearson correlation between regionally averaged time series from all pairs of parcels. 192

In addition to these full neuroimaging data analyses, we also used the model to generate synthetic rsfMRI time series, 193

for which the ‘ground truth’ model parameters are known. In these synthetic data analyses, we employed a different 194

(but related) anatomical connectivity matrix: the 68-region ‘Hagmann connectivity’ matrix, first described in the 195

seminal studies of Hagmann et al. (2008) and Daducci et al. (2012), and used extensively in modelling work since 196

then (e.g. Deco et al., 2013b, 2014; Robinson, 2012; Mehta-Pandejee et al., 2017). As in these latter studies, for 197

this set of synthetic data simulations and analyses (described in Results section 3.1) we did not ourselves run dwMRI 198

tractography to generate the connectivity matrices, but instead used the matrices provided by the above authors (Deco 199

et al., 2013b; Hagmann et al., 2008). 200

2.3 Ethics Statement 201

The computational modelling work undertaken in this study was approved by the Centre for Addiction and Mental 202

Health (CAMH) Research Ethics Board (REB number 022/2020). The modelling The human neuroimaging datasets 203

used in this study were collected by other research teams as part of the Human Connectome Project (Van Essen et al., 204

2013), with all participants providing written informed consent prior to data collection, and was approved by the 205

Washington University Institutional Review Board (IRB number 201204036). 206

2.4 Neurophysiological model 207

We modelled the dynamics of whole-brain neural activity with the aim of reproducing the main features of the individ- 208

ual subjects’ FC matrices. As shown in Figure 1, a neural mass model describing the temporal dynamics of regional 209

brain activity was placed at each node of the anatomical parcellation, and coupled to other brain regions according to 210

the weights given by the anatomical connectivity matrix. The regional neural dynamics were then fed into a haemo- 211

dynamic model describing the conversion of neural activity to BOLD signal fluctuations. Pearson correlation FC 212

matrices were then computed from this simulated regional BOLD activity, exactly the same as with the preprocessed 213

regionally averaged empirical BOLD signals. A general mathematical description of this is as follows: 214

ẋ =f(x) (1)

ẏ =g(x) (2)

z =h(ȳ). (3)

Here, the local neural dynamics (f) determine the time-evolution of the state vector x = [x1 . . . xN ] of regional neural 215

activity across N network nodes. The function g is a so-called haemodynamic forward (also known as measurement 216

or observation) model that maps neural activity on to the BOLD signal time series, as measured by fMRI. Finally, 217

h applies the Pearson correlation coefficient, acting over a temporal window ȳ = y(t − τ : t) of the time series 218

y,where τ = 30s. In the following we give the details of the functions f and g for neural activity and haemodynamics, 219

respectively. Subsequent sections give details on construction of the objective function used in parameter estimation 220

using h and z. 221

Neural dynamics. To describe mesoscopic population activity at each region in the whole-brain network, we use 222

the equations derived in Deco et al. (2013b, 2014), which are variously termed in the literature the ‘Dynamic Mean 223

Field’, ‘Wong-Wang-Deco’ (WWD), and ‘Reduced Wong-Wang’ (RWW) model. Here we use the latter appellation. 224

Specifically, we use the two-state or E-I version of the RWW equations. In this model, each brain network node 225

consists of two neural masses: one describing the average behavior of an excitatory neural subpopulation, and the 226

other the behaviour of an inhibitory neural subpopulation. Activity in each of these subpopulations at a given brain 227
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network node i ∈ [1...N ] is described by the unitless state variables Ei / Ii representing synaptic activity or ‘gating’ 228

levels, as well as auxiliary variables RE
i / RI

i (population firing rates) and IEi / IIi (synaptic currents). These evolve 229

according to the following coupled nonlinear stochastic differential equations: 230

Ėi =− 1

τE
Ei +

(
1− Ei

)
γRE

i + σvEi (4)

İi =− 1

τ I
Ii +RI

i + σvIi (5)

where τE and τ I are the decay times of the excitatory and inhibitory synapses, respectively, γ is a kinetic parameter, 231

and σvEi / σvIi are uncorrelated Gaussian noise processes with mean 0 and standard deviation σ. The principal input 232

to Ei and Ii are the population firing rates RE
i and RI

i , which are expressed as functions of the input currents IEi and 233

IIi as follows: 234

RE
i =

aEIEi − bE

1− e−dE
(
aEIEi −bE

) (6)

RI
i =

aIIIi − bI

1− e−dI
(
aIIIi −bI

) (7)

Parameters aE , aI , bE , bI , dE and dI govern the specifics of the conversion of input currents to population firing rates 235

(see Table S1 for further info). The two input currents are computed as follows: 236

IEi = tanh

WEI0 + w+JnmdaEi +GJnmda

∑
j

LijEj − JiIi + Iext

 (8)

IIi = tanh

W II0 + JnmdaEi − Ii + λGJnmda

∑
j

LijEj

 (9)

where Iext encodes external stimulation, and is set to 0 when simulating resting state activity. I0 represents a constant 237

external input, scaled by parameters WE and W I for the excitatory and inhibitory populations, respectively. Lij 238

denotes the elements of the connectivity Laplacian, defined as L = D−C, where C is the (log-transformed and unit- 239

normalized) tractography-derived connectivity (adjacency) matrix that gives the connection strength between network 240

nodes i and j, and D is the diagonal matrix of node degree (i.e. the row sums of C). The term
∑

j Lij Ej thus 241

encodes the total summed input to node i from all other j nodes in the network. The parameter λ allows the removal 242

of long-range feedforward inhibition (Deco et al., 2014) when set to 0, which is what was done here (although we 243

retain the term in the equations here for completeness and potential exploration in future work). Parameters Jnmda 244

and Ji represent the value of the excitatory synaptic coupling and the local feedback inhibitory synaptic coupling, 245

respectively, while parameters w+ and G scale the local and long-range excitatory couplings, respectively. 246

An interesting and important feature of the RWW model is that it is one of the few widely used neural mass models that 247

is directly derived, via mean field reduction techniques, from a ‘lower level’ mathematical description of individual 248

(conductance-based leaky integrate-and-fire) neurons. Building on original work of Wong and Wang (2006), this 249

derivation was first done in the CNMM context for the one-state (slow excitatory population only) model by Deco 250

et al. (2013b), and subsequently for the two-state (excitatory and inhibitory population) model in Deco et al. (2014), 251

which give the equations used here. This two-state RWW model is similar in many respects to the classic equations of 252

Wilson and Cowan (1972), who famously introduced the notion of predator/prey-like excitatory/inhibitory population 253

interactions as a generic description of cortical tissue. In both Deco et al. (2013b) and Deco et al. (2014), the authors 254

also derive further reductions, arriving finally at a linearized algebraic expression for neural population covariance 255

structure - a result that is of considerable importance for the broader theory of CNMMs, although not one we shall be 256

considering further in the present paper. 257

In addition to deriving and introducing the two-state RWW model, Deco et al. (2014) also introduced an iterative 258

algorithm designed to keep the synaptic current terms within a specific biologically-motivated range. Here we employ 259
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a different but related constraint: we squash the input current variables in Equations 8 and 9 using a tanh function. 260

This is a more mathematically well-behaved way of specifying variable limits than explicit constraints or iterative 261

algorithms (it is differentiable, for example), and we have found improves model fit performance considerably. 262

The notation above follows closely that of Deco et al. (2014). In this paper we also adopt the following alternative 263

notation for several commonly discussed terms: 264

gEI =Jnmda (10)

gIE =Ji (11)

gEE/gEI =w+ (12)

g/gEI =G (13)

which define the within-node excitatory-to-inhibitory, inhibitory-to-excitatory, and excitatory-to-excitatory synaptic 265

gains (gEI , gIE , gEE , respectively), as well as the long-range global coupling g. This new notation is convenient 266

because it is more uniform and follows general conventions in relation to connectivity weight subscripts. We will 267

eventually fit these four parameters by comparing the results of simulations of the model to empirical data. 268

Haemodynamics. The forward model function g(x) models the transformation of the state variables of the neural 269

mass model into a quantity that can be compared to the experimental BOLD signal obtained by fMRI. Following Deco 270

et al. (2014), for this we use here the Balloon-Windkessel model (Friston et al., 2000), which captures much of the 271

known biophysics of BOLD signal generation. 272

In the Balloon-Windkessel model, the vascular bed in a small volume of tissue is modelled as an expandable venous 273

compartment. The output of the capillary bed (volume flow rate into the tissue Fi(t), in units of ml/s) is specified to be 274

a function of time, and drives the system. Blood volume changes happen primarily in the venous compartment. The 275

generated BOLD signal is a nonlinear function of normalized venous volume V , normalized total deoxyhemoglobin 276

content Q, and resting net oxygen extraction fraction by the capillary bed Oi, where rates of change of each variable 277

as the Balloon model expands and contracts are given by 278

Q̇i =
1

ρτ0
Fi(1− (1− ρ)

1
Fi )− 1

τ0
(QiV

1
α−1
i ) (14)

V̇t =
1

τ0
(Fi − V

1
α
i ) (15)

Ḟi =Xi (16)

Ẋi =Oi −
1

τs
Xi −

1

τF
(Fi − 1) (17)

with rate constants ρ, transit time τ0, stiffness parameter α, signal decay τs, and autoregulation τF (see Table S1 for 279

nominal values). Q̇i is defined using flow rate multiplied by the concentration, representing the difference between 280

the delivery of deoxyhemoglobin into the venous compartment and the deoxyhemoglobin expelled with the extraction 281

function Oi (defined as 1 − (1 − ρ)1/F ) across transit time τ0. The rate of change of the volume V̇t is defined as the 282

difference between inflow Fin and outflow Fout (or V
1
α−1
i ) divided by the transit time τ0. Differentiating Ḟ one more 283

time, we obtain Ẋ , which can model the flow between different steps of the model. The BOLD signal is then given by 284

Y = V0

(
k1 (1−Q1) + k2

(
1− Q

V

)
+ k3 (1− V )

)
(18)

where V0, ki, i = 1, 2, 3 are constant coefficients. 285
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Synthetic data generation. For the first round of simulations and analyses reported in this paper, we generated 286

synthetic data using the above equations and known values for model parameters, and tested the ability of the opti- 287

mization algorithm (see below) to accurately recover the correct parameter values. Importantly, numerical integration 288

of the neural and haemodynamic model equations was run with the same PyTorch code implementation used for model 289

fitting. A set of ‘synthetic subject’ anatomical connectivity (C) matrices were generated by adding a small amount of 290

random noise to a template, for which we used the 66x66 tractography-derived matrix from Hagmann et al. (2008) and 291

Deco et al. (2013b). Unlike the C parameters, which thus varied slightly across the synthetic subject group, the target 292

neural model parameters g, gEE , gIE , and gEI were set uniformly to the nominal values listed in Table S1. For each 293

synthetic subject we generated whole-brain regional time series simulations, and these were in turn used to generate a 294

distribution of synthetic simulated rsfMRI FC matrices. Parameter estimation was then run on these synthetic rsfMRI 295

time series, identically as with the empirical data, with randomly selected state variable initialization values. Results of 296

these analyses are shown in terms of distributions over the 50 synthetic subject model runs in their parameter estimates 297

and their parameter estimate errors. 298

2.5 Bifurcation analysis 299

Bifurcation analyses allow us to define and study qualitative changes in the dynamics of a system that emerge as a 300

function of one or more parameter values, and can be used to summarize some aspect of the dynamical regime at that 301

point in parameter space. These qualitative changes can be extremely useful for understanding the system’s overall 302

behavioural repertoire, and under what conditions a given type of dynamics is expected, guaranteed, or prohibited. 303

We used bifurcation analyses of the RWW equations to characterize better its dynamical properties, and so doing 304

identify further useful constraints on parameter values during model fitting. The dynamics of a single RWW node 305

without network couplings (c.f. Eqns 4-9) is given by 306

Ė =− 1

τE
E +

(
1− E

)
γRE (19)

İ =− 1

τ I
I +RI (20)

where RE and RI are calculated the same as in Eqs. 6-7, and the two input currents are 307

IE =WEI0 + gEEE − gIEI (21)

II =W II0 + gEIE − I (22)

We are interested in dynamic regime changes across the parameters: I0, gEE , gIE and gEI . All of these parameters 308

are within the range [0, 2]. For each set of parameters above, using the fsolve function from the Python package 309

scipy.optimize with multiple random initial parameters, we calculated all the solutions of 310

− 1

τE
E +

(
1− E

)
γRE = 0 (23)

− 1

τ I
I +RI = 0 (24)

At each solution, the Jacobian was calculated to obtain the corresponding eigenvalues. The number of solutions and the 311

eigenvalues associated with each solution were evaluated, in order determine which dynamic regime those parameters 312

lie within. Within the search scope used, only two regimes were found: a monostable (single fixed point) and a bistable 313

(two fixed points) regime. A subcritical Hopf bifurcation occurs as the monostable region gives rise to the bistable 314

region, where a stable state of steady growth coexists with an oscillatory regime. Here we are interested in the critical 315

parameter values that place the system at the edge of this bifurcation, as this location of parameter space has been 316

identified previously to achieve the best fits with empirical data and most neurobiologically realistic dynamics (Deco 317

et al., 2013b, 2014). To do this we used an iterative approach. First, the critical value of I0 is calculated through a 318

1-dimensional parameter search. Then, using that value as a fixed value for I0, the critical value of gEE is calculated 319

in a similar manner as for I0, using a similar search across parameter space. Lastly, both Gio and gEI are varied, 320

fixing the I0 and gEE to the above-determined values. The coloured areas in Figure 2B show the dynamic regimes 321

on the plane spanned by gIE and gEI . The area labelled I represents the fixed point regime, and the area labelled II 322
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the bistable regime. As is clear from this figure, the boundary between these two regimes reliably takes the form of a 323

decaying exponential. Noting this, we introduced into the optimization algorithm (c.f. Eq. 41) a polynomial function 324

as a joint prior on gIE and gEI , which serves to ensure that the values of these two parameters are jointly sampled 325

from the critical boundary. 326

Fig. 2 | Bifurcation analysis. We used bifurcation analyses of the 2D system describing an isolated RWW node to identify useful
parameter constraints. A) Bifurcation diagrams showing the bistability associated with the I0 and gEE parameters. When both
parameters are varied, two stable points emerge (black dots, labelled H1) at the intersection of the stable and unstable fixed points
across potential values for the fixed current I0 and the excitatory-excitatory coupling strength gEE parameters. B) After
identifying the critical points for I0 and gEE independently, we fix those parameters near to their critical points, and construct a
joint bifurcation diagram for inhibitory-excitatory gEI and excitatory-inhibitory gIE coupling strengths. This analysis identified
two regimes - a fixed-point (I) and an oscillatory (II) regime. Since the separatrix between these two domains of parameter space
takes the form of a decaying exponential, we can define a 2D polynomial spline function of gIE and gEI that sits close to the
border between zone I and zone II. Later, this is polynomial spline is used to define a joint prior density over these two parameters.

2.6 Parameter optimization 327

The brain network model (neural equations 4-13 and haemodynamic equations 14-18) can be understood as a form 328

of recurrent ANN, that uses the parameters Cij (which in turn define Lij), g, gEE , gIE and gEI as its weights. Of 329

these, the C parameters in particular are directly analogous to the free parameters of an ANN, determining individual 330

connection strengths between network nodes. The g parameters, in contrast, have a more global effect, since they 331
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scale the connection weights between all nodes in the network concurrently. All other physiological and haemody- 332

namic model parameters are treated as fixed, and therefore not relevant here. We use a machine learning-based opti- 333

mization approach to estimate those model parameters by fitting the model-generated activity to empirical functional 334

neuroimaging data recordings. 335

Optimization of model parameters using ADAM In order to fit the brain network model to the empirical neu- 336

roimaging data dynamically, we divide the rsfMRI BOLD time-series into 30s non-overlapping windows (batches), as 337

shown in Figure S1. In each batch, the simulated BOLD time series are generated using our model with the currently 338

estimated model parameter values, and the cost is calculated to guide the model parameter updates for the next batch. 339

Our aim is to find optimal parameters gEI , gIE , gEE , g, and Cij in Equations 6-10, to minimize the objective function 340

(defined below at each batch). We used the ADAM algorithm (Kingma and Ba, 2014), which is natively supported 341

in PyTorch, to control the parameter update schedule during model optimization. ADAM is an adaptive learning rate 342

optimization algorithm designed specifically for training deep neural networks, that can be understood as a combina- 343

tion of RMSprop (Tieleman and Hinton, 2012) and Stochastic Gradient Descent (SGD) with momentum. It uses the 344

squared gradients to scale the learning rate (like RMSprop), and it takes advantage of momentum by using the moving 345

average of the gradient instead of gradient itself (like SGD with momentum). Thus, ADAM is an adaptive method that 346

computes individual learning rates by estimating the first and second moments of the gradient of the model parame- 347

ters with respect to the objective function, and using this to adapt the overall learning rate. The following is a brief 348

summary of the ADAM algorithm: 349

The n-th moment of a random variable X is defined as the expected value of that variable to the power of n: 350

mn = E [Xn] (25)

The first moment is the mean, and the second moment is the uncentred variance (i.e. the mean is not subtracted during 351

calculation of the variance). To estimate these moments, ADAM utilizes exponentially moving averages: 352

mt = β1mt−1 + (1− β1) gt (26)

νt = β2νt−1 + (1− β2) g2t (27)

where the estimates of the first and second moments mt and vt are moving averages at the t-th batch, gt is the gradient 353

on the current batch, and hyperparameters β1 and β2 are set to default values of 0.9 and 0.999, respectively. The 354

vectors of moving averages are initialized with zeros at the first iteration. The estimators are biased towards zero. 355

Now we need to correct the estimator, so that the expected value is the intended quantity. This step is usually referred 356

to as bias correction. The final formulas for our estimator will be as follows: 357

m̂t =
mt

1− βt
1

(28)

ν̂t =
νt

1− βt
2

(29)

These are the bias-corrected estimators for the first and second moments corrected with bias. The moving averages are 358

used to scale the learning rate individually for each parameter. The way this is done in the ADAM algorithm is very 359

simple: to perform a weight parameter update we take 360

wt = wt−1 − η
m̂t√
m̂t + ε

(30)

for the model parameters w and step size η. 361

Objective function. Following other authors, we choose an objective function for the ADAM algorithm based on 362

Variational Bayes that implements a complexity-penalized goodness-of-fit, using the free energy approximation to the 363

log model evidence (Beal, 2003; Friston et al., 2003; Hashemi et al., 2020). Let Xk represent the state (i.e. RWW 364

CNMM state variable vector) at batch k, yk represent BOLD signals at the batch k, and Θ denote all model parameters. 365

We consider the general density 366
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p(yk, xk,Θ, xk−1, yk−1)

=p(yk, xk,Θ|xk−1, yk−1) p(xk−1, yk−1) (31)

where 367

p(xk−1, yk−1) = p(xk−1, yk−1|y1, · · · , yk−2) (32)

By integrating the state X out of Equation 31 we obtain the following compact form for the generative model at batch 368

k: 369

p(xk, yk,Θ|y1, · · · , yk−1) (33)

from which we obtain 370

p(xk,Θ|y1, · · · , yk−1) (34)

This is the quantity of interest to us, because it describes the posterior probability of the time-dependent states xk and 371

time-independent parameters Θ. 372

Variational Bayesian (VB) inversion determines the posterior distributions p
(
xk,Θ|y1, · · · , yk−1

)
by maximizing 373

the log model evidence (LME). The LME corresponds to the negative surprise about the data, given a model, and is 374

approximated by a lower bound, the negative free energy. Detailed treatments of the general principles of the VB 375

procedure can be found in numerous papers (Beal, 2003; Friston and Stephan, 2007). The approximations inherent in 376

VB enable a computationally efficient inversion scheme with closed-form single-step probability, that updates from 377

trial to trial. In particular, VB can incorporate the so-called mean-field approximation, which turns the joint posterior 378

distribution into the product of approximate marginal posterior distributions. Following on from Equation 34, 379

p(xk,Θ|y1, · · · , yk−1) = p(xk|Θ, y1, · · · , yk−1) p(Θ|y1, · · · , yk−1) (35)

p(xk|Θ, y1, · · · , yk−1) =
∏
i

q̂(xki ) (36)

p(xki ) = q̂(xki ) (37)

Based on this assumption, the variational maximization of the negative free energy is implemented in a series of 380

variational updates for each state of the model separately. Equation 36 represents the mean-field assumption (according 381

to which the posterior is factorized), while Equation 37 reflects the fact that we assume a fixed form q (·) for the 382

approximate marginals q̂ (·). We make minimal assumptions about the form of the approximate posteriors by following 383

the maximum entropy principle: given knowledge of, or assumptions about, constraints on a distribution, the least 384

arbitrary choice of distribution is the one that maximizes entropy (Jaynes, 1957). 385

Thus, we can define the objective function as: 386

O = − log
(
p
(
yk|xk

))
−
∑
i

log
(
p
(
xki
))
− log (p (Θ)) (38)

We define 387

p(yk|xk) = 0.5 + 0.5Rk (39)

p(xki ) = (xki )x
k
i (1− xki )1−xki (40)

p(Θ) = e−cagIE
2+cbgIE−ccgEI2

(41)
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where ca, cb, cc are hyper-parameters to be fitted, and R is the Pearson correlation between simulated and empirical 388

BOLD in the kth batch. 389

Note that Equation 40 is maximizing the entropy of the simulated states on E and I , which pushes the system towards 390

the bistable regime. Equation 41 is making sure that model parameters are changing around the boundary of the two 391

system regimes (fixed point and bistable), as indicated in the bifurcation analysis of Section 2.4. 392

3 Results 393

In the following we report the results from application of our model to the cases of i) recovery of known parameters 394

by fitting synthetically generated data, and ii) estimation of parameters from empirical HCP rsfMRI data. 395

3.1 Fit results to synthetic data 396

We first tested the model fitting scheme’s ability to recover known model parameters, by fitting synthetic data generated 397

by integrating the neural and haemodynamic model equations, as described in Section 2.3. Results from these analyses 398

are shown in Figure 3. At the top of this figure are shown the model-estimated and synthetic ‘empirical’ anatomical 399

connectivity (Cij) and FC values as scatter plots (panel A) and as matrices (panel B) for a single exemplary synthetic 400

subject. The objective function in Equations 38-41 operates on the FC matrix, and so the SC parameters should be 401

understood as being learned though the structure present in the FC. The model fit here is excellent, with a Pearson 402

correlation between model and (synthetic) empirical FC of R2 = 0.65. For reference, comparable modelling studies 403

in the literature (including ones using brute-force fitting approaches), using similar data and parcellations, usually 404

achieve R2 = 0.3 − 0.5 (Deco et al., 2013b; Abdelnour et al., 2014; Roberts et al., 2019). Panel C shows the 405

distribution of errors (difference between estimate and target) in parameter estimates over all fit runs in the synthetic 406

subject population. In these plots, error distributions that are centred on zero indicate a high level of accuracy of the 407

fitted values, and error distributions that are narrow indicates a high level of consistency in parameter estimates across 408

multiple synthetic subject runs, despite the algorithmic differences in terms of differing random initial conditions and 409

differing patterns of random noise in the numerical integration routine. Recovery of the target values was excellent for 410

three of the four neural dynamics parameters, with g, gEI and gIE showing errors of 1%, 10%, and 10%, respectively, 411

and all three showing very high consistency over runs (narrow histograms). The gEE parameter showed slightly poorer 412

performance, with a broader range of estimated values over the synthetic subject population, but still with >75% of 413

runs showing an error of <10% (lying within the range -0.1-0.1), and >99% showing an error of <20%. To demonstrate 414

that the fit quality is not due to the large number of C parameters, this process is repeated in Figure S1, this time fixing 415

the values in C, and only attempting to estimate g, gEI , gIE , and gEE . As can be seen, these parameters are recovered 416

with similar accuracy in the reduced four-parameter model also. 417
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Fig. 3 | Synthetic Data Fitting Results. A) Scatter plots of (synthetic) ‘empirical’ anatomical connectivity (AC) and functional
connectivity (FC) matrix values, against estimates of those quantities ‘simulated AC’, ‘simulated FC’, final fitted models, for a
single exemplary subject. B) Same values from scatter plots in A), represented as AC and FC matrices. Note the accurately
recovered left/right hemisphere block structure clearly present in both cases. C) Histograms of parameter estimate errors across
the 50 synthetic subject fits for g, gEE , gIE , and gEI . In all 3/4 of these the width of the distribution is small, indicating reliable
recovery of parameters across synthetic subjects. In one case (gEE), the range of errors is much higher than other three
parameters, indicating potentially lower reliability in estimates of this parameter. D) Histogram of (synthetic) empirical and fitted
FC values. Note the strong degree of overlap in the distributions, but with over-tendency towards slightly skewed and bimodal
positive weight values in the simulated FC.
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3.2 Fit results to empirical rsfMRI data 418

The model fitting performance for the 50 HCP subjects investigated in this study is shown in Figure 4. Similarly to 419

Figure 3, Figure 4 Panel A shows empirical and model-estimated anatomical and functional connectivity matrices (in 420

this case for three example subjects), and scatter plots of empirical vs. estimated FC. In all cases, the model-generated 421

FC matrices showed excellent fits to the empirical FC data, with an average simulated-empirical FC correlation of 422

R2=0.65, and a range of R2=0.4-0.9. This is a marked improvement on fits from comparable modelling studies in 423

the literature (including ones using brute-force fitting approaches), using similar data and parcellations, which usually 424

achieve R2=0.3-0.5 (Deco et al., 2013b; Abdelnour et al., 2014; Roberts et al., 2019). It is notable in the fitted 425

FC matrices in Figure 4 that the secondary diagonals, representing strong FC between hemispheric homologues, are 426

visible in the fitted FC matrices. This feature is robustly captured in FC measurements from fMRI and other sources, 427

but is rarely captured in CNMM simulations to date (Deco et al., 2014), indicating our methodology’s ability to capture 428

experimental data features that have been challenging for other techniques. As a further demonstration of the model’s 429

ability to capture, and help understand known FC features, we used seed-based functional connectivity to identify 430

default-mode network structures in empirical and simulated data. The way this is typically done with fMRI data is 431

to use voxel-averaged time series from a region as a regressor in a Pearson correlation with voxel activity in the rest 432

of the brain, with hot spots in the resultant map indicating high functional connectivity. Here, because we are using 433

region-level data rather than voxel-level data, correlations across brain regions are shown as a pattern over ROIs on 434

the cortical surface. Panel B of Figure 4 shows empirical (left) and simulated (right) correlation maps for seed ROIs in 435

right precuneus, a canonical node of the so-called default-mode network (DMN), a constellation of correlated regions 436

that is clearly evident in rsfMRI scans of most individuals. The surface maps in Figure 4B show cross-hemispheric 437

correlations with the seed region as well as strong correlations with other DMN nodes in the lateral parietal and 438

anteromedial frontal cortex. 439
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Fig. 4 | HCP Data Fitting Results - Example Subjects. A) For three example subjects (rows), from left to right: i) Empirical and
estimated AC matrices, ii) empirical and simulated FC matrices, iii) scatter plots of empirical vs. simulated FC data from points.
B) Empirical and simulated seed-based FC maps for a precuneus seed region for a single subject (from top row in panel A).

4 Discussion 440

In this paper we have outlined a novel methodology for estimation of neurophysiological model parameters using a 441

deep learning-based computational architecture. Our focus has been on CNMMs, a particular type of neurophysio- 442

logical model that typically focuses on approximately whole-brain connectivity and activity patterns, and are usually 443

directed at understanding data from noninvasive neuroimaging modalities such as fMRI and M/EEG. As discussed 444

later, the methodology has also proved highly effective for other CNMM applications such as EEG evoked potential 445

waveforms (Momi et al., in prep) and neurocognitive models (Diaconescu et al., in prep), and the general approach 446

should also lend itself easily to other model and data types in computational neuroscience and beyond. 447

Although the CNMM literature has expanded steadily over the decade or so since its inception, there has been relatively 448

little technical work addressing the specific problem we have tackled here - namely parameter estimation for large 449
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brain network models. The problem is nevertheless an extremely important one, particularly if CNMM techniques 450

are (as is surely desirable) to become usable and useful to the broader neuroimaging and neuroscience communities. 451

Our approach builds on prior work of several groups, as well as introducing a number of novel components. In the 452

following we discuss each of these, and in addition outline important limitations and potential future directions. 453

4.1 Methodological Highlights 454

Briefly, the methodologically novel aspects of our work are as follows: 455

Implementation. First, we have programmed the differential equations constituting the generative (neural dynam- 456

ics) and measurement (haemodynamics) parts of a CNMM within one of the most widely used machine learning 457

programming environments: PyTorch (Paszke et al., 2019). Whilst there are some syntactic and API-related differ- 458

ences between these implementations and the equivalent standard boilerplate Python code, they are fairly minimal. 459

However, as we have emphasized, this implementation approach renders (albeit fairly implicitly) the CNMM as a 460

computation graph, within which automatic differentiation can be used to calculate gradients of the objective function 461

with respect to model parameters. In addition to the immediate functionality this provides in terms of optimization 462

machinery, it is reasonable to expect that this general approach will increasingly be able to benefit from inevitable im- 463

provements in ANN-related software and hardware ecosystems in the coming years, much of which is centred around 464

PyTorch and similar libraries. 465

Continuous-time approach and batching. Second, we use a time-continuous scheme where the model is run for 466

30 second increments, or batches. At the end of each batch, an update parameter value is chosen. A full run through 467

the entire time series defines an epoch. At first glance this may seem problematic, since most neuroimaging scientists 468

would likely not expect Pearson correlations computed over any given 30 second segments of a ten minute rsfMRI 469

time series to closely resemble the Pearson correlations for the full time series. Nevertheless it does appear that the 470

long-duration covariance structure is eventually learned by the model through the process of fitting multiple short- 471

window batches successively. It is possible that the temporal variability in these short-window FCs actually facilitates 472

the long-duration FC estimation, by providing multiple short excursions through a rich repertoire of brain states with 473

slightly differing intrinsic covariance patterns. The issue that the windows are quite short is aided by the fact that 474

parameter values from the previous batch are used to initialize the current batch, allowing the ADAM algorithm’s 475

gradient descent to provide a ‘memory’ of sorts on parameters from earlier windows. This memory is reset however at 476

the end of each epoch, at which point the final batch parameters are used to initialize the next sweep (of 30s batches) 477

through the time series. This combination of batching and epoching - inspired by standard ANN methodologies - 478

is a novel approach to CNMM parameter estimation that capitalizes on the fact that rsfMRI covariance structure has 479

both strong trait-level properties that are across an entire session, as well as dynamics that vary slowly on the order of 480

minutes Hansen et al. (2015). Sweeping through in batches thus allows a large number of iterations, allows the slow 481

dynamics to inform the estimation process, as well as facilitating learning of the more stable and invariant aspects of 482

the covariance structure. 483

Bifurcation analyses. Third, we undertook a bifurcation analysis to find constraints on the RWW model parameter 484

space, allowing us to restrict the system to a regime showing more neurobiologically realistic dynamics, and that also 485

yields superior fit results than other sections of the parameter space. On the basis of this, we were able to restrict the 486

sampling of the gEI and gIE parameters to combinations lying on a polynomial spline function, thereby collapsing a 487

2-dimensional parameter space onto a 1-dimensional manifold within that space (Figure 2B). 488

4.2 Key Results 489

Accurate recovery of CNMM model parameters. We demonstrate the performance of our approach by applying 490

it to synthetic (Section 3.1) and empirical (Section 3.2) data. The synthetic rsfMRI data results demonstrate accurate 491

recovery of model parameters in a situation where the ground truth is known. The anatomical connectivity matrix used 492

to generate synthetic data was the widely-used 66x66 matrix of (Hagmann et al. 2008; see also e.g. Deco et al. 2013b). 493

Here, we showed that the four neural dynamics parameters can be recovered with near-zero errors. We then applied 494

the approach to rsfMRI data from the Human Connectome Project. Our model showed a good ability to recover 495

the relatively strong FC between some pairs of homologous regions in opposite cerebral hemispheres. This pattern 496

- which manifests in the connectivity matrices as a secondary diagonal in the upper right and lower left quadrants - 497

is an extremely robust feature of FC measurements. Moreover, it is also a pattern that has historically been rather 498

poorly reproduced in CNMM simulations (Deco et al., 2013b, 2014). As shown in Figure 4 panel B, a closer look at 499

individual columns of the simulated FC matrices show good qualitative correspondence with empirical FC data, when 500
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viewed as ROI weightings over a brain surface. For example, familiar FC patterns such as the default mode network 501

structures that are strongly correlated with the precuneus seed can be clearly seen in these visualizations. 502

Number of parameters. One of the important advantages of model optimization approaches, as compared to the 503

often used brute-force approach discussed earlier, is the ability to fit more than a handful of parameters. We have 504

demonstrated this here by exploring two sets of models in our analyses of synthetic data, one with a small number of 505

estimated parameters, and one with a very large number. The first of these focused on just the the four RWW parame- 506

ters gEE , gEI , gIE , and g, and yielded excellent fit results (Figure S2). The second set of synthetic data analyses these 507

same four parameters, and in addition fitted the roughly 1000 elements of the anatomical connectivity weights matrix 508

C (Figure 3). Importantly, as can be seen by comparing Figures 3 and S2, both of these yielded excellent results, with 509

similar error levels for the RWW gain parameters in both cases. Estimation of (effective) connectivity weights (entries 510

of C), as is done here, has been the principal functionality of small-scale neural mass modelling approaches, such as 511

with DCM. In contrast, CNMM studies have usually opted to keep anatomical connectivity fixed (by the structural 512

connectome), and focus instead on estimating global neural dynamics parameters, of the kind studied here. Connec- 513

tivity weight estimation has been performed for large networks in some recent work (Deco et al., 2013b; Shen et al., 514

2019; Singh et al., 2020; Frässle et al., 2020), but this remains an under-developed area of study. 515

Noise-driven brain dynamics. As noted above, when the entire CNMM is specified programatically as a compu- 516

tation graph, it resembles very closely a deep neural net, that can be understood as propagating ‘patterns’ from the 517

input layer, through the hidden states, on to the output layer. Because a variety of computational steps can be encoded 518

throughout the graph, we can specify either the simulated time series, or the simulated FC, as the output layer. For 519

sensory- or stimulation-evoked neural dynamics, the sensory or electromagnetic stimulus would be used as the input 520

and defined as an input layer. For resting state neural dynamics there is still an input layer, but the input is random 521

noise injected into all nodes through the noise term σvE/I in Eqs. 4-5. This noise signal is propagated through 522

the computational graph, and is converted into structured temporal fluctuations and covariance patterns on the output 523

layer. This is in keeping with one of the general current perspectives in CNMM work, namely that resting state func- 524

tional connectivity patterns reflect random fluctuations (uncorrelated background spiking activity) that are filtered by 525

endogenous brain dynamics and connectivity structure (Deco et al., 2013b, 2014). 526

4.3 Assumptions and limitations 527

Our framework has a number of assumptions and limitations that should be examined closely in future research looking 528

to build on the present work. 529

Other models. Future work should abstract and generalize the model-fitting methodology used here in such a way 530

that it could be easily deployed for different models of neural dynamics. Indeed, the two aspects of our implementation 531

(the analytic Laplacian and decision to constrain the parameter space of the RWW model based on the bifurcation 532

analysis considerations) make the results shown here highly specific to both the model and dynamic regime of interest. 533

Future work building on this specific model could consider whether these assumptions on the model type etc. can be 534

relaxed, for comparable performance. 535

4.4 Relation to previous work 536

Although, as we have indicated, the prior literature on parameter estimation for CNMMs is relatively small, both this 537

problem and related ones (such as parameter estimation for small networks) have been studied previously by several 538

groups. Most notably, the approach of specifying CNMMs within an optimization framework that employs gradients 539

computed via AD was (to our knowledge) introduced by the group of Jirsa and colleagues, in the context of their 540

‘Virtual Epileptic Patient’ (VEP) work (Proix et al., 2017; Jirsa et al., 2017; Hashemi et al., 2020). These authors 541

used the STAN library, which is an older and more established tool than PyTorch, and that has for some time been 542

leading the development of ADVI (AD-based Variational Inversion) techniques, with applications across a variety of 543

scientific fields. The principal focus of this VEP work is to use a CNMM developed specifically to model epileptic 544

seizure spreading (Jirsa et al., 2017) to identify alternative and potentially superior targets for epilepsy - surgery that 545

may not have been considered with conventional assessment methods. Specifically, ‘epileptogenicity’ parameters are 546

estimated for all nodes in a medium-sized or large-scale anatomical brain network, based on seizure recordings from 547

implanted stereotactic EEG (sEEG) electrodes. In one of the most recent iterations of this work, Hashemi et al. (2020) 548

have developed MCMC sampling methods that pair with ADVI-derived gradients and numerical integration to give 549

an efficient and robust probabilistic inference approach to Bayesian inversions of Epileptor models from individual 550

patient data. 551
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The use of the Variational Bayesian techniques for physiological model parameter estimation was first introduced in 552

2003 by Friston and colleagues under the name ‘Dynamic Causal Modelling’ (DCM; Friston et al. 2003), developed 553

extensively by that group over the subsequent 20 years. The ‘classic’ DCM treats the brain as a deterministic nonlinear 554

dynamical system, with parameters mainly describing inter-regional connectivity weights within a small network of 555

brain regions. The connectivity parameters are estimated by ‘perturbing’ the system (typically with a sensor or cog- 556

nitive task) and measuring the transient neural activity response that follows. To measure the first-order connectivity 557

between brain regions in the absence of input, the matrix of connectivity weight parameters (which for a first-order 558

linear system, is the system’s Jacobian) is estimated from a set of input time series. The ‘standard’ DCM model 559

fitting scheme is based on gradient descent on the log model evidence, using analytically-defined or numerically es- 560

timated (not AD-derived) gradients. When performing the estimation for parameters and hyperparameters during the 561

expectation-maximization step, the Fisher scoring ascent, a type of gradient ascent, of the objective function uses the 562

log posterior of the likelihood and prior potentials (Friston et al., 2003). The log posterior of the DCM is computed 563

using likelihood and prior terms, with the former based on Gaussian assumptions about the errors in the observation 564

model of the DCM. More recently, sampling-based approaches for DCMs have also been proposed and implemented 565

(Sengupta et al., 2016). For the most part, this approach has been limited to parameter estimation for small network 566

models (Gilson et al., 2016); although more recent work has extended DCM for fMRI to larger networks of dozens to 567

hundreds of nodes (Frässle et al., 2020). In both these cases (small and larger fMRI DCMs), a notable difference as 568

compared to the present work, and CNMMs in general, is the time scale of the generative model. In our model, as with 569

earlier work (e.g. Deco et al. 2013b; Demirtaş et al. 2019), the model of neural dynamics evolves on the timescale 570

of milliseconds, commensurate with known time scales of single neuron and neural population activity. Many neural 571

mass models for fMRI (Cabral et al., 2011; Gilson et al., 2018; Friston et al., 2003; Abdelnour et al., 2014), includ- 572

ing fMRI DCMs, instead have dynamics on the order of seconds, which is actually commensurate with timescale of 573

BOLD fMRI data. Slow timescale models are, as a rule, easier to work with as they require less run time and have less 574

complex generative equations, with the disadvantage that they are less physiologically accurate. 575

4.5 Conclusions and Future Directions 576

The model and methodology proposed in this paper represent our first attempt at applying the relatively new, but 577

rapidly developing, parameter estimation functionality of modern machine learning software libraries to our use case 578

of parameter estimation for neurophysiological models. Although we have found excellent performance in the test 579

cases examined, we still consider this work to be largely a proof-of-principle and a demonstration of feasibility. Future 580

work can build on the methodology presented here in a number of ways. 581

Model types. There is considerable scope for generalization of our implementation to accommodate a wider 582

range of model types and specifications. Currently in the code base accompanying this paper (github.com/ 583

dl-paramest-for-neurophys-models), the WWD model is hard-coded. This can however be easily general- 584

ized. Other systems of equations that have been used in a CNMM context for fMRI include Kuramoto (Cabral et al., 585

2011), Stefanescu-Jirsa (Falcon et al., 2015), and Linear Diffusion (Abdelnour et al., 2014; Robinson, 2012) models. 586

Several elements of the approach presented here (specifically the short-window batching approach and utilization of 587

AD and ADAM) should be broadly applicable to most if not all model types. Other elements such as the parameter 588

constraints based on bifurcation analyses of the RWW equations are less directly transferable, although an analo- 589

gous approach could easily be applied in many cases with some additional assumptions and derivations. Similarly, 590

our approach could be generalized to other data types and experimental contexts, including task fMRI, sensor- and 591

source-space MEG/EEG/fNIRS, and noninvasive brain stimulation. In particular, the overall methodology works as 592

well if not better than for rsfMRI when applied to fast-timescale evoked responses to transcranial magnetic stimula- 593

tion (TMS) pulses as measured by concurrent TMS-EEG (Momi et al., in prep). Building on this and on the above 594

demonstrations, another focus of our current work is the fitting of multimodal models, which jointly describe diverse 595

concurrently recorded signals (e.g. concurrent EEG-fMRI or concurrent EEG-fNIRS). 596

The ability of our methodology to capture FC patterns previously poorly reproduced in CNMM simulations implies 597

that the resulting models might be more appropriately applied to the wide range of computational questions that 598

require whole-brain simulations. As just one example, a variety of computational techniques have been applied to the 599

study of seizure propagation throughout the brain (Olmi et al., 2019; Liou et al., 2020; Kramer et al., 2005), a topic 600

of vital importance to improving our understanding of epilepsy. CNMMs generated using our methodology are well 601

suited for continued study of seizure propagation using whole-brain models constrained directly from human data, and 602

can potentially be synthesized with the growing number of biophysically-detailed human neuron models (Rich et al., 603

2021; Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018) towards a better understanding of the multi-scale nature 604

of seizure propagation. 605
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Simulator libraries. Another dimension to the question of generalization and generalizability is at the implementa- 606

tion and software level, and pertaints to the distinctions outlined earlier between black-box and glass-box parameter 607

estimation approaches. There are a number of existing and well-developed CNMM simulator libraries currently avail- 608

able (e.g. TVB (Ritter et al., 2013; Sanz-Leon et al., 2015), SPM-DCM, Brain Dynamics Toolbox (Heitmann et al., 609

2018), PyRates Gast et al. (2019), NeuroLib Cakan et al. (2021)), that allow simulations not only with the RWW equa- 610

tions but a wide variety of alternative models for neural dynamics. Unfortunately however, the ‘glass-box’ methodol- 611

ogy described here would be either difficult or impossible to directly deploy in most if not all of these cases, because 612

the code implementations to not support AD-computed gradients. This is for a variety of reasons, including sepa- 613

rated front-end and back-end code execution / generation (PyRates), optimized C-code (TVB) or Numba jit-compiled 614

(NeuroLib) backends. An interesting broader question here is whether greater integration with explicitly ML-oriented 615

programming environments are a natural fit neurophysiological modelling applications, or alternatively whether the 616

relevant computational and algorithmic infrastructure will simply become part of the ‘boilerplate’ general scientific 617

computing stack. 618

Conclusion. It is highly likely that the coming years will see a greater integration of machine learning tools in 619

computational neuroscience applications, including physiological modelling of neuroimaging data using CNMMs. 620

We expect that this will greatly facilitate progress in estimation of CNMM parameters, and deployment of CNMMs 621

in clinical and other practical contexts. The approach outlined in the present paper points to some promising new 622

directions forward for improved computational tool development in this area. 623
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