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ABSTRACT

Pretrained protein sequence language models largely rely on the transformer archi-
tecture. However, transformer run-time and memory requirements scale quadrat-
ically with sequence length. We investigate the potential of a CNN-based archi-
tecture for protein sequence masked language model pretraining and subsequent
finetuning. CNNs are competitive on the pretraining task with transformers across
several orders of magnitude in parameter size while scaling linearly with sequence
length. More importantly, CNNs are competitive with and occasionally superior to
transformers across an extensive set of downstream evaluations, including structure
prediction, zero-shot mutation effect prediction, and out-of-domain generalization.
We also demonstrate strong performance on sequences longer than the positional
embeddings allowed in the current state-of-the-art transformer protein masked lan-
guage models. Finally, we close with a call to disentangle the effects of pretraining
task and model architecture when studying pretrained protein sequence models.

1 INTRODUCTION

Large pretrained protein language models, largely relying on the attention-based transformer (Vaswani
et al., 2017) architecture, have advanced the ability of machine-learning methods to predict pro-
tein structure and function from sequence, especially when labeled training data is sparse. Most
modern self-supervised protein sequence pretraining combines a transformer model with either an
autoregressive likelihood (Madani et al., 2020; 2021; Ferruz et al., 2022; Hesslow et al., 2022) or
with the masked language modeling (MLM) task introduced for natural language by BERT (bidi-
rectional encoder representations from transformers) (Devlin et al., 2018). Pretrained transformer
protein MLMs contain structural information (Rao et al., 2019; Rives et al., 2021; Chowdhury et al.,
2021), encode evolutionary trajectories (Hie et al., 2022a; 2021), are zero-shot predictors of mutation
fitness effects (Meier et al., 2021), improve out-of-domain generalization on protein engineering
datasets (Dallago et al., 2021), and suggest improved sequences for engineering (Hie et al., 2022b).
Protein MLMs are now incorporated into the latest machine-learning methods for detecting signal
peptides (Teufel et al., 2021) and predicting intracellular localization(Thumuluri et al., 2022).

One drawback of transformers is that the compute and memory required by the attention layers scale
quadratically with input sequence length. In addition, transformer attention is invariant to position, so
transformer sequence models include a positional embedding. Depending on the formulation, these
embeddings can be difficult to extend past the maximum length seen during training. As a result,
some popular pretrained protein transformer models limit the input length during pretraining and
inference; for example, ESM has a maximum input length of 1022 residues. Of the 42 million cluster
representatives in the March 2020 release of UniRef50 (Suzek et al., 2015), 1.1 million, or 2.6%, are
longer than 1022 residues. This includes many proteins of interest, such as the SARS-Cov-2 spike
glycoprotein and Streptococcus pyogenes CRISPR-associated endonuclease Cas9.

Furthermore, there has been little investigation of how model architecture interacts with pretraining
tasks on protein sequences. Transformers can perform the masked language model task on protein
sequences, and pretraining improves the performance of transformers on downstream protein structure
and property prediction tasks. However, it is important to disentangle pretraining from architectural

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.05.19.492714doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492714
http://creativecommons.org/licenses/by/4.0/


advances and consider them independently. We seek to do this by investigating the effectiveness of
pretrained and naive convolutions for proteins.

We train protein sequence convolutional masked language models on UniRef50, which we refer
to as CARP (Convolutional Autoencoding Representations of Proteins). Our CARP models are
competitive with transformers on the pretraining task, given comparable parameter sizes. The largest
CARP, with approximately 640M learnable parameters (CARP-640M) is competitive with the current
state-of-the-art transformer protein sequence masked language model, ESM (Rives et al., 2021;
Meier et al., 2021) on a variety of downstream prediction tasks, including structure prediction, zero-
shot mutation effect prediction, and out-of-domain generalization on biologically-relevant protein
engineering datasets. Because CARP scales linearly in computation with the input sequence and
does not rely on an input positional embedding, it is straightforward to apply it to sequences longer
than the longest sequences in training, which we demonstrate with zero-shot predictions of mutation
effects in CRISPR-Cas9. These empirical results demonstrate a need to deepen our understanding
of protein sequence pretraining by disentangling the effects of architecture and the pretraining task.
Finally, while performance on structure prediction tasks improves as model size and pretraining
performance improve, this is not the case for all fitness prediction tasks, demonstrating we also need
to deepen our understanding of how pretraining relates to downstream tasks.
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Figure 1: The CARP architecture.

2 CONVOLUTIONAL PROTEIN SEQUENCE MASK LANGUAGE MODELS

We pretrain CARP using the masked language model (MLM) objective described in Rives et al.
(2021). Each sequence is corrupted by changing some tokens to a special mask token or another
amino acid token, and the model is tasked with reconstructing the original sequence. Specifically,
15% of tokens from each sequence are randomly selected for supervision. For those 15% of tokens,
80% are replaced by the mask token, 10% are replaced by a randomly-chosen amino acid, and 10%
remain unchanged. The model is trained to minimize the cross-entropy loss between its predictions
for the selected tokens and the true tokens at those locations. We train on the cluster representatives
from the March 2020 release of UniRef50, with approximately 83k sequences held out for validation
and another 210k sequences held out for testing, leaving 41.5 million sequences for training.

CARP combines the ByteNet encoder dilated CNN architecture from Kalchbrenner et al. (2016)
with simple input embedding and output decoding layers, as shown in Figure 1a. CARP begins
with an embedding layer, which maps an input sequence of L tokens x ∈ DL to an 8-dimensional
intermediate embedding, followed by a linear mapping into the model dimension d: e0 ∈ RL×d.
This passes through a stack of n ByteNet dilated CNN blocks Figure 1b with residual connections in
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between followed by a final layer norm to produce the encoder representation en ∈ RL×d, and finally
a linear decoder maps this to the L× t logits, where t is the number of possible tokens. The 1× 5
convolution layer in every ByteNet block is dilated and padded to preserve sequence length. Dilation
increases the CNN perceptive field exponentially with the number of layers in order to obtain global
context for long input sequences. The CNN dilation rate doubles every layer up to a maximum rate r
(for our experiments r = 128). The scheme is repeated multiple times in the network, always starting
from a dilation rate of 1. While convolution kernels are homogenous across locations, the ByteNet
architecture preserves the order of those locations. We found that adding positional embeddings does
not improve pretraining performance.

We varied the number of parameters in CARP from approximately 3000 to 640 million by setting
the model dimension d, setting the encoder hidden dimension he to either d or d

2 , and setting the
number of layers. All models are trained with the Adam optimizer, a maximum learning rate of 0.001,
a linear warmup for 16,000 steps, and dynamic batching to maximize GPU usage. The largest model,
CARP-640M, was trained on 128 32GB Nvidia V100 GPUs for 620,000 updates, or approximately
56 days.

3 RELATED WORK

CNN language models CARP’s architecture is based on ByteNet (Kalchbrenner et al., 2016),
which introduced a dilated convolutional seq2seq framework for neural machine translation. Work in
natural language processing (Kalchbrenner et al., 2016; Wu et al., 2019; Tay et al., 2021) hints that
pretrained attention-free convolutional neural networks (CNNs) can be competitive with pretrained
transformers while scaling linearly with sequence length. CARP directly applies this work to protein
sequence pretraining.

Protein sequence pretraining ESM-1b (Rives et al., 2021) is a 650-million-parameter transformer
protein masked language model trained on the March 2018 release of UniRef50 (Suzek et al., 2007).
ESM-1v (Meier et al., 2021) uses the same transformer architecture, but is optimized for mutation-
effect prediction by training on UniRef90 instead of UniRef50. TAPE (Rao et al., 2019) is a smaller
transformer protein masked language model trained on protein domains from Pfam (Mistry et al.,
2021) instead of the full protein sequences found in UniRef. ProtTrans (Elnaggar et al., 2021)
explores the use of different transformer architectures language modeling tasks and larger datasets.
The most comparable ProtTrans models are ProtBERT-UniRef100 and ProtBERT-BFD, which are
420-million-parameter transformers protein masked language models trained on UniRef100 and
BFD (Steinegger and Söding, 2018; Steinegger et al., 2019), respectively. ProteinBERT (Brandes et al.,
2021) introduces a global attention mechanism and an additional functional annotation prediction
task during pretraining. Rao et al. (2021) extends the transformer masked language model scheme to
multiple sequence alignments.

Convolutional models of protein sequences Shin et al. (2021) train autoregressive convolutional
models on protein families, but do not attempt to train a single model over the breadth of known
protein sequence diversity. Lu et al. (2020) use a small convolutional encoder for a noise-contrastive
pretraining task on proteins, but do not give it global context or make the model autoencoding.
Bileschi et al. (2022) use a similar convolutional architecture to our model to learn functional
annotations for unaligned protein sequences. However, their task is not autoencoding, and they do
not consider performance on downstream tasks.

By combining a denoising autoencoding task with a dilated CNN architecture, we begin to disentangle
the effect of pretraining task from the effect of model architecture.

4 PRETRAINING PERFORMANCE

Our largest model, CARP-640M, has a test loss of 2.02, comparable to ESM-1b, which has 650
million parameters and a loss of 1.96 on its test set. Note that ESM-1b was trained and tested
on an earlier version of UniRef50 with different train/test splits than CARP or our ESM models.
(Throughout, ESM-1b refers specifically to the 650-million parameter transformer trained on the
March 2018 UniRef50 release and described in Rives et al. (2021), while ESM refers to our small
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transformer masked language models based off of the ESM-1b architecture. Likewise, CARP refers
to any ByteNet masked language model, while CARP-X refers to the model with approximately X
parameters.) Hyperparameters for different-sized versions of CARP and ESM are found in Tables A1
and A2, respectively.

For comparison, we also trained transformer models with comparable numbers of parameters using
the ESM-1b architecture described in Rives et al. (2021) on our UniRef50 dataset. As shown in
Figure 2a, CARP’s performance on the pretraining task is comparable to ESM’s across several orders
of magnitude of variation in the number of parameters when using the same pretraining dataset.
Figure 2b shows MLM loss by length for CARP-640M and ESM-1b on their respective test sets,
smoothed with a window of 30 in the length dimension. For both models, the pretraining loss improves
quickly until the sequence length reaches about 500, and then slowly thereafter. The maximum
input length for ESM-1b is 1022, but we calculate losses for CARP-640M for sequences with up to
4096 residues. These results show that convolutions can perform protein sequence masked language
modeling comparably to tranformers without suffering from a quadratic dependence between runtime
and sequence length.
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Figure 2: Comparisons between CARP and the ESM-1b transformer.

5 DOWNSTREAM TASKS

One goal of protein MLMs is to encode information in their output representation or model weights
that improves performance on downstream prediction tasks. Downstream evaluation can be zero-shot
(without access to labels for further training), the pretrained model can be frozen and a small neural
network decoder can be trained to predict labels from the pretrained model’s output representations
(pt-fr), or the new decoder and pretrained model can be finetuned together (pt-ft). We use the output
from the final layer norm in Figure 1a as the output representation. Unless otherwise noted, the new
decoder consists of a learned attention that converts the output from L× d to d followed by a 2-layer
neural network with hidden size d. For tasks with labels, we evaluate both pt-fr and pt-ft and compare
to ESM-1b or ESM-1v. We finetune models with a maximum learning rate of 0.0001, a linear warmup
over 1000 steps, and early stopping based on the validation set. Finetuning was performed on one
32 GB V100; depending on the task, finetuning took between several minutes to 48 hours. Where
relevant, we also compare the CARP architecture with randomly-initialized weights (na-fr and na-ft),
linear ridge regression, and the small CNN described in Dallago et al. (2021) and Shanehsazzadeh
et al. (2020).

5.1 PROTEIN STRUCTURE

One of the most striking successes of protein MLMs is their ability to encode structural information
without access to structural labels during pretraining. We evaluate CARP-640M’s ability to encode
structural information through 3 tasks:
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1. Remote contact prediction asks a model to predict whether the Cβ atoms of two residues
separated by at least 24 residues in the primary structure are within 8 Angstroms of other in
the three-dimensional structure. We train on the trRosetta (Yang et al., 2020) training set
and evaluate the precision of the top L predictions on the CAMEO hard (Haas et al., 2018)
and CASP13-FM (Shrestha et al., 2019) test sets. For contact prediction, we downsample
CARP embeddings to 128 dimensions, perform an outer product to produce 2-dimensional
embeddings, and then pass that to a 24-layer dilated residual CNN based on the trRosetta
architecture. This is the same as the procedure used by ESM-1b.

2. Remote homology detection asks a model to detect structural similarity across distantly-
related sequences. We evaluate accuracy on the fold-level holdout set from TAPE.

3. 3-class secondary structure prediction asks a model to predict whether each residue in
a protein is part of a helix, strand, or other. We use the training and validation sets from
TAPE and evaluate accuracy on the CB513 test set. For this task, we train a neural network
consisting of two CNN layers, an LSTM, and a linear head on top of the pretrained model,
as described in Rives et al. (2021).

As shown in Table 1, pretraining improves performance for structure prediction tasks, and CARP-
640M is competitive with ESM-1b. These results show that pretrained convolutions learn structural
information from single sequences, just as pretrained transformers do.

Table 1: Structure prediction tasks. Values for ESM-1b are taken from Rives et al. (2021). Uncertain-
ties are standard deviations on 3 replicates with different weight initializations.

Task

Method Model CASP-13 FM CAMEO remote homology secondary structure

pt-fr CARP-640M 23.7 42.0 0.24±0.008 0.83±0.001
ESM-1b 28.2 44.4 - 0.82

pt-ft CARP-640M - - 0.28±0.008 0.83±0.001
ESM-1b - - 0.33 -

na-fr CARP-640M 9.7 12.6 0.09±0.02 0.65±0.02
na-ft CARP-640M - - 0.09 ± 0.02 0.71±0.0005

5.2 ZERO-SHOT MUTATION EFFECT PREDICTION

Large language models can predict experimental measurements of protein function without further
training on sequence-fitness measurements or sets of evolutionarily-related sequences Hie et al.
(2022a); Meier et al. (2021). Following Meier et al. (2021), we score CARP-640M on 41 deep
mutational scanning datasets originally compiled by Riesselman et al. (2018). These datasets measure
the effects of thousands of mutations or combinations of mutations to a parent sequence. Details are
described in Section A.2.

Figure A1 compares zero-shot performance for CARP-640M, ESM-1b, ESM-1v, position-specific
scoring matrices (PSSM), and ProtBert-BFD. ESM-1v results are for an ensemble of five transformers.
Averaged across the 41 datasets, CARP-640M has a Spearman correlation of 0.49, compared to
0.46 for ESM-1b, 0.51 for ESM-1v, 0.46 for PSSM, and 0.43 for ProtBERT-BFD. CARP-640M
outperforms ESM-1b on 22 out of 41 datasets, ESM-1v on 18 out of 41 datasets, PSSM on 26 out of
41 datasets, and ProtBERT-BFD on 25 out of 41 datasets.

Meier et al. (2021) found that using the full UniProt sequences instead of only the sequence of
the mutated domain results in better zero-shot predictions. However, this is not always possible
with ESM-1x, as some UniProt sequences for these proteins are longer than 1022 residues. As a
further proof of concept, we made zero-shot predictions for the effects of mutations in Cas9 from
Streptococcus pyogenes (Spencer and Zhang, 2017), which is 1368 residues long, and obtain a
Spearman correlation of 0.26. These results show that pretrained convolutions can make zero-shot
predictions of protein mutation effects on fitness, including on sequences longer than allowed by
ESM-1x.
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5.3 OUT-OF-DOMAIN FITNESS PREDICTION

Another motivation for pretrained protein sequence models is that they may be able to generalize after
fine-tuning in ways that are helpful for protein engineering. For example, a protein engineer may
want to train a model on single mutants and make predictions for sequences with multiple mutations,
or train a model that is accurate for sequences with fitness greater than what is seen in the training set.
Here, we evaluate CARP-640M on tasks from the following landscapes from FLIP (Dallago et al.,
2021).

1. AAV (Table 2): Adeno-associated virus (AAV) capsid proteins are responsible for helping
the virus integrate a DNA payload into a target cell (Vandenberghe et al., 2009), and there is
great interest in engineering versions of these proteins for gene therapy (Büning et al., 2015;
Barnes et al., 2019). Bryant et al. (2021) measure a rich mutational screening landscape of
different VP-1 AAV proteins.

2. GB1 (Table 3): GB1 is the binding domain of protein G, an immunoglobulin binding protein
found in Streptococcal bacteria. In their original study, Wu et al. (2016) measured the fitness
of 149,361 out of 160, 000 possible combinations of mutations at 4 positions.

For each landscape, we evaluate several tasks, including:

• x-vs-many: Train on sequences with up to x mutations and test on the remainder of the
landscape.

• mut-des: Train on sequences sampled from mutagenesis libraries and test on sequences
designed by machine-learning models (AAV only).

• low-vs-high: Train on sequences with fitnesses below the wild-type and test on sequences
with fitnesses above the wild-type.

We compare results to ESM-1b and the same decoder neural network, linear ridge regression, and a
small CNN.

Table 2: Performance on the FLIP AAV tasks. Values for models other than CARP-640M are taken
from Dallago et al. (2021). Uncertainties for ESM-1b and CNN are standard deviations over 10
random seeds. Uncertainties for CARP-640M are standard deviations over 3 random seeds. Dallago
et al. (2021) do not provide uncertainties for the mut-des task because of the computational cost.

Task

Method Model 1-vs-many 2-vs-many 7-vs-many mut-des low-vs-high

pt-fr CARP-640M 0.31±0.18 0.51±0.18 0.58±0.14 0.75±0.08 0.25±0.09
ESM-1b 0.03±0.11 0.61±0.04 0.65±0.01 0.76 0.38±0.01

pt-ft CARP-640M 0.73±0.05 0.81±0.03 0.77±0.03 0.85±0.003 0.19±0.08

na-fr CARP-640M 0.48±0.07 0.50±0.05 0.60±0.05. 0.76±0.02 0.21±0.02
ESM-1b 0.18±0.01 0.20±0.03 0.38±0.04 0.56 0.06±0.01

na-fr CARP-640M 0.04±0.12. 0.50±0.43 0.38±0.37 0.84±0.01 0.24±0.21

baseline ridge 0.22 0.03 0.65 0.68 0.12
CNN 0.35±0.11 0.58±0.09 0.73±0.004 0.71 0.28±0.02

In general, pretraining improves CARP-640M’s performance on these tasks, and fine-tuning the
entire model outperforms freezing the pretrained weights. Comparisons to the baselines show that
pretraining is most helpful when generalizing from single mutants to multiple. When not fine-tuning
all the way through, there is little benefit from pretraining, and on some tasks pretraining hurts
performance. CARP-640M outperforms ESM-1b on generalizing from few mutations to more, but
ESM-1b is better at generalizing from a low-fitness training to higher-fitness sequences. These results
show that pretrained convolutions help generalization to types of sequence variation not seen during
training. On GB1, finetuning ESM-1b end-to-end instead of freezing the pretrained weights hurts
its performance, while CARP-640M benefits from full finetuning. We do not finetune ESM-1b
end-to-end on other tasks because of the computational cost. In addition, CARP-640M provides

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.05.19.492714doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492714
http://creativecommons.org/licenses/by/4.0/


better representations without pretraining than ESM-1b on all the AAV tasks and 2 of the 4 GB1
tasks, showing that the architecture alone also influences generalization.

Table 3: Performance (Spearman correlation) on the FLIP GB1 tasks. Values for models other than
CARP-640M and ESM-1b with full finetuning are taken from FLIP. Uncertainties for ESM-1b frozen
and CNN are standard deviations over 10 random seeds. Uncertainties for CARP-640M and ESM-1b
with full finetuning are standard deviations over 3 random seeds.

Task

Method Model 1-vs-many 2-vs-many 3-vs-many low-vs-high

pt-fr CARP-640M 0.15±0.18 0.18±0.23 0.62±0.06 0.12±0.03
ESM-1b 0.29±0.02 0.47±0.05 0.79±0.01 0.53±0.03

pt-ft CARP-640M 0.19±0.26 0.73±0.03 0.87±0.004 0.43±0.04
ESM-1b 0.11±0.11 0.67±0.07 0.66±0.18 0.42±0.09

na-fr CARP-640M 0.03±0.03 0.07±0.17 0.71±0.03 0.35±0.03
ESM-1b 0.12±0.01 0.21±0.01 0.52±0.01 0.32±0.03

na-ft CARP-640M 0.11±0.07 0.38±0.26 0.68±0.33 0.23±0.26
ESM-1b 0.05±0.28 0.14±0.13 0.10±0.13 -0.04±0.09

baseline ridge 0.28 0.59 0.76 0.34
CNN 0.15±0.09 0.39±0.04 0.81±0.004 0.47±0.01

5.4 IN-DOMAIN PROPERTY PREDICTION

Finally, we consider fitness-prediction tasks that do not require difficult biological generalization
(Table 4). We evaluate on three sequence-fitness regression tasks:

1. Fluorescence requires the model to predict the effect of one or more mutations on the
brightness of green fluorescent protein. The data was originally collected by Sarkisyan et al.
(2016). We use the data splits provided in TAPE.

2. Stability requires the model to predict a small protein’s resistance to protease degradation.
The data was originally collected by Rocklin et al. (2017). We use the data splits provided
in TAPE.

3. Meltome-mixed requires the model to predict the melting temperature of a variety of
proteins from across the domains of life. The data was originally collected by Jarzab et al.
(2020). We use the cluster representatives and data splits provided in FLIP.

in addition to two intrinsically-disordered region (IDR) function classification tasks taken from Zarin
et al. (2021). For the IDR datasets, we use MMseqs2 (Steinegger and Söding, 2017) to cluster
sequences to 50% identity and then randomly assign clusters to training, validation, or testing.

1. Cdc28 binding requires the model to predict whether an IDR is a target of Cdc28.
2. Mitochondria targeting requires the model to predict whether an IDR targets its protein

for transport into the mitochondria.

In general, while pretraining improves CARP-640M’s performance on these tasks, neither of the
large pretrained models consistently out-perform the baseline models on these tasks. Almost all the
models perform very well on the IDR tasks, indicating that performance is saturating on these tasks.
Nevertheless, CARP-640M is generally comparable to ESM-1b, showing that once again pretrained
convolutions are comparable to pretrained attention.

5.5 EFFECT OF MODEL SIZE AND PRETRAINING PERFORMANCE ON DOWNSTREAM
PERFORMANCE

To investigate the effects of model size and pretraining performance on downstream performance, we
finetune pretraining checkpoints for CARP-600k, CARP-76M, and CARP-640M on secondary struc-
ture, remote homology, and the FLIP GB1, AAV, and meltome tasks. In each of these experiments,
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Table 4: Performance on in-domain tasks. For fluorescence, stability, and meltome, values reported
are Spearman correlation. For the IDR tasks, values reported are area under the reciever operating
curve. Values for ESM-1b on fluorescence and stability are taken from Rives et al. (2021). Values for
baselines on fluorescence and stability are taken from FLIP. Uncertainties for ESM-1b and CNN are
standard deviations over 10 random seeds. Uncertainties for CARP-640M are standard deviations
over 3 random seeds. We do not calculate uncertainties on meltome due to the computational cost.

Task

Method Model fluorescence stability meltome Cdc28 mito.

pt-fr CARP-640M 0.58±0.02 0.62±0.03 0.54 0.84±0.01 0.86±0.02
ESM-1b - - 0.67±0.01 0.91±0.004 0.90±0.01

pt-ft CARP-640M 0.68±0.002 0.72±0.01 0.53 0.88±0.02 0.89±0.004
ESM-1b 0.68 0.71 - 0.89±0.01 0.88±0.01

na-fr CARP-640M 0.62±0.01 0.52±0.17 0.29 0.84±0.01 0.86±0.01
ESM-1b - - 0.45±0.03 0.88±0.01 0.84±0.03

na-ft CARP-640M 0.58±0.07 0.65±0.05 0.30 0.79±0.03 0.87±0.01
ESM-1b - - - 0.83±0.02 0.85±0.02
ridge 0.68 0.48 0.17 0.52 0.53
CNN 0.67 0.51 0.34±0.01 0.84±0.02 0.87±0.02

we initialize the prediction head with the same weights across all model checkpoints of the same size.
Figures 3a and A3a show that structure prediction improves smoothly as the model size increases and
the model is pretrained longer. This confirms that, as for transformers, pretraining imparts structural
information to CNNs. However, Figures 3b, A3b, and A3c shows that this relationship does not
exist for the out-of-domain FLIP tasks. In many cases, a small amount of pretraining is sufficient to
outperform the naive baseline, and further pretraining has an unpredictable and often negative effect
on performance. Using the FLIP meltome task as an example of an in-domain class, Figure A3d
shows that performance generally improves as CARP is pretrained, but the pretraining effect saturates,
and CARP-76M outperforms CARP-640M.

Figure 4a shows that the average zero-shot performance improves with both model size and pretraining
performance. However, this is not the case for every individual dataset within DeepSequence.
Figure 4b shows a case where zero-shot performance peaks and then declines as CARP is pretrained.
The Spearman correlation between the pretrain loss and zero-shot Spearman correlation range from 1
(monotonic increase in zero-shot performance with more pretraining) and -0.9, as shown in Figure A2.
The average over the DeepSequence datasets is 0.40 for CARP-640M, 0.48 for CARP-76M, and 0.23
for CARP-600k. Although CARP-640M has better overall zero-shot performance than CARP-76M,
CARP-76M more consistently improves with more pretraining than CARP-640M. The heterogeneity
in the relationship between pretraining performance and zero-shot performance suggests that many
but not all zero-shot tasks in DeepSequence are strongly determined by structural stability.

(a) Secondary structure (b) GB1

Figure 3: Effect of model size and checkpoint pretrain loss on downstream performance.
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(a) DeepSequence-mean (b) DMS YAP1 human

Figure 4: Effect of model size and checkpoint pretrain loss on zero-shot performance.

6 CONCLUSIONS

We have shown that convolutions can be comparable to or superior to transformers on both the MLM
pretraining task and a variety of downstream protein sequence modeling tasks, and that convolutions,
like transformers, benefit from pretraining. Furthermore, without pretraining, convolutions and
transformers perform differently on downstream tasks, showing the important of disentangling
pretraining and architecture. Unlike transformers, convolutions scale linearly with input sequence
length, which becomes important when modeling long protein sequences. Work in natural language
processing has also shown that convolutions can require fewer FLOPs of compute than transformers,
even for short sequences (Tay et al., 2021). In addition, while we use standard dilated convolutions,
there are more efficient convolution variants designed for sequence modeling (Wu et al., 2019) that
may further improve model speed.

Limitations However, convolutions may not be competitive with transformers on tasks where a cross-
or self-attention inductive bias is explicitly needed or desired for interpretability. For example, it is
possible to extract structural contact maps from pretrained transformer self-attention matrices (Rao
et al., 2020), and self-attention matrices contain information about binding sites (Vig et al., 2020)
– convolutions lack an obvious equivalent. In addition, it is more natural to extend attention-based
models to predict protein-protein interaction sites. The transformer’s quadratic dependence on
sequence length can also be ameliorated with approximate attention methods (Child et al., 2019;
Beltagy et al., 2020; Kitaev et al., 2020; Tay et al., 2020a; Wang et al., 2020; Zaheer et al., 2020;
Katharopoulos et al., 2020; Choromanski et al., 2020a), but the choice of approximation matters
for performance and the best method is not always clear a priori (Tay et al., 2020b). On proteins,
Choromanski et al. (2020a) and Choromanski et al. (2020b) show that Performer approximate
attention can perform well for autoregressive and masked protein language models, respectively,
while ProteinBERT combines a fast global attention mechanism with masked language and functional
annotation prediction pretraining (Brandes et al., 2021).

Outlook Currently, pretrained protein language models are tightly-coupled to the transformer ar-
chitecture, and the effects of the pretraining task can be conflated with the effects of the pretrained
architecture. Our pretrained convolutional models may provide complementary inductive biases
those found in pretrained transformer models, making them useful alternatives for practitioners.
Unfortunately, we also find that, while masked language model pretraining is very effective for
imparting models with structural knowledge, the relationship between model size, pretrain loss, and
downstream performance is more fraught for out-of-domain protein engineering tasks, indicating the
need for more effective pretraining tasks. We hope that this work is the first step in investigating the
independent and interaction effects of pretraining and architecture for protein sequence modeling.
While we evaluate the effects of masked language model pretraining, transformers have also been used
for autoregressive language model pretraining (Madani et al., 2020) and pairwise masked language
modeling (He et al., 2021), and combining structural information (Mansoor et al., 2021; Zhang et al.,
2022; McPartlon et al., 2022; Hsu et al., 2022; Chen et al., 2022; Wang et al., 2022) or functional
annotations (Brandes et al., 2021) offers further directions for protein pretraining tasks.
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DATA, CODE, AND MODEL AVAILABILITY

Model code is available at https://github.com/microsoft/
protein-sequence-models. Pretrained model weights and our train/validation/test
splits for the two IDR datasets and UniRef50 are available at https://doi.org/10.5281/
zenodo.6564798.
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A APPENDIX

A.1 HYPERPARAMETERS FOR PRETRAINED MODELS OF DIFFERENT SIZES

All models are trained for 2 weeks on 1-8 32GB V100 GPUs with dynamic batching. Table A1
summarizes the hyperparameters for CARP. Table A2 summarizes the hyperparameters for ESM.

Table A1: CARP model hyperparameters. Max tokens is the maximum number of tokens per GPU
per batch during training.

Model Parameters Layers d dMLP Max tokens GPUs

CARP-640M 643M 56 1280 1280 11000 128 × 32GB V100
CARP-76M 75.7M 32 1024 512 60000 16 × 32 GB V100
CARP-38M 37.9M 16 1024 512 40000 8 × 32 GB V100
CARP-24M 23.9M 16 256 128 400000 2 × 32 GB V100
CARP-600k 608k 16 128 64 600000 1 × 32 GB V100
CARP-40k 415k 16 32 16 600000 1 × 32 GB V100
CARP-4k 3670 16 8 4 600000 1 × 16 GB V100

Table A2: ESM model hyperparameters.

Parameters Layers Heads d dMLP GPUs

86.5M 12 12 768 3972 8 × 32 GB V100
44.0M 6 12 768 3072 8 × 32 GB V100
2.92M 6 8 192 768 2 × 32 GB V100

561k 4 6 96 384 1 × 32 GB V100
41.5k 4 4 24 96 1 × 32 GB V100
4890 2 4 4 16 1 × 32 GB V100

A.2 ZERO-SHOT FITNESS PREDICTION

We score sequences by masking every mutated position and computing the log odds ratio between
the mutated and wild-type residues at each mutated position, assuming an additive model when a
sequence contains multiple mutations:∑

p∈P

logp(xmt
P |xwt

\P )− logp(xwt
P |xwt

\P ) (1)

where P indicates the mutated positions.
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Figure A1: Zero-shot protein fitness prediction. Comparison across 41 deep mutational scanning
datasets from DeepSequence. Points are Spearman correlation on each dataset. Horizontal lines
show the average Spearman correlation across the datasets. Values for ESM-1b, ESM-1v, PSSM, and
ProtBERT-BFD are taken from Meier et al. (2021).

Figure A2: Spearman correlation between pretrained model checkpoint loss and zero-shot Spearman
correlation across 41 deep mutational scanning datasets from DeepSequence.

A.3 PRETRAIN PERFORMANCE VS DOWNSTREAM PERFORMANCE
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(a) Structure

(b) GB1

(c) AAV

(d) Meltome

Figure A3: Downstream performance vs pretrain loss for secondary structure, remote homology, and
FLIP tasks.
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