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ABSTRACT4

Phenotype prediction is at the core of many questions in biology. Prediction is frequently5

attained by determining statistical associations between genetic and phenotypic variation,6

ignoring the exact processes that lead to the phenotype. Here, we present a framework based7

on genome-scale metabolic reconstructions to reveal the mechanisms behind the associations.8

We compute a polygenic score (PGS) that identifies a set of enzymes as predictors of growth,9

the phenotype. This set arises from the synergy of the functional mode of metabolism in a10

particular environment and its evolutionary history, and is transportable to anticipate the11

phenotype across a range of environments. We also find that there exists an optimal genetic12

variability for predictability and demonstrate how the linear PGS can yet explain phenotypes13

generated by the underlying nonlinear biochemistry. Thus, the explicit model interprets the14

black-box statistical associations of the genotype-to-phenotype map and uncovers the limits15

of prediction in metabolism.16
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INTRODUCTION17

By understanding the factors that specify the phenotype, we aim to recognize how herita-18

ble biological information eventually maps onto action and how this mapping evolves (Wadding-19

ton 2015). These issues illustrate the more general question of the emergence of function in20

complex systems, and the inherent attributes of these systems that help them elude function21

prediction (Orrell 2007). We will discuss here the properly biological case of metabolism.22

The variational method of quantitative genetics symbolizes a traditional approach to this23

question. Its goal is to establish statistical associations between the genetic and phenotypic24

variation observed within a certain population (Lynch and Walsh 1998). When this genotype-25

to-phenotype (GP) map becomes determined in a supervised situation, it is then possible26

to develop tools that anticipate the phenotype of individuals based solely on their genetic27

sequence (Dudbridge 2013). What are the limits of this approach?28

Valid as they are, the statistical associations of quantitative genetics depend very much29

on the features of the trait, the population context, and the environmental conditions under30

which they are identified (Zaidi and Mathieson 2020). They thus represent a kind of "black-31

box" expectation that does not provide any insights into the processes leading to a particular32

phenotype (Cannon and Mohlke 2018). This absence of mechanism has both basic and33

applied implications.34

From the fundamental point of view, many features that define the genetic architecture of35

phenotypes (dominance, epistasis, etc.), while having a clear variational definition, present a36

less clear mechanistic interpretation (Keightley and Kacser 1987; Omholt et al. 2000). An in-37

terpretation that should also help explain how the nonlinearity that seems dominant in many38

biological systems does not limit the power of the –linear– statistical procedures (Feldman39

and Lewontin 1975).40

From the applied point of view, consider, for instance, the case of genome-wide association41

studies (GWAS) in humans. The original purpose of GWAS was to identify the causal42

genetic determinants of complex phenotypes, including diseases. This plan turned out to43
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be more complicated than expected (Visscher et al. 2017), with recent studies emphasizing44

the complex pleiotropic regulation of most human traits (Boyle et al. 2017; Wray et al.45

2018). Similarly, while specific prediction tools are indeed available, e.g., the development46

of polygenic risk scores to indicate a predisposition to disease (Torkamani et al. 2018), we47

are still far from unraveling which are the biological foundations behind their successes and48

failures.49

Indeed, discovering mechanistic insights behind these GP associations has proven to be50

a significant challenge, owing partly to the large quantity of accepted causal elements distin-51

guished for most phenotypes. For instance, human quantitative traits were linked to only a52

few strong-effect determinants not long ago; a hypothesis that is now abandoned (Manolio53

et al. 2009; Boyle et al. 2017; Wray et al. 2018). A second factor is that natural selection54

weakens the impact of the a priori strongest statistical predictors (O’Connor et al. 2019).55

Most significant of all is the absence of an underlying developmental or physiological model56

explaining the emergence of the phenotype (Cannon and Mohlke 2018). Therefore, it is57

interesting to examine situations in which an explicit model replaces the black box and, in58

this way, one can better explain the causal characteristics.59

There have been several attempts in this respect. Plant biology has pioneered works60

to connect gene network modeling with quantitative genetics, for example, on the predic-61

tion of flowering time (Welch et al. 2005). Other computational efforts to relate explicit62

phenotypic models and genetic variation include the cases of foliate-mediated one-carbon63

metabolism (Nijhout et al. 2017), single heart cells (Wang et al. 2012), or tooth develop-64

ment (Milocco and Salazar-Ciudad 2020).65

In this manuscript, we follow the approach of quantitative genetics to study the emergence66

of statistical associations and the potential of phenotypic prediction in metabolism. While67

metabolism has historically been utilized to examine questions on the link between genetic68

variability and system-level organization since early discussions on aspects of the architecture69

of biological systems, see (Burns 1970; Kacser and Burns 1981; Clark 1991) to name a few,70
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these works employed toy models and could not benefit from the current accessibility of71

genome-scale metabolic network reconstructions.72

Here, we explicitly use a reconstruction of Saccharomyces cerevisiae (Duarte 2004) to73

develop a variational approach in which we can study how phenotype variability emerges.74

Genome-scale models contain all the known metabolic reactions in an organism and the genes75

encoding each enzyme and enable the prediction of metabolic phenotypes, e.g., biomass, un-76

der situations in which genetics and environment can be controlled. Within this framework,77

we first discuss the concept of polygenic score to then examine the underlying biology be-78

hind its operation. This goal will make us explore the influence of the systems’ architecture,79

genetic variability, and gene-environment interactions. We demonstrate that the balance be-80

tween functional mode and evolutionary history is crucial in revealing the limits of phenotype81

prediction with many implications.82

RESULTS83

Engineering genetic variation in metabolism84

The genetic variation that exists in natural populations represents a multifactorial per-85

turbation that enables us to understand biological processes (Rockman 2008). Quantitative86

genetics employs this perturbation to quantify statistical associations with phenotypes with87

the use of a reference, or training, population of known phenotype. The approach leads88

to the so-called polygenic scores (PGSs, Fig. 1A), which can predict the manifestation of a89

particular trait given detailed genetic factors.90

Our first objective will be to engineer the variational approach in the in silico metabolic91

framework. We consider whole-genome metabolic reconstructions and generate variability92

in gene dosages as a result of the genetic variability in the population. Dosages are relative93

to a maximal reference value resulting from the history of yeast metabolism. This reduced94

enzymatic performance is in line with earlier works (Kacser and Burns 1981; Keightley and95

Kacser 1987; Clark 1991) and are later interpreted quantitatively in the model by gene-96

reaction rules. These rules define which (and how) genes participate in reactions (Fig. 1B,97
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Fig. S1 and Methods).98

The engineered variability induces individual differences in any potential metabolic trait,99

but we focus on the biomass production rate corresponding to the growth rate that is com-100

puted through flux balance analysis (FBA, Fig. 1B; Palsson 2006). Therefore, the entire101

procedure generates a data set of both genetic and phenotypic variations in the context of a102

metabolic model, which we can dissect to explain how the system works as a whole (Fig. 1C).103

A small subset of genes anticipates growth within a metabolic polygenic score104

We next derive a multidimensional PGS employing data of a population of yeast metabolisms105

that exhibit variability in their gene dosages as described before (growing in the standard106

medium, Methods). Such variability induces variation in growth and in many metabolic107

fluxes (Figs. 2AB and Fig. S2). We obtain a PGS aimed at estimating the individual growth108

rate (Methods). Figure 2C compares the growth rate prediction to the values computed109

with FBA for this training data set. The PGS successfully anticipates the phenotype with110

an R2
train∼0.27, from here on abbreviated R2.111

Although this situation differs from those typically observed in association studies –where112

the number of predictors is several orders of magnitude larger than the training population113

size–, it is exemplary in that we can easily overcome data shortcomings and hence the exact114

fit to the training data (statistical overfitting). That said, PGSs tend to lose predictive power115

when applied to a different test population. To evaluate this, we systematically generated 104
116

independent test data, each with the same size and mutational distribution as the training117

population. For each test we computed the R2
test to obtain a mean 〈R2

test〉 = 0.24± 0.01 for118

the full set. This reveals that the computed PGS slightly overfitted the training data, and119

that we should expect a small loss of predictability when applied to different test populations120

(R2 > 〈R2
test〉 with p < 4x10−3).121

The derived PGS includes all metabolic genes and their corresponding effect sizes, β,122

coupled to the prediction (Methods). We identify 85 genes of non-null effect, 32 of which are123

comparatively large (|β| > 0.01; Fig. 2DE). The latter impacts 61 metabolic reactions (out of124
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1148). The large number of genes with null effect size is surely related to the fact that most125

of the fluxes are inactivated in the considered standard medium (individual metabolisms126

within the population typically show ∼73% of null fluxes) something that characterizes a127

distinct metabolic "functional mode" (a relevant notion in what follows). From now on, we128

focus on the subset of genes with larger effect sizes.129

Few metabolic functions limit growth130

What type of functions implement the predictor genes? One could think that predictors131

are distributed across all metabolic activities in the sense of universal pleiotropy (Kacser132

and Burns 1981). However, we only find a few metabolic subsystems enriched by predictors133

(Methods; Fig. S3). While these include the metabolisms of a variety of amino acids (va-134

line, lysine, histidine), fatty acids, and phospholipids, it is surprising the absence of other135

subsystems central to metabolism like glycolysis or the citric acid cycle. These results are136

substantiated with a separate GO enrichment analysis (Table S1).137

We observed that the detected subsystems involve specifically the production of biomass138

precursors. This group of metabolites fuels the biomass reaction, which defines the archi-139

tecture of growth –as the trait of interest– in metabolic reconstructions (Fig. S4 shows its140

stoichiometry; this incorporates, for instance, the crucial role of amino acids and phospho-141

lipids for protein synthesis and the cell membrane, respectively, etc.). Consequently, we next142

hypothesized that the relevance of genetic predictors stems from their direct contribution to143

the pool of biomass precursors (Fig. 3A).144

Figure 3B shows the mean aggregate metabolite production (or consumption, if negative)145

associated with all predictors in the population of metabolisms (Methods; Fig. S2B and S5).146

The strongest predictors only contribute significantly to a subset of precursors (11 out of 43),147

and in some cases, e.g., valine, lysine, etc., this represents the total production that is required148

for growth. Therefore, the functional mode, active on the standard medium, effectively149

selects a domain within the entire architecture of growth. Of note, while the contribution to150

these factors is direct for only 9 genes –that are precisely producing these biomass precursors–,151
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the rest of the predictors have an effect on growth in a somehow distributed manner.152

The case of histidine is exemplary (Fig. 3C). While it is produced only by his4, all153

histidine-related genes are crucial to providing intermediary precursors and thus are strongly154

involved in its overall production. This explains the case of pmi40, sec53, dpm1 and psa1,155

which are predictor genes found upstream of the production of mannan, another important156

biomass precursor, while pmt1-6 that ultimately produce said metabolite have null effect157

sizes. The same occurs with erg4 and the production of sterol.158

Pleiotropy is not a good measure of growth predictor character159

The results before underline that the top predictors include genes that directly alter the160

availability of the limiting biomass precursors and also genes whose impact comes through161

other upstream reactions. Could the systemic properties of metabolism capture this second162

aspect? We consider here first the pleiotropic character of a gene. One quantifies pleiotropy in163

metabolic models as the number of biomass precursors whose maximal production becomes164

reduced by changing the dosage of a gene (Shlomi et al. 2007). The score thus includes165

system-wide phenomena like metabolic compensation, rewiring, redundancy, etc.166

Within the highly pleiotropic genes, only some display large effect sizes on the PGS167

(Fig. 4A). This outcome might indicate that not all biomass precursors incorporated in the168

pleiotropic score limit growth (they do not all contribute to the operational functional mode169

in the standard medium). Indeed, we confirm that our set of predictors are all especially170

pleiotropic towards the group of biomass precursors already identified in the previous section,171

namely a few amino acids, phospholipids, mannan and sterol (Fig. 4B). This reflects that172

pleiotropy fails at pinpointing relevant genes for growth prediction since it is an aggregate173

measure that includes the effect of a mutation across all biomass precursors, while only174

a limiting few ones matter. On the contrary, separating the individual contributions of175

mutations to different functions results in a valid list of metabolites that potentially limit176

growth.177
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Growth predictors display either large additive or epistatic effects178

A second systemic measure is epistasis (indicating gene-gene interactions). We present179

an approach based on global sensitivity analysis that allows quantifying the additive and180

nonadditive effect of individual gene dosages on growth variability. Two indices, S0 and εT ,181

quantify such additive and nonadditive ("total order" epistasis) contributions, respectively182

(Methods and Supplementary Material).183

Figure 4C shows that some predictor genes have large additive effects, S0, and small184

total epistasis, εT (ino1, his3, . . . ), whereas others display the opposite pattern (cho1, his1 ).185

Importantly, the sum of all effects, additive and epistatic, shows the maximum correlation186

with the effect sizes obtained in the PGS (Pearson’s ρ > 0.97, Fig. 4D and Fig. S6). That187

the fraction of genes displaying S0 > εT and S0 < εT is comparable highlights that the large188

effect sizes we obtain are associated with genes enriched by additive effects (something to be189

expected from a linear statistical formalism) but also with those with strong epistatic effects190

(which appears paradoxical, see the Discussion; see also Figs. S7 and S8, and Supplementary191

Material for an alternative sensitivity analysis where the growth response coefficients are192

analyzed).193

Is there a structural basis for large S0 or εT ? We investigate their relationship with194

several measures for each gene: the number of (active) reactions involved, the amount of195

flux they control, and the number of (precursor) metabolites they utilize. Among these,196

we find the largest correlations of S0 (and εT ) with the number of reactions they control,197

ρ = −0.19 (ρ = 0.19), and the log of the summed absolute flux through their reactions,198

ρ = 0.23 (ρ = −0.22). Therefore, one expects large additive effects to stem from genes that199

regulate a small number of reactions of larger flux. In opposition, genes that control a larger200

number of reactions with less flux result in larger epistatic effects.201

Optimal genetic variability for predictability202

Beyond the previous systemic attributes, we now examine how the genetic variability203

accessible within a population, measured by its standard deviation σG, modifies the capacity204
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to predict the phenotype. We use ten populations with equal mean dosage and increasing205

σG (Fig. 5AB; Methods) to compute the corresponding growth rates with FBA and also to206

train a PGS in each case.207

Notably, the output of the PGS (coefficient of determination R2) reaches a maximal208

optimal value for a given σG (Fig. 5C). This value results from the association of stronger209

effect sizes to the same genetic predictors found previously (Fig. 2D). Yet a better R2 comes210

at the cost of a decreased mean population fitness. Besides, in populations with large genetic211

variability, σG > 0.14, the PGS’ performance declines owing to an increased number of large212

effect predictors resulting from additional growth limiting reactions (Fig. 5D).213

Next, we discover that although the main genetic predictors identified across all PGSs are214

identical, the effect sizes change quantitatively with genetic variability. Thus, the estimated215

impact of a mutation, e.g., reduction of 20% of a specific enzyme, will have a differential216

effect depending on the genetic background of the individual, which limits the suitability of217

applying a PGS on individuals if the test and training populations widely differ.218

These results reveal overall a trade-off between genetic variability, population fitness, and219

predictability. While it is desirable to increase the performance of a PGS through sampling220

a population with high genetic variability, negative selection is likely to prevent scenarios of221

optimal predictability (O’Connor et al. 2019). Thus, selection would pose severe limitations222

to phenotype prediction.223

Prediction is transportable across environments but also experiences extreme224

gene-environment interactions.225

In our last analysis, we ask to what extent specific growing conditions influence the226

ability to predict growth, modifying, in turn, the collection of the predictors. Therefore, we227

randomly generated >103 (nutrient) environments of increasing richness (fixing the genetic228

variability as before, Methods). Then we train a separate PGS (for growth in every medium;229

Fig. 6A) to focus on the genes with the largest effect sizes (|β| > 0.01, as previously).230

Figure 6B shows the effect sizes of each gene depending on medium richness. The top231
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predictors identified previously appear recurrently in most media with increasing effect sizes232

in richer environments. Thus, they constitute a core set of predictors valid for most environ-233

ments. Could this reflect that the growth medium has a limited impact on which reactions234

are active? Indeed, there exist between 70% and 100% of shared active fluxes across all235

random environments, and >99% if we consider reactions controlled by our initial set of top236

predictors. This explains the identification of similar genetic predictors across environments.237

Nevertheless, we observe a second general trend in poor media, where a novel set of predic-238

tors related to the mitochondrial respiratory chain –a different functional mode– becomes239

relevant.240

One could still argue that the differences in predictability are due to subtle differences in241

metabolic solutions. We thus controlled for environmental richness to quantify this. Differ-242

ences in metabolic solutions do not correlate with predictability (Pearson’s ρ = 0.06, using243

partial correlations to control for environmental richness), further pointing towards envi-244

ronmental richness as a valid measure that recapitulates metabolic activity and similarity,245

anticipating predictability (Fig. 6C).246

Next, we observe that other genes recurrently appear as strong predictors in specific247

–typically poor– media (Fig. 6B), and whose occurrence leads to particularly strong PGS248

performance with up to R2 = 0.56 (Fig. 6C). Therefore, while growth prediction usually relies249

on a core set of genes largely "independent" of the growing medium, strong gene-environment250

interactions can sizeably improve the performance of a PGS.251

Finally, the fact that the effect sizes change continuously with increasing environmental252

richness (Fig. 6B-D) ensures the "portability" of a singular PGS (trained in a reference253

medium) to predict the growth rate of the same population in another medium of similar254

richness (Fig. 6E). Figure 6F shows the performance of a PGS trained with data of the255

standard medium to predict the growth rates obtained in different random media (as test256

populations). Indeed, we observe that beyond a certain environmental similarity (Methods)257

the portability of PGSstd falls sharply together with the number of overlapping predictors258
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between PGSstd and PGSi (trained in the i-eth random environment). This enables us to259

distinguish regimes of high and low portability.260

DISCUSSION261

We developed a framework to generate genetic and phenotypic variability in a population262

of in silico yeast metabolisms to study how and why a polygenic score (PGS) can anticipate263

the phenotype (growth rate) from a specific enzymatic profile. Metabolic reconstructions are264

arguably the best-suited models to inspect these questions as they incorporate genetic and265

environmental information into an explicit GP map that renders the PGS accountable for266

its predictions (Kavvas et al. 2020). The quantitative interpretation of gene reaction rules267

(GRRs) is a fundamental layer contributing to an accurate representation of this map.268

In this way, if we reveal how the associations that define the PGS arise, we can begin269

recognizing general limitations of predictability, which have important implications for fun-270

damental (Burns 1970; Boyle et al. 2017), and applied biology (Dudbridge 2013; Torkamani271

et al. 2018; Kavvas et al. 2020). Specifically, we evaluated the limitations originated by i)272

biological and evolutionary constraints of the metabolism, ii) knowledge of the trait archi-273

tecture, iii) non-linearities in the GP map, iv) influence of the environment, and v) genetic274

makeup of the training population.275

Computing a case study, we obtain an R2 = 0.27 and 32 genetic predictors with notably276

large effect sizes (Fig. 2DE). Which genes act as predictors result from the combination277

of two factors: the quantitative flux required in a certain environment and the flux con-278

straints derived from the corresponding genetic variation (Fig. S9A). The former represents279

the “functional mode” of metabolism in that environment, while the latter results from the280

combination of GRRs and what we define as the "historical" reference flux bounds. These281

bounds represent the consequence of the adjustment of the yeast metabolism to onetime282

experienced evolutionary history.283

Therefore, both GRRs and the reference bounds can act as a sieve of genetic variation284

causing part of it to be cryptic (Richardson et al. 2013; Paaby and Rockman 2014; Poy-285
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atos 2020). GRRs could symbolize, for instance, the presence of an isozyme which would286

prevent such enzyme from becoming a phenotypic predictor. Moreover, reference bounds287

might largely differ from the required flux in a given environment, which again silences the288

functional impact of the genetic variability present in the population. We confirmed the289

latter effect in two experiments where we manipulated the reference fluxes (Fig. S9B).290

The presence of the 32 distinct predictors, and their enrichment in a few metabolic func-291

tions, is thus contingent on both working regime and evolutionary history. Note, however,292

that these functions should be necessarily associated with biomass precursors, either di-293

rectly or in upstream reactions, since the biomass reaction represents the architecture of the294

trait/phenotype of interest (Fig. 3AB).295

Shifting our focus on systemic features, we can report several results. Pleiotropy, as an296

aggregate score of the impact of mutations on all biomass precursors, is a poor measure of297

the predictive character of a gene, with the disaggregate information nevertheless partially298

revealing the composition of the biomass reaction (Fig. 4B). Therefore, the PGS provides299

a sound but partial understanding of the architecture of the trait, exclusively the domain300

associated with the required precursors in a given environment.301

We also discussed epistasis. Those genes whose dosages are eventually confining growth302

induce the non-linearities in the metabolic GP map, a combination of the working regime, i.e.,303

functional mode, and evolutionary history as discussed above. On this basis, individuals are304

instances where only one, or few, dosages are particularly limiting, the exact ones varying305

among them (Fig. S8). But the mixture of individuals at the population level generates306

functional cross-dependencies, increasing the number of limiting enzymes and consequently307

reducing predictability (more inadequate predictions correlate with predictor number, linear308

ρ = −0.94, Fig. S9C).309

This reasoning helps clarify two added phenomena. First, it describes the beneficial ef-310

fect of sufficiently large gene-by-environment interactions on predictability (fewer predictors,311

better predictability, Fig. 6C). Second, it anticipates a conjecture where a metabolism "dis-312
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abled" on its capacity to react to genetic variation would paradoxically be coupled to better313

prediction. This premise, we proved (impairment causes simpler functional modes that lead314

too to fewer predictors, Fig. S9D).315

Moreover, the validity of linear methods to predict the outcome of highly non-linear316

GP maps has intrigued the genetics community. Global sensitivity analysis confirms the317

suitability of these approaches (effect sizes capture the sum of both additive and epistatic318

contributions, Fig. 4D). Indeed, a PGS should capture non-linearities, since the minimization319

of error due to a linear regression incorporates all data points, including those coupled to320

non-linear regimes. Still and despite the presence of epistatic effects we notice that the sum321

of additive terms accounts for over 75% of the total phenotype variability (
∑
S0 > 0.75,322

Fig. 4C), certainly owing to order-preservation of gene-dosage responses (Fig. S8; Gjuvsland323

et al. 2011). In sum, the linearity of the PGS a priori imposes a fundamental constraint on324

anticipating non-linear effects but it can nevertheless partially integrate them. This trade-off325

illustrates to what extent the GP map can be described linearly (Hill et al. 2008).326

Finally, we asked about the portability of the predictions across populations concerning327

differences in genetic and environmental situations. Populations experiencing an interme-328

diate genetic variability ensure maximum predictability, in line with previous results on329

extreme allele frequencies (Hill et al. 2008). However, such an increase in R2 comes at the330

cost of population growth (Fig. 5B). Achieving this maximum could then be unattainable331

due to negative selection (O’Connor et al. 2019), which could be interpreted as yet another332

constraint on predictive power. In GP contexts in which genetic variability is less likely to333

cause loss of function and more forms of gain of function are possible, this constraint will be334

less apparent, as variability will not elicit negative selection.335

Notably, the list of genetic predictors remains largely the same, independent of the336

amount of genetic variability in the training population (Fig. 5D). This is also observed337

when one determines predictors associated with populations growing in different media of338

similar richness, with two consequences (Fig. 6D). First, these results ensure the portability339
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of the PGSs. Second, and as stated before, the predictors are specific to the evolutionary340

history of the metabolism. As a consequence, portability might not necessarily hold for more341

fixed, and maybe more realistic, histories.342

Perhaps the most unifying research program of all questions currently being addressed343

in biology is that of phenotype prediction. Here, we have learned that the combination of344

functional mode, evolutionary history, and phenotypic architecture determines the limits of345

prediction. For this, we benefited from an in silico approach whose capabilities to examine346

the emergence of phenotypic variation are beyond current experimental setups. The debate347

on the need to understand our predictions is sure to spark many interesting future discussions.348

MATERIALS AND METHODS349

Metabolic models350

Whole-genome metabolic models integrate the stoichiometry of the reactions in the metabolism351

of a model species, and together with computational methods they enable the estimation352

of an optimal network solution given an objective function where fluxes are stable. Among353

all fluxes, we focus on the prediction of biomass production, an analogue of growth rate354

and fitness. We used the genome-scale metabolic reconstruction of Saccharomyces cerevisiae355

iND750 (Duarte 2004) together with the Cobra toolbox for Python (Ebrahim et al. 2013) to356

compute the fitness of numerous mutants in either a standard medium or random media and357

the Escher package to depict the central carbon metabolism (King et al. 2015). Metabolic358

subsystems are typically assigned to reactions, hence we imputed a specific subsystem to359

a gene only if all reactions in which it participates belong to the same subsystem. Among360

all 750 genes present in the model, 42 of them had either none or multiple subsystems as-361

sociated, which we discarded. Note that our choice of model tries to balance the presence362

of sufficient biological details with accessible computational time. Still, our results and the363

mechanisms underlying phenotype prediction are robust when using the most recent yeast364

metabolic reconstructions iMM904 and yeast8 (R2 = 0.18 and R2 = 0.17, respectively).365
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Quantitative mutations366

We compute the effect of a quantitative reduction in gene dosage, or equivalently enzyme367

efficiency, in two steps (Fig. S1). First, we compute the wild type "reference" bounds of368

each reaction. These bounds are constituted by the maximum (and minimum if reversible)369

reaction fluxes observed in 2x104 optimal solutions of metabolisms exposed to random en-370

vironments, and random genetic backgrounds (Methods). In the latter case, we randomly371

sampled flux bounds from a uniform distribution in the range [0,100]. In this way, the wild372

type bounds integrate the history of yeast metabolisms, which have adapted to different373

environmental and genetic contexts (Discussion).374

Second, we interpret quantitatively the gene reaction rules (GRRs) to find how reducing375

the dosage of an enzyme translates into a reduced flux through its reactions with respect376

to the wild type. This is necessary because some reactions may require several subunits377

or just one of several isozymes. The GRRs may contain AND and OR operators acting on378

pairs of genes, we consider these equivalent to min and sum, respectively, acting on relative379

gene dosages. This approach is similar to those used in noise propagation (Wang and Zhang380

2011), or by the Escher package (King et al. 2015). In all cases, the upper/lower bounds are381

always computed and set according to the reactions’ reversibility and the bounds of ATP382

maintenance, biomass production and exchange reactions are kept unaltered.383

This procedure is comparable to a previous approach in which genetic variability was384

also mapped to flux constraints (Kavvas et al. 2020). The authors construct the allele-to-385

flux constraint map coupled to the performance of a novel objective function to classify386

antibiotic resistance in a fixed medium. Our approach, however, assumes flux constraints387

imposed by a history of past genetic and environmental adaptations and, in this sense it is388

more comprehensive, together with explicit information about which genes are involved in389

exact reactions (GRRs).390
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Genetic variability391

We generate genetic variability by sampling gene dosages from a probability distribution.392

Unless otherwise stated, we use a normal distribution with unit mean and standard deviation393

σ = 0.1. In this way, σ directly reflects the variability in the population’s gene dosages. This394

distribution follows from either Fisher’s original infinitesimal model, or from the Gaussian395

Descendants derivation where different levels of parenthood result in different σ under neutral396

evolution (Barton et al. 2017; Turelli 2017). We define the wild type genotype as having397

all gene dosages equal to the unit. This procedure generates populations that are in linkage398

equilibrium.399

We also engineered genetic variability based on gamma distributions with shape param-400

eters 0.5 < k < 200 and scale adjusted such that all distributions had equal mean. Impor-401

tantly, note that gene dosages >1 are not beneficial, as wild type bounds are the extreme402

values observed (statistically), thus to avoid including additional cryptic genetic variation,403

gene dosages >1 were clipped to the unit. In this way, the resulting genetic variability in404

our standard population is σG = 0.05 (Fig. 5).405

Growth media and environmental variability406

The minimal medium is defined by unbounded import and export of H2O, CO2, ammonia,407

phosphate, sulphate, sodium and potassium and it is aerobic with 2 mmol/gDW/h import408

rate of O2. The standard medium is additionally composed of 20mmol/gDW/h import rate409

of glucose. Random environments are generated following a previous protocol (Wang and410

Zhang 2009). Briefly, we supplement the minimal medium with an additional number of411

components such that the probability of including any component follows an exponential412

distribution with mean m = 0.10 (other values produce similar results). Then, for every413

component, we obtain their maximum import rates from a uniform distribution between 0414

and 20 mmol/gDW/h.415

We define the richness of a medium as the growth rate of the wild type, and the envi-416

ronmental similarity between two media as the ratio of their richness. To avoid including417
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arbitrarily rich media, we consider those with richness inferior, or equal to that of the stan-418

dard medium. Also, we discard media that support biomass production rates <70% of419

that of the standard medium to avoid possible natural or model artifacts related to our420

implementation of quantitative mutations (see Results). This is an alternative approach to421

Constrained Allocation FBA (CAFBA), which limits the growth rate of metabolic models422

based on resource allocation principles by fixing a medium and tuning a parameter related423

to proteome fractioning (Mori et al. 2016).424

Polygenic Score425

We used a high-dimensional regression framework for polygenic modeling and prediction:426

~y
N×1

= G
N×M

~β
M×1

+ ~ε
N×1

, (1)427

where N is the sample size, M is the number of genes, ~y is the vector of phenotypes (typi-428

cally growth rate), G is the genotype matrix, ~β is the vector of effect sizes of the genes and429

~ε is some noise assumed normal with unknown variance. The generated data was fit using430

Least Absolute Shrinkage and Selection Operator (LASSO) a type of regression that under431

bayesian statistics assumes prior Laplace distributions in each coefficient, instead of uniform432

distributions as in the case of Ordinary Least Squares. Consequently, with LASSO some433

parameters are automatically zero (Tibshirani 1996), hence making it a remarkable alterna-434

tive to pruning and thresholding (P+T) or other regularization methods (Dudbridge 2013;435

Wray et al. 2013). In addition, we compute the best value of the shrinkage parameter with436

five-fold cross validation. That effect sizes show a bimodal distribution makes our results437

robust to the application of other regularization, or feature selection methods (Fig. 2E).438

Sensitivity analysis and total epistasis439

We computed local sensitivity indices Zi to monitor the changes in the output variable, i.e.,440

growth rate, when every single input variable, i.e., each gene dosage, is altered (Kacser and441

Burns 1981; Keightley 1989). However, local sensitivity analysis (results are available in442
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the Supplementary Material) does not explore the entire parameter space and is unable to443

isolate the effect of (non-linear) variable interactions.444

Global sensitivity analysis, however, is ideal for this task, as it decomposes the variabil-445

ity of the output of a model into different terms when all variables fluctuate simultaneously.446

We used the method first proposed by Sobol for its easy implementation and interpreta-447

tion (Sobol 1993; Saltelli et al. 2008). Note that this differs from previous flux-based ap-448

plications (Nguyen Quang et al. 2019; Nobile et al. 2021). Briefly, we focus on two indices449

for the i-eth gene, the first order index Si
0 and the total effect index Si

T . The former quan-450

tifies the additive part of the variability associated to a gene while the latter quantifies its451

total contribution, additive and all non-additive effects. From these, we derive the total452

epistasis which accounts for all, and only, non-additive effects as εiT = Si
T − Si

0 and its error453

(∆εiT )2 = (∆Si
0)

2 + (∆Si
T )2.454

We computed all indices and their errors with monte carlo estimators using over 106 sam-455

ples (Saltelli et al. 2008; Saltelli et al. 2010). We carried out these computations with pairs456

of genotypes sampled from the original population growing in standard medium. A detailed457

description of the protocol and equations are available in the Supplementary Material.458

Note that we do not show negative values of both S0 and εT as they are unrealistic and459

should be considered null in agreement with their error bounds.460

Pleiotropy461

In metabolic models, the pleiotropy of a mutation is generally computed as the number of462

biomass precursors whose maximum production is limited by the mutation, following a pre-463

vious protocol (He and Zhang 2006; Shlomi et al. 2007). Briefly, we simulated the excretion464

of a given metabolite by adding an exchange reaction to the model and maximizing the flux465

through this reaction. Then we consider that a gene limits the production of a metabolite466

if, when knocked-down by 90%, its excretion rate decreases. As pleiotropy is strongly de-467

pendent on the genetic context, we computed the mean value across 103 individuals of the468

population due to the large computational load. We used a 90% decrease in dosage to avoid469
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artifacts derived from gene essentiality, but our results are robust when using other values.470

DATA AVAILABILITY471

Data and code for this work is available at Zenodo (Yubero 2022). The main code used472

to generate quantitative mutations is available at GitHub (https://github.com/pyubero/473

quantitative_mutations).474
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Fig. 1. Metabolic reconstructions provide an explicit GP map that allows us to
open the black box of phenotype prediction. (A) Phenotype prediction is typically
based on the statistical association of genetic and phenotype variants in a training population.
This approach defines a black box that bypasses all underlying biological processes. With
the genetic information of a test individual, the model calculates a polygenic score (PGS)
with the probability of observing the specific trait. (B) We benefit from the metabolic
reconstruction of S. cerevisiae to generate an in silico population of yeast metabolisms.
Genetic variability is modeled by the effect of alleles on gene dosages, which limits the
maximum flux through their reactions according to the gene-reaction rules. Given these
constraints, flux balance analysis (FBA) computes the growth rate of each individual in the
population. (C) We quantify the statistical associations to elaborate a PGS for growth rate.
Together with the availability of the underlying model, this enables us to "open" the black
box of phenotype prediction to investigate its limitations.

25

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492732
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 2. The PGS reveals that a small number of genes explains 27% of growth
variability in yeast metabolism. (A) We generate a synthetic population of 5 · 103 yeast
metabolisms with relative gene dosages sampled from a normal distribution (Methods). For
each individual, we compute its growth rate with flux balance analysis. Such genetic vari-
ability induces a distribution of growth rates with mean and deviation µ = 0.41 ± 0.03.
The vertical dotted line shows the wild-type growth rate (µwt = 0.51). (B) Central car-
bon metabolism cartoon emphasizing the variability in flux solutions across the population.
(C) We trained a polygenic score (PGS) to anticipate growth rates from gene dosage data.
The PGS explains 27% of the growth rate variability observed in the training population.
(D,E) The PGS computes a specific effect size for each gene, β. Most of the genes, 88.7%,
have null effect sizes (blue), while only 4.3% of the genes (red) are strongly associated with
growth rate with |β| > 0.01. The latter control just 5% of the metabolic reactions.

26

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492732
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 3. Top gene predictors control the production of a few metabolites required
for growth. (A) Biomass precursors in metabolic reconstructions are metabolites that
ultimately fuel the biomass reaction, which simulates growth. We compute the contribution
of several genes (e.g., predictors 1 and 2) to the production of a specific precursor and
compare it with the expected contribution of randomly selected genes (red horizontal line),
or with the flux devoted to growth (green). (B) Mean values of ξ, the aggregate contribution
of the predictor genes to the production of each precursor relative to biomass consumption,
across the population of yeast metabolisms. For example, we observe that the predictor
genes produce 100% of the L-histidine consumed by growth (horizontal green line). We
tested significant contributions after 5x103 gene randomizations controlling for subset size
(mean, red horizontal lines; * p<0.05, ** p< 0.01). The case of L-glutamate is not significant
due to a large variance (not shown for clarity). (C) Part of the metabolic pathway leading to
L-histidine production. Although it is produced directly by his4, its production is influenced
by upstream histidine-related genes, which also appear as important growth predictors.
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Fig. 4. System-wide effects of top predictors. (A) Pleiotropy of each gene after a 90%
dosage reduction (Methods). Only a few top predictors have significant values of pleiotropy
(over the 95th percentile, horizontal dotted line). Mean values (dots) and one standard
deviation (error bars) across 103 individuals. (B) The pleiotropic impact of genes with large
effect sizes focuses on a subset of biomass precursors. We show the Z-score of the sum of
predictors (genes) that are pleiotropic w.r.t each metabolite against the mean and deviation
found across all genes. We use abbreviations for phosphatidate (pa), phosphatidylcholine
(pc), phosphatidylserine (ps), and phosphatidyl 1D myo inositol (ptd1ino). (C) Global
sensitivity analysis allows us to quantify both the additive impact of genes on the growth
rate, S0 (purple), and the total epistatic effects, εT (yellow), which include all 2nd and higher-
order gene-gene interactions. Bars and vertical lines represent mean values and a standard
deviation, respectively, of > 106 simulations (Methods). (D) The sum of the additive and
epistatic effects correlates well with the effect sizes of the polygenic score (Pearson’s ρ >
0.97).
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Fig. 5. Populations with different genetic variability reveal a common PGS archi-
tecture but also its predictive limit. (A) Probability density function estimate (kernel,
bw=0.3) of relative gene dosages of 10 populations with increasing genetic variability (σG).
(B) With FBA, we compute the growth rates (mean values on the left y-axis, colored circles
as in panel A) and trained a separate PGS for every population (coefficient of determination
R2 on the right y-axis, black triangles). (C) Effect sizes of all genes as a function of σG.
Lines are colored as in Fig. 2E.
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Fig. 6. Environmental effects on phenotype predictability and the portability of
a PGS. (A) We compute the growth rates of a fixed population in 103 random environments
with different richness (Methods) to train a PGS in each of these. (B) Effect sizes of all PGSs
as a function of environmental richness. We highlight previously identified top predictors
(red, as in Fig. 2), a novel set of predictors recurrent in poorer media that are related to
the mitochondrial respiratory chain (cyan), and genes that show large effects in only specific
media (purple). (C) The predictability of a PGS typically increases with environmental
richness. However, in some media, predictability improves up to R2 = 0.6 due to strong
gene-environment interactions identified by outliers in the effect sizes (θmax is the Z-score of
the maximum effect size found in each PGS). (D) Effect sizes of genetic predictors follow
a clear trend as a function of environmental richness. We show explicitly the values for all
genes that have an effect size β>0.01 in any PGS. (E) Next, we test the "portability" of
the PGS computed in the standard medium, PGSstd, that is, its ability to predict growth
rates in different environments. (F) The portability of PGSstd (left y-axis) holds within
a certain environmental similarity, measured as the ratio of the random and the standard
medium richness. The fall in "portability" is linked to the decreased overlap of predictors
between PGSstd and the corresponding PGS of the medium (right y-axis). The dots and
lines correspond to individual media and a running average (n = 50), respectively.
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